• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation, thermal and mechanical properties of POSS/PI hybrid films for cryogenic applications

    2017-01-03 01:59:04WEIShaohuaWUXiaojunDUKaiYIYongYINQiang
    化學(xué)研究 2016年6期
    關(guān)鍵詞:力學(xué)性能

    WEI Shaohua, WU Xiaojun, DU Kai, YI Yong, YIN Qiang*

    (1.Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang621010, Sichuan, China; 2.Research Center of Laser Fusion, China Academy of Engineering Physics,Mianyang 621900, Sichuan, China)

    ?

    Preparation, thermal and mechanical properties of POSS/PI hybrid films for cryogenic applications

    WEI Shaohua1,2, WU Xiaojun2, DU Kai1,2, YI Yong1, YIN Qiang2*

    (1.JointLaboratoryforExtremeConditionsMatterProperties,SouthwestUniversityofScienceandTechnology,Mianyang621010,Sichuan,China; 2.ResearchCenterofLaserFusion,ChinaAcademyofEngineeringPhysics,Mianyang621900,Sichuan,China)

    A series of polyhedral oligomeric silsesquioxane (POSS)/polyimide (PI) hybrid films were prepared by the sol-gel technique.In these nanocomposite materials, different quality ra-tios of theγ-glycidyloxypropylsilsesquioxane (G-POSS) cage mixture was introduced to the poly(pyromellitic dianhydride-co-4, 4′-oxydianiline), amic acid solution (PAA) and the precursor of polyimide.Then, the intermediate products were cast to the glass templates and circled to be nanocomposite films at a temperature program.Particular mechanical and thermal properties of the G-POSS/PI nanocomposite films were investigated, i.e., the tensile strength of the hybrid films at cryogenic temperature (77 K) were obviously higher than that at room temperature.The highest tensile strength of the G-POSS/PI films was 239.38 MPa by incorporating 3% G-POSS at 77 K, and 101.3 MPa with 5% G-POSS at room temperature, respectively.With the raise of G-POSS content, the tensile modulus of the films increased, while the elongation at break of these hybrid films decreased in tensile tests and it was also found that the thermal degradation temperatures of these materials had an obvious decrease which was attributed to the weak thermal resistance of the organic groups of G-POSS molecule.As a consequence, the hybrid film with lower than 5% POSS content (e.g., 3%) would be more possibly used as a kind of novel material at cryogenic temperature compared with pure PI film in the cryogenic refrigeration technology and inertial confinement fusion (ICF) physics experiments.

    G-POSS/polyimide; mechanical properties; cryogenic applications

    Aromatic polyimides (PIs) have been widely studied and applied in aerospace and microelectro-nic industries at extreme conditions since Kapton films were released by Du Pont Corporation (USA) in 1960s.[1]From then on, much work has been done by many researchers related to the to-pping characteristics of PIs, for instance, excellent thermal stability, outstanding mechanical properties, eximious chemical resistance, and low dielectric constant.[2]However, with the rapid development in some special applications such as the cryogenic refrigeration technology and inertial confinement fusion (ICF) physics experiment etc., further improvement of properties of PIs is of paramount importance and worthy of deeper investigation.[3-8]In ICF physics experiments, for example, the polymer capsule is contained in a radiation case named hohlraum.Then, some specific material for the fabrication of windows of hohlraum and also different membranes are needed.A promising approach is doping the polyimide with rigid nanoparticles, which is a type of hybrid material with the strengthening particles are in the order of nanometer.The fillers such as nanoparticles,[9-10]nanotubes,[11-14]graphene[15-17]and silica network[18-21]were introduced to the pristine polyimide and the hybrid systems exhibited better characterization in many reports, nevertheless, with the increase of the amount of the fillers, defects also increase.

    Polyhedral oligomeric silsesquioxane (POSS), which is consisted of a rigid and cubic silica core (SiO1.5)nsurrounded by organic functional groups, is a kind of advanced organic/inorganic silica hybrid material.In recent years, POSS/PIs hybrid nanocomposites have been received a great deal of attention,[22-29]but few studies of the applications of POSS/PI hybrid films at cryogenic temperature were reported.

    In this work, theγ-glycidyloxypropylsilsesquioxane (G-POSS) cage mixture is chosen for its ability of self-addition through the epoxy groups[20]to make a reticular structure in the poly(pyromellitic dianhydride-co-4,4′-oxydianiline), amic acid (PAA) solution.Moreover, it can react with the hydroxyl carboxyl of PAA chains to enhance the crossing density of the hybrid system at elevated temperatures to improve the compatibility of the two components.[18]As it is well known, the mechanical property of a composite material strongly depends on the compatibility and interfacial action between the filler and the matrix.Therefore, we intend to improve the dispersion and interfacial action of the POSS/PI hybrid system through the epoxy groups, and explore its mechanical properties at cryogenic temperature.

    1 Experimental

    1.1 Materials

    All materials were commercially available.The poly(pyromellitic dianhydride-co-4,4′-oxydianiline), amic acid solution (15.0%-16.0% in NMP, 50-70 poise) was purchased from the SIGMA-ALDRICH CO.(USA), and used without further purification.1-Methyl-2-pyrrolidinone (NMP, analytical reagent grade) was obtained from Xiya Chemical Industry Co.Ltd.(Shandong, China) and dried over molecular sieves before using.The G-POSS Mixture was purchased from Hybrid Plastics (USA).Scheme 1a shows mole-cular structure of the PAA chain unit formed by condensation polymerization of pyromellitic dianhydryde (PMDA) and oxydianiline (ODA).The PI chain unit structure was shown in Scheme 1b and the structure of G-POSS monomer was shown in Scheme 1c.

    1.2 Preparation of pure polyimide film

    The sol-gel technique was employed for the synthesis of pure PI and hybrid films.The main steps were as follows: 15 g poly amic acid solution

    Scheme 1 Schematic presentation of polyamic acid unit (a), PMDA-ODA PI unit (b) and G-POSS molecure (c)

    was added to a 250 mL four necks flask equipped with nitrogen (N2) inlet and mechanical stirrer.Some proper NMP was added to the flask and the solid concentration was kept at about 5.5%.The mixed solution was stirred at -10 ℃ under N2(99.999%) for about 6 h to get a transparent and homogeneous solution.The pure polyimide film was prepared by casting the solution onto a glass template.After the majority of solvent volatilized at 80 ℃, the poly amic acid film (PAA) was tore off from the glass template and heated at 100, 150, 200, 250 and 300 ℃ for 1 h respectively to obtain light yellow transparent film.

    1.3 Preparation of G-POSS/PI hybrid films

    In a 100 mL dried beaker, the required quality ratio of G-POSS mixture and some NMP were placed.Then the container was settled in an ultrasonic unit and processed at room temperature for 0.5 h to gain achromatous solution.The solution was added to the PAA precursor and the system was stirred for another 6 h under flowing N2.The rest steps of preparing the PI-POSS hybrid films were the same as the pure PI film, and yellow or brown films was obtained.

    1.4 Characterization

    Diffuse reflectance infrared Fourier transform (DRIFT-IR) spectra of films were obtained by a Nicolet 6700 FT-IR spectrometer (Nicolet Instrument Corporation, USA).The film samples were dried in a vacuum at 110 ℃ before they were tested.At least 32 scans at a resolution of 4 cm-1were performed for each sample.

    Thermal gravimetric analysis (TGA) was ca-rried out with the instrument (TGA, Pyris 1 PE) at a heating rate of 10 ℃/min from 100 to 800 ℃ under a continuous argon (99.999%) flow.

    Mechanical properties of 45-50 μm thick G-POSS/PI films at room and cryogenic temperature were measured according to the specification of ISO 527-3:1 995 at a strain rate of 5 mm/min, respectively.Specimens having a constant width of 13 mm in the gauge region were cut into rectangle shape samples.The initial distance between grips was 100 mm.Tests were performed using a universal testing machine (KDⅢ-5, Kaiqiangli testing Instruments Co., Ltd).Six samples of each G-POSS/PI film were tested and standard deviations were recorded.

    Images of the fracture surfaces of the films were obtained using an environmental scanning electron microscopy (SEM, MERLIN|VP Compact ZEISS, German) with the acceleration voltage of 10 kV.The samples were coated with a layer of gold for 150 s in vacuum conditions.

    2 Results and discussion

    2.1 FT-IR

    FT-IR spectra of the G-POSS cage mixture, pure polyimide film and 20% G-POSS/PI hybrid film between 4 000-700 cm-1are showed in Fig.1, 2 000-700 cm-1are showed in Fig.2.The sharp and strong peaks of 1 775 cm-1(C=O sy-mmetric stretching), 1 721 cm-1(C=O asymmetric stretching), 1 375 cm-1(imide groups C-N stretching), 726 cm-1(C=O bending) were observed in the pure polyimide and the 20% G-POSS/PI sample films.The wide and strong absorption at wavenumbers 1 200-1 000 cm-1in the spectrum of G-POSS corresponds to Si-O-Si stretching vibration.[25, 28]The peak of 1 103 cm-1which belongs to Si-O-Si cage stretching vibration was difficult to distinguish from the 20% G-POSS/PI film, but another representative band belonged to Si-O-Si network stretching vibration which changed from 1 057 cm-1to 1 049 cm-1was obvious.This change resulted from the higher crosslink density was produced in circled program, which leaded to a tighter network of the G-POSS.Similar results were obtained in ref.18, with the molecule of G-POSS was solidified in hybrid film, the position of absorption position decreased to lower wavenumber.It is noted that the absorption bands at 3 000-3 500 cm-1(Si-OH, H2O) in the curve of G-POSS disappeared in the 20% G-POSS/PI hybrid film which was resulted from self-condensation reaction and removal of absorbed water in the G-POSS material.[18]

    2.2 Thermal properties

    Fig.3 presents TGA curves of G-POSS, pure PI and various G-POSS/PI nanocomposite films under argon atmosphere.A decrease in the decomposition temperature (Td) was found for G-POSS/PI nanocomposites relative to the pure PI due to the lower degradation temperature of organic groups of G-POSS.Char yields of these G-POSS/PI hybrid materials remained nearly the same as the pure PI.More detailed information can be found in the Table.1.Fig.4 showed TGA curves of 10% G-POSS/PI hybrid film and mixture of G-POSS and pure PI.It was observed that theTdof 10% G-POSS/PI hybrid film had been improved, which was attributed to the reaction between epoxy groups and hydroxyl carboxyl of PAA chains.In our study, the main concern was the performance at low temperature which was significantly lower than theTds of the hybrid films.Therefore, the decrease of the thermal property of the film was not an obstacle where we used in the physics experiment.

    Table 1 Effects of G-POSS content on the thermal properties of G-POSS/PI hybrid films

    G-POSSContent/%0151020Td/℃421.59401.86355.27326.75300.29Td(5%loss)/℃591.11579.08552.36517.59415.29

    2.3 Mechanical properties

    Typical tensile strength curves for the films are shown in Fig.5.It is observed that the tensile strength of G-POSS/PI hybrid films and the parent PI at 77 K are generally higher than that at room temperature.This is because on the one hand, the PI molecules are frozen at 77 K, leading to a tighter array and stronger interface adhesion, which results in a higher tensile strength than that at room temperature.On the other hand, the reaction between epoxy groups and hydroxyl carboxyl minor matters of PAA chains forms a network with the core of G-POSS, which increases the crosslink density, also enhancing the intensity of the tensile strength of the nanocomposites.Fig.5 also displays that the tensile strength of the hybrid films at both cryogenic and room temperature increases with the increase of G-POSS content, and is higher than that of the pure PI film when G-POSS content is lower than 5% at cryogenic temperature and 10% at room temperature respectively, and then decreases with the increase of G-POSS content.The similar result is observed in PI-MMT and PI-mica hybrid films with low fillers content.[29]The tensile strength of the hybrid films exhibits the maximum value of 239.38 MPa with 18.38% increase at 3% G-POSS, and then decreased with the increase of G-POSS content.The improvement of the tensile strength of the G-POSS/PI hybrid films at low G-POSS content is attributed to the fact that the load can be effectively transferred to the G-POSS through the PI matrix because of the strong interfacial action between G-POSS and PI matrix.The depravation of tensile strength at higher G-POSS content is possibly caused by the bad dispersion and the aggregation of G-POSS in the PI matrix as shown in Fig.8.

    Fig.6 shows the tensile modulus of G-POSS/PI hybrid films as a function of G-POSS content at room and cryogenic temperature.It could be seen that the modulus of hybrid films displays an increasing tendency with the increase of G-POSS content at both room and cryogenic temperature.This is mainly attributed to the fact that the Young’s modulus of G-POSS is higher than that of PI matrix.Moreover, the modulus at cryogenic temperature is higher than that at room temperature because of the tighter arrangement of the PI matrix.

    Fig.7 reveals that the elongation at break of G-POSS/PI hybrid films.It can be seen that the elongation at break at cryogenic temperature is much lower than that at room temperature.That might resulted from the increase of the crosslink density of the system and a brittle fracture mechanism at cryogenic temperature.Furthermore, it is found that when the G-POSS content is lower than 5%, the elongation at break of the hybrid films is more than 5% at 77 K, showing some ductility for cryogenic engineering applications.This indicates that the polyimide molecules show definite mechanical and flexible properties at low temperature.

    2.4 Morphologies of the fracture surfaces of G-POSS/PI hybrid films

    On the fracture surface of hybrid film samples (Fig.8a), we can clearly observe some plastic deformed veins which correspond to shrinkage deformation of the film as a homogenous material.These microstructure characteristics generally lead to lower strength and modulus of the film though it has a better plastic deformation capability.With adding G-POSS, the morphological change is obvious on the fracture section; there is a significant enhancement in the mechanical properties of hybrid films.The relative high tensile strength and modulus of hybrid films could be attributed partly to the fine microstructures found in hybrid composite films (Fig.8b).However, with the G-POSS content increases, the G-POSS aggregation degree would increase, which will causes a pronounced drop in the tensile strength and ductility of the hybrid films with higher G-POSS contents, though the incorporation of G-POSS nanoparticles have enhanced the Young’s modulus of hybrid films (Fig.8c, d).With the film of high G-POSS content (20%).The film has a brittle fracture mechanism.This is because the adhesion between the G-POSS aggregations and matrix became weaker which are consistent with Figs.5-7.

    As shown in Fig.9, with a tighter array and stronger interface adhesion at 77 K, both of the pure PI (e) and 20% G-POSS/PI (f) films exhibit more coarser fracture surfaces than those at room temperature (Fig.8a and d).

    3 Conclusions

    Different quality ratios of G-POSS cage mixture are introduced to the PMDA-ODA polyimide and a series of nanocomposite films are obtained.We investigate the relationship between the additive amounts of G-POSS and thermal and mechanical properties of hybrid systems.It is observed that the existence of epoxy groups reduce theTds and the elongation at break of the films, but increase the crosslink density of the systems to improve the compatibility of the two components.The tensile strength increased when G-POSS content is lower than 5% compared to the pure PI film at both room and cryogenic temperature.This work demonstrates that it is possible to use sol-gel technique to process special membrane materials used in the ICF experiments.And application of these hybrid films at cryogenic temperature is ongoing in our group.

    [1] WILSON D, STENZENBERGER H D, HERGENROTHER P M.Polyimides [M].London: Chapman & Hall, 1990: 10-20.

    [2] DING M X.Isomeric polyimides [J].Prog Polym Sci, 2007, 32: 623-668.

    [3] YAMAOKA H, MIYATA K, YANO O.Cryogenic properties of engineering plastic films [J].Cryogenics, 1995, 35: 787-789.

    [4] MARSACQ D, DUFOUR B, BLONDEL B, et al.High-performance aromatic polyimides for inertial confinement fusion experiments [J].Polym Int, 2000, 49: 1021-1023.

    [5] FORBES R.Recent contributions to the use of polyimides in the fabrication of ICF and IFE targets [J].Fusion Sci Technol, 2004, 45: 197-201.

    [6] POUSSARD L, ANSELMI E, BLONDEL B, et al.Synthesis and characterization of fully deuterated upilex type polyimides [J].Fusion Sci Technol, 2006, 49: 707-713.

    [7] BERANT T P, BITTNER D N, CARTER S, et al.Plastic deformation and helium permeation in thin polyimide windows [J].Fusion Sci Technol, 2009, 55: 343-348.

    [8] KOOHMAREH G A.Synthesis and characterization of new disperse-red functionalized polyimide for use as nonlinear optical material [J].Des Monomers Polym, 2012, 15: 275-288.

    [9] LIU L Z, LI Y Y, WENG L, et al.Effect of Al2O3-coated SiO2on properties of Al2O3-coated SiO2/PI composite films [J].Iran Polym J, 2014, 23: 987-994.

    [10] BABANZADEH S, ATAEI S M, MAHJOUB A.Effect of nanosilica on the dielectric properties and thermal stability of polyimide/SiO2nonohybrid [J].Des Monomers Polym, 2013, 16: 417-424.

    [11] LI Y Q, PAN Q Y, LI M, et al.Preparation and mechanical properties of novel polyimide-T-silica hybrid films [J].Compo Sci Technol, 2007, 67: 54-60.

    [12] SO H H, CHO J W, SAHOO N G.Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites [J].Eur Polym J, 2007, 43: 3750-3756.

    [13] YUEN S M, MA C C M, LIN Y Y, et al.Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube-polyimide composite [J].Compo Sci Technol, 2007, 67: 2564-2573.

    [14] ABDEHGAH R M, ASHOURI D, MOUSAVIAN S.In situ preparation of high performance polyimide nanocomposites based on functionalized multiwalled carbon nanotubes [J].Des Monomers Polym, 2013, 16: 108-115.

    [15] KIM G Y, CHOI M C, LEE D, et al.2D-Aligned graphene shees in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid [J].Macromol Mater Eng, 2012, 297: 303-311.

    [16] YOONESSI M, SHI Y, SCHEIMAN D A, et al.Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects [J].ACS Nano, 2012, 6: 7644-7655.

    [17] DAI W, YU J, WANG Y, et al.Enhanced thermal and mechanical properties of polyimide-graphene composites [J].Macromol Res, 2014, 22: 983-989.

    [18] KIOUL A, MASCIA L.Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents [J].J Non-Cryst Solids, 1994, 175: 169-186.

    [19] WANG S, AHMAD Z, MARK J E.Polyimide-silica hybrid materials modified by incorporation of an organically substituted alkoxysilane [J].Chem Mater, 1994, 6: 943-946.

    [20] MASCIA L, KIOUL A.Influence of siloxane composition and morphology on properties of polyimide-silica hybrids [J].Polymer, 1995, 36: 3649-3659.

    [21] SHANG X Y, ZHU Z K, YIN J, et al.Compatibility of soluble polyimide/silica hybrids induced by a coupling agent [J].Chem Mater, 2002, 14: 71-77.

    [22] LEU C M, CHANG Y T, WEI K H.Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine [J].Macromolecules, 2003, 36: 9122-9127.

    [23] LEU C M, CHANG Y T, WEI K H.Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications [J].Chem Mater, 2003, 15: 3721-3727.

    [24] LEU C M, REDDY G M, WEI K H, et al.Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites [J].Chem Mater, 2003, 15: 2261-2265.

    [25] VERKER R, GROSSMAN E, GOUZMAN I, et al.TriSilanolPhenyl POSS-polyimide nanocomposites Structure-properties relationship [J].Compo Sci Technol, 2009, 69: 2178-2184.

    [26] VERKER R, GROSSMAN E, ELIAZ N.Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures [J].Acta Mater, 2009, 57: 1112-1129.

    [27] VERKER R, GROSSMAN E, ELIAZ N.Effect of the POSS-polyimide nanostructure on its mechanical and electrical properties [J].Compo Sci Technol, 2012, 72: 1408-1415.

    [28] LEE Y J, HUANG J M, KUO S W, et al.Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications [J].Polymer, 2005, 46: 173-181.

    [29] ZHANG Y H, FU S Y, LI R K, et al.Investigation of polyimide-mica hybrid films for cryogenic applications [J].Compo Sci Technol, 2005, 65: 1743-1748.

    [責(zé)任編輯:張普玉]

    籠形低聚倍半硅氧烷/聚酰亞胺雜化薄膜的合成、熱性能及低溫力學(xué)性能研究

    魏少華1,2,吳小軍2,杜 凱1,2,易 勇1,尹 強(qiáng)2*

    (1.西南科技大學(xué) 極端條件物質(zhì)特性聯(lián)合實(shí)驗(yàn)室,四川 綿陽(yáng) 621010; 2.中國(guó)工程物理研究院 激光聚變研究中心,四川 綿陽(yáng) 621900)

    通過(guò)摻雜不同質(zhì)量分?jǐn)?shù)的八縮水甘油醚基籠形低聚倍半硅氧烷(G-POSS),以溶膠凝膠法制備得到一種新型聚酰亞胺(PI)雜化薄膜.通過(guò)紅外反射光譜(DRIFT-IR)、掃描電子顯微鏡(SEM)表征了其結(jié)構(gòu)與薄膜斷面形貌,以熱重(TG)和機(jī)械性能分析研究了薄膜的耐熱性與常溫和低溫(77 K)下的力學(xué)性能.結(jié)果表明,在摻雜量低于5%時(shí),該雜化薄膜耐熱性保持穩(wěn)定,同時(shí)在常溫和低溫下都表現(xiàn)出優(yōu)于純PI膜的拉伸強(qiáng)度,其中在G-POSS摻雜量為3%時(shí),雜化薄膜的拉伸強(qiáng)度為239.38 MPa(77 K),比純PI膜提升了17%.這是由于在低溫條件下,聚合物分子鏈被凍結(jié),G-POSS粒子與PI基底間的排列更加緊密,同時(shí)界面作用力更大.

    籠形低聚倍半硅氧烷/聚酰亞胺;機(jī)械性能;低溫應(yīng)用

    O633

    A

    1008-1011(2016)06-0771-08

    猜你喜歡
    力學(xué)性能
    反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
    Pr對(duì)20MnSi力學(xué)性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    采用稀土-B復(fù)合變質(zhì)劑提高ZG30MnSi力學(xué)性能
    碳纖維增強(qiáng)PBT/ABS—g—MAH復(fù)合材料的力學(xué)性能和流變行為
    紡織纖維彎曲力學(xué)性能及其應(yīng)用
    MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
    EHA/PE復(fù)合薄膜的力學(xué)性能和阻透性能
    PA6/GF/SP三元復(fù)合材料的制備及其力學(xué)性能研究
    INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
    焊接(2015年9期)2015-07-18 11:03:53
    亚洲狠狠婷婷综合久久图片| 超碰成人久久| 偷拍熟女少妇极品色| 国产精品久久久av美女十八| 亚洲色图av天堂| 久久人妻av系列| 国产精品美女特级片免费视频播放器 | 色尼玛亚洲综合影院| 特级一级黄色大片| 无遮挡黄片免费观看| netflix在线观看网站| 成人亚洲精品av一区二区| 青草久久国产| 嫩草影院精品99| 色综合亚洲欧美另类图片| 成人三级黄色视频| 欧美一区二区精品小视频在线| 亚洲专区中文字幕在线| 在线十欧美十亚洲十日本专区| 波多野结衣巨乳人妻| 老司机午夜福利在线观看视频| 精品久久久久久久末码| 久久精品综合一区二区三区| 午夜福利欧美成人| 欧美三级亚洲精品| 757午夜福利合集在线观看| 日韩大尺度精品在线看网址| 亚洲国产精品久久男人天堂| 午夜激情福利司机影院| 桃红色精品国产亚洲av| 国产伦精品一区二区三区四那| 精品一区二区三区视频在线 | 国产三级在线视频| 亚洲成人免费电影在线观看| 欧美精品啪啪一区二区三区| 热99re8久久精品国产| 深夜精品福利| 日本免费一区二区三区高清不卡| 激情在线观看视频在线高清| 亚洲午夜理论影院| 成人av在线播放网站| 又大又爽又粗| 国产成人精品无人区| 日本精品一区二区三区蜜桃| 亚洲自拍偷在线| 国产男靠女视频免费网站| 日本黄大片高清| 成年版毛片免费区| 丁香六月欧美| 亚洲第一欧美日韩一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国产主播在线观看一区二区| 我的老师免费观看完整版| 国语自产精品视频在线第100页| 国产激情偷乱视频一区二区| 伦理电影免费视频| 亚洲avbb在线观看| 精品久久蜜臀av无| 亚洲精品456在线播放app | 男女之事视频高清在线观看| 丰满人妻一区二区三区视频av | 真人一进一出gif抽搐免费| 日本 欧美在线| 两个人视频免费观看高清| 97超视频在线观看视频| 亚洲成人中文字幕在线播放| 日本与韩国留学比较| 黄色日韩在线| 不卡av一区二区三区| 成人永久免费在线观看视频| 亚洲国产欧美网| xxx96com| 成人鲁丝片一二三区免费| 国产亚洲欧美98| 色尼玛亚洲综合影院| 夜夜躁狠狠躁天天躁| 高潮久久久久久久久久久不卡| 久久久精品大字幕| 日韩欧美国产在线观看| 国产精品久久电影中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产成人av教育| 性色avwww在线观看| 日本精品一区二区三区蜜桃| 1024香蕉在线观看| 色噜噜av男人的天堂激情| 日韩欧美精品v在线| 午夜免费成人在线视频| 欧美一区二区精品小视频在线| 精品不卡国产一区二区三区| 老司机在亚洲福利影院| 中文字幕久久专区| 亚洲在线自拍视频| 亚洲第一欧美日韩一区二区三区| 又爽又黄无遮挡网站| 国产成人aa在线观看| 亚洲精品国产精品久久久不卡| av欧美777| 一区福利在线观看| 99re在线观看精品视频| 成人国产一区最新在线观看| 三级国产精品欧美在线观看 | 九九久久精品国产亚洲av麻豆 | 嫩草影院精品99| 亚洲av免费在线观看| av国产免费在线观看| 午夜福利18| 在线视频色国产色| 国产精品久久久av美女十八| 成人国产一区最新在线观看| 1000部很黄的大片| 每晚都被弄得嗷嗷叫到高潮| 久久精品91蜜桃| 成人特级黄色片久久久久久久| 欧美三级亚洲精品| 变态另类成人亚洲欧美熟女| 日本成人三级电影网站| 亚洲av五月六月丁香网| 亚洲av成人一区二区三| 国产精品国产高清国产av| 啦啦啦免费观看视频1| 制服丝袜大香蕉在线| 久99久视频精品免费| 亚洲欧美日韩高清在线视频| 好看av亚洲va欧美ⅴa在| 一二三四在线观看免费中文在| 99久久久亚洲精品蜜臀av| 黄色 视频免费看| 国产伦精品一区二区三区视频9 | 我的老师免费观看完整版| 亚洲乱码一区二区免费版| 99re在线观看精品视频| 亚洲精品美女久久av网站| 国产欧美日韩精品亚洲av| 天堂动漫精品| 老汉色av国产亚洲站长工具| 九色成人免费人妻av| 亚洲18禁久久av| 日本精品一区二区三区蜜桃| 国产精品免费一区二区三区在线| 国产精品一及| 在线永久观看黄色视频| 欧美午夜高清在线| 日韩欧美免费精品| 十八禁人妻一区二区| 日本免费a在线| 欧美日韩乱码在线| 99国产精品一区二区蜜桃av| 51午夜福利影视在线观看| 成人无遮挡网站| 国产亚洲精品久久久com| 国产美女午夜福利| 国产亚洲精品久久久com| 一本一本综合久久| 欧美中文日本在线观看视频| 99热这里只有是精品50| 一级黄色大片毛片| 国产一区二区三区视频了| 国产又色又爽无遮挡免费看| 草草在线视频免费看| 老汉色av国产亚洲站长工具| 俄罗斯特黄特色一大片| 禁无遮挡网站| x7x7x7水蜜桃| 蜜桃久久精品国产亚洲av| 成人18禁在线播放| 淫妇啪啪啪对白视频| 成人精品一区二区免费| 亚洲专区字幕在线| 一个人看的www免费观看视频| 精品不卡国产一区二区三区| 亚洲国产高清在线一区二区三| 又粗又爽又猛毛片免费看| 欧美av亚洲av综合av国产av| 国产私拍福利视频在线观看| 国产成年人精品一区二区| 成在线人永久免费视频| 18禁美女被吸乳视频| 在线观看午夜福利视频| 两人在一起打扑克的视频| 日本在线视频免费播放| 最新美女视频免费是黄的| 日韩国内少妇激情av| 亚洲欧美精品综合一区二区三区| 国产99白浆流出| 免费在线观看成人毛片| 999久久久国产精品视频| 精品国产亚洲在线| 国产乱人视频| 亚洲成人精品中文字幕电影| 草草在线视频免费看| www.999成人在线观看| 淫秽高清视频在线观看| 我要搜黄色片| 这个男人来自地球电影免费观看| 国产欧美日韩一区二区精品| 亚洲人成伊人成综合网2020| 欧美大码av| 亚洲专区国产一区二区| 日韩欧美精品v在线| 午夜免费观看网址| 变态另类丝袜制服| 免费看美女性在线毛片视频| 国产精品 国内视频| 亚洲欧美日韩高清专用| 欧美丝袜亚洲另类 | 麻豆av在线久日| 欧美色视频一区免费| 欧美黄色淫秽网站| 成人18禁在线播放| 日日摸夜夜添夜夜添小说| 又黄又粗又硬又大视频| 小说图片视频综合网站| av福利片在线观看| 成年女人看的毛片在线观看| www.自偷自拍.com| 午夜福利欧美成人| 一二三四社区在线视频社区8| or卡值多少钱| 国产成人影院久久av| 在线免费观看不下载黄p国产 | 又爽又黄无遮挡网站| 亚洲第一电影网av| 亚洲av中文字字幕乱码综合| 少妇熟女aⅴ在线视频| 变态另类成人亚洲欧美熟女| 久久久久久九九精品二区国产| 久久久国产欧美日韩av| 黄色女人牲交| 久久久国产精品麻豆| 免费人成视频x8x8入口观看| 1024手机看黄色片| 久久久久国产一级毛片高清牌| 精品一区二区三区av网在线观看| 国产成人精品久久二区二区免费| 超碰成人久久| 亚洲精品在线美女| 午夜福利18| 欧美黑人欧美精品刺激| 极品教师在线免费播放| 性色avwww在线观看| 亚洲人成伊人成综合网2020| 色尼玛亚洲综合影院| 麻豆一二三区av精品| 岛国在线观看网站| 1000部很黄的大片| 国产一区二区在线观看日韩 | 国产亚洲av高清不卡| 99国产极品粉嫩在线观看| 久久婷婷人人爽人人干人人爱| 国产黄a三级三级三级人| 欧美激情在线99| 操出白浆在线播放| 人妻久久中文字幕网| 中文字幕久久专区| 欧美绝顶高潮抽搐喷水| av在线蜜桃| 午夜a级毛片| 国产三级黄色录像| 精品久久久久久久末码| 精品无人区乱码1区二区| 国产 一区 欧美 日韩| netflix在线观看网站| 欧美日韩综合久久久久久 | 精品国内亚洲2022精品成人| 国产精品国产高清国产av| 国内少妇人妻偷人精品xxx网站 | 国产成人av教育| 黄色丝袜av网址大全| 午夜日韩欧美国产| 熟女电影av网| 97人妻精品一区二区三区麻豆| 深夜精品福利| 99国产精品一区二区蜜桃av| 热99re8久久精品国产| 国产综合懂色| 757午夜福利合集在线观看| 好男人电影高清在线观看| 丰满的人妻完整版| 极品教师在线免费播放| 给我免费播放毛片高清在线观看| 久久精品国产99精品国产亚洲性色| 国产成人av激情在线播放| 99国产精品一区二区三区| 国产乱人视频| 欧美黑人欧美精品刺激| 亚洲国产精品成人综合色| 亚洲成人久久爱视频| 中文字幕最新亚洲高清| 成人国产综合亚洲| 亚洲真实伦在线观看| 一二三四社区在线视频社区8| 啪啪无遮挡十八禁网站| 亚洲人成伊人成综合网2020| 精品一区二区三区av网在线观看| 亚洲色图av天堂| 色在线成人网| 国产三级黄色录像| 这个男人来自地球电影免费观看| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区四那| 在线观看66精品国产| 午夜福利18| 欧美成人性av电影在线观看| svipshipincom国产片| 亚洲专区国产一区二区| 久久国产乱子伦精品免费另类| 日日干狠狠操夜夜爽| 成人亚洲精品av一区二区| 99国产精品一区二区三区| 国产99白浆流出| 在线免费观看的www视频| 久久九九热精品免费| 久久久久久久久免费视频了| 999久久久精品免费观看国产| 国产精品日韩av在线免费观看| 别揉我奶头~嗯~啊~动态视频| 最近最新中文字幕大全电影3| 我的老师免费观看完整版| 国产精品一及| a级毛片在线看网站| 欧美国产日韩亚洲一区| 国产午夜精品论理片| 最好的美女福利视频网| 成人高潮视频无遮挡免费网站| 国产三级在线视频| av在线天堂中文字幕| 欧美黄色淫秽网站| 免费在线观看视频国产中文字幕亚洲| 成人三级黄色视频| 亚洲黑人精品在线| 国产久久久一区二区三区| 色老头精品视频在线观看| 五月伊人婷婷丁香| 免费搜索国产男女视频| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 少妇丰满av| 51午夜福利影视在线观看| 午夜福利成人在线免费观看| 国产午夜精品论理片| 国产不卡一卡二| 啪啪无遮挡十八禁网站| 日韩欧美国产在线观看| 国产精品国产高清国产av| 在线永久观看黄色视频| www.www免费av| 最近最新中文字幕大全电影3| 亚洲 欧美 日韩 在线 免费| 在线免费观看的www视频| 桃红色精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| 国产成人福利小说| 亚洲欧美激情综合另类| 久久久久免费精品人妻一区二区| 亚洲美女黄片视频| 99久久无色码亚洲精品果冻| xxx96com| 国产午夜福利久久久久久| 亚洲av成人av| 国产精品美女特级片免费视频播放器 | av女优亚洲男人天堂 | 国内揄拍国产精品人妻在线| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 精品电影一区二区在线| 国产一区二区三区在线臀色熟女| 国产单亲对白刺激| av福利片在线观看| 岛国视频午夜一区免费看| 免费在线观看成人毛片| 成年版毛片免费区| 偷拍熟女少妇极品色| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 国产伦人伦偷精品视频| 久久伊人香网站| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 久久久久久久久中文| 久久国产精品影院| 草草在线视频免费看| 一边摸一边抽搐一进一小说| 一级毛片女人18水好多| 97碰自拍视频| 欧美激情在线99| 最新美女视频免费是黄的| 亚洲精品在线美女| 国产精品女同一区二区软件 | 又黄又爽又免费观看的视频| www.999成人在线观看| 亚洲欧美日韩无卡精品| www.www免费av| 欧美不卡视频在线免费观看| 最好的美女福利视频网| 18美女黄网站色大片免费观看| 香蕉久久夜色| 免费大片18禁| 91在线观看av| 亚洲18禁久久av| 国产成人啪精品午夜网站| 国产不卡一卡二| 精品午夜福利视频在线观看一区| 国产一区在线观看成人免费| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩无卡精品| 99热这里只有精品一区 | 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 亚洲av免费在线观看| 国产成人啪精品午夜网站| 九九久久精品国产亚洲av麻豆 | 国产男靠女视频免费网站| 精品一区二区三区四区五区乱码| 2021天堂中文幕一二区在线观| 久久这里只有精品19| 久久欧美精品欧美久久欧美| 桃色一区二区三区在线观看| 国产成人系列免费观看| 欧美另类亚洲清纯唯美| 久久久成人免费电影| 亚洲欧洲精品一区二区精品久久久| 丰满人妻一区二区三区视频av | 91在线观看av| 亚洲七黄色美女视频| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| 不卡一级毛片| bbb黄色大片| 1000部很黄的大片| 国产麻豆成人av免费视频| 国产三级中文精品| 成人鲁丝片一二三区免费| 五月伊人婷婷丁香| svipshipincom国产片| 国产免费av片在线观看野外av| 级片在线观看| 十八禁网站免费在线| 99精品在免费线老司机午夜| 一个人免费在线观看的高清视频| 亚洲专区字幕在线| 欧美在线一区亚洲| 国产视频一区二区在线看| 久久性视频一级片| 日本免费一区二区三区高清不卡| 在线看三级毛片| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩黄片免| 日韩三级视频一区二区三区| 婷婷丁香在线五月| 婷婷精品国产亚洲av| 免费观看人在逋| 老熟妇乱子伦视频在线观看| 成人av一区二区三区在线看| 极品教师在线免费播放| 99热这里只有精品一区 | 久久久久九九精品影院| 国产成人精品久久二区二区免费| 最新中文字幕久久久久 | 国产极品精品免费视频能看的| 青草久久国产| 黄色 视频免费看| 黄色片一级片一级黄色片| 国产乱人视频| 麻豆国产av国片精品| 亚洲中文字幕一区二区三区有码在线看 | АⅤ资源中文在线天堂| 日日摸夜夜添夜夜添小说| or卡值多少钱| 婷婷亚洲欧美| 亚洲精品久久国产高清桃花| 国产高清视频在线播放一区| 夜夜夜夜夜久久久久| 少妇丰满av| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 757午夜福利合集在线观看| 午夜免费激情av| 欧美一区二区精品小视频在线| 色视频www国产| 国产不卡一卡二| 一本精品99久久精品77| 亚洲国产欧美人成| 欧美精品啪啪一区二区三区| 成年人黄色毛片网站| 999久久久精品免费观看国产| 国产精品 国内视频| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 99热6这里只有精品| 免费看光身美女| 国产午夜精品久久久久久| 少妇的丰满在线观看| 国产精品香港三级国产av潘金莲| 禁无遮挡网站| 亚洲色图av天堂| 欧美日韩乱码在线| 一区二区三区国产精品乱码| 亚洲av美国av| svipshipincom国产片| 一级a爱片免费观看的视频| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 欧美精品啪啪一区二区三区| 免费大片18禁| 人人妻人人看人人澡| 国产三级黄色录像| 免费在线观看日本一区| 天堂动漫精品| 真实男女啪啪啪动态图| 精品国产三级普通话版| 午夜成年电影在线免费观看| АⅤ资源中文在线天堂| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区精品| 91av网一区二区| 两个人看的免费小视频| 亚洲性夜色夜夜综合| h日本视频在线播放| 欧美色视频一区免费| 日韩成人在线观看一区二区三区| 久久人妻av系列| 神马国产精品三级电影在线观看| 美女扒开内裤让男人捅视频| 国产三级黄色录像| h日本视频在线播放| 女警被强在线播放| 在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 免费大片18禁| 国产极品精品免费视频能看的| 欧美3d第一页| 亚洲av免费在线观看| 好看av亚洲va欧美ⅴa在| www.www免费av| 此物有八面人人有两片| 亚洲精品乱码久久久v下载方式 | 精品一区二区三区视频在线 | 国产高清有码在线观看视频| 不卡一级毛片| 狂野欧美激情性xxxx| 天堂动漫精品| 日韩精品中文字幕看吧| 麻豆成人午夜福利视频| 18禁黄网站禁片免费观看直播| 国产高清三级在线| 国产精品女同一区二区软件 | 成年免费大片在线观看| 久久精品国产清高在天天线| 9191精品国产免费久久| 国模一区二区三区四区视频 | svipshipincom国产片| 久久久久久大精品| 欧美日韩综合久久久久久 | 一区二区三区高清视频在线| 色综合欧美亚洲国产小说| 波多野结衣高清作品| 好看av亚洲va欧美ⅴa在| 久久九九热精品免费| 色在线成人网| 脱女人内裤的视频| 亚洲国产精品成人综合色| 精品国产亚洲在线| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 国产精品 国内视频| 国产精品亚洲美女久久久| 性色av乱码一区二区三区2| 日本黄色视频三级网站网址| 免费在线观看成人毛片| 美女大奶头视频| 高清在线国产一区| 噜噜噜噜噜久久久久久91| 女同久久另类99精品国产91| 国产69精品久久久久777片 | 超碰成人久久| 欧美色视频一区免费| 日本 av在线| 中文字幕高清在线视频| 麻豆av在线久日| 精品久久久久久,| 中文字幕久久专区| 99久久无色码亚洲精品果冻| 亚洲精品在线观看二区| 两个人看的免费小视频| 久久久久久久精品吃奶| 神马国产精品三级电影在线观看| 男女那种视频在线观看| 18禁美女被吸乳视频| 好男人电影高清在线观看| 99久久成人亚洲精品观看| av在线天堂中文字幕| 不卡一级毛片| 午夜成年电影在线免费观看| 国产精品女同一区二区软件 | 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 日本成人三级电影网站| 成年女人毛片免费观看观看9| 99在线人妻在线中文字幕| 精品福利观看| 夜夜夜夜夜久久久久| 亚洲熟妇熟女久久| 亚洲欧美精品综合一区二区三区| 99久久精品国产亚洲精品| 88av欧美| 成人国产综合亚洲| 97超级碰碰碰精品色视频在线观看| 五月玫瑰六月丁香| 欧美精品啪啪一区二区三区| 精品一区二区三区四区五区乱码|