• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    季銨鹽型陽離子表面活性劑與牛血清白蛋白的相互作用

    2016-12-29 08:20:21謝湖均劉程程雷群芳方文軍
    物理化學學報 2016年12期
    關(guān)鍵詞:溴化銨化學系工商大學

    謝湖均 劉程程 孫 強 顧 青 雷群芳 方文軍,*

    (1浙江工商大學應(yīng)用化學系,杭州310018;2浙江工商大學食品與生物工程學院,杭州310018;3浙江大學化學系,杭州310028)

    季銨鹽型陽離子表面活性劑與牛血清白蛋白的相互作用

    謝湖均1,*劉程程1孫 強1顧 青2,*雷群芳3方文軍3,*

    (1浙江工商大學應(yīng)用化學系,杭州310018;2浙江工商大學食品與生物工程學院,杭州310018;3浙江大學化學系,杭州310028)

    本文合成并表征了三種不同烷基鏈長度的季銨鹽型陽離子表面活性劑:N-十二烷基-N-(2-羥乙基)-N, N-二甲基溴化銨(DHDAB)、N-十四烷基-N-(2-羥乙基)-N,N-二甲基溴化銨(THDAB)、N-十六烷基-N-(2-羥乙基)-N,N-二甲基溴化銨(CHDAB)。采用熒光光譜法、紫外-可見光譜法、動態(tài)光散射法和等溫滴定量熱法對三種表面活性劑與牛血清白蛋白(BSA)的相互作用進行研究。熒光光譜研究表明,三種表面活性劑主要與BSA分子內(nèi)的色氨酸殘基發(fā)生相互作用,導(dǎo)致蛋白質(zhì)的構(gòu)象發(fā)生變化,且表面活性劑烷基鏈越長,與BSA的相互作用就越強。BSA熒光猝滅的主要原因是靜態(tài)猝滅,紫外光譜實驗同樣驗證了靜態(tài)猝滅的存在。等溫滴定量熱法結(jié)果表明低濃度的表面活性劑與BSA主要發(fā)生靜電作用和疏水作用而放熱。動態(tài)光散射結(jié)果表明高濃度的表面活性劑會使BSA結(jié)構(gòu)被破壞。本文揭示了表面活性劑與BSA相互作用的機理,為表面活性劑的廣泛應(yīng)用提供了理論基礎(chǔ)。

    表面活性劑;牛血清白蛋白;熒光猝滅;動態(tài)光散射;等溫滴定量熱

    1 Introduction

    Surfactants and proteins have attracted wide interest in the field of biology,food,medicine and cosmetics1-3.The structure,concentration,solvent,pH,ionic strength and temperature have significant effects on the interactions between surfactants and proteins.The combination of surfactants with proteins often leads to the changes of conformations of proteins and surrounding microenvironment of certain amino acid residues.The main interaction types between ionic surfactants and proteins contain specific binding(electrostatic and hydrophobic interactions)and cooperative binding4-7.The influence of the alkyl chain length and types of surfactants on these interactions have been widely studied8-11.In addition to traditional methods,such as surface tension,conductivity,electrochemical method,viscosity method, etc,some modern techniques containing UV-visible absorption spectroscopy,fluorescence spectroscopy,dynamic light scattering, circular dichroism spectroscopy,small-angle X-ray scattering, electron spin resonance spectroscopy and calorimetry were also employed to get a clear insight into the interactions between surfactants and proteins12-15.

    Bovine serum albumin(BSA)is one of the most abundant proteins in mammalian plasma,capable of storing and transporting numerous endogenous and exogenous compounds16.Thus BSA is often employed as a protein model to study the interactions of protein with metal ions,drugs,dyes,surfactants,etc17-20.Study on the interaction mechanisms between proteins and surfactants,as well as the effects of different surfactants on the conformations of proteins,function and aggregation are of great significance for the development of relevant theory and practical applications.

    In this manuscript,the interactions between quaternary ammonium surfactants and BSAhave been studied by means of UV-visible(UV-Vis)absorption spectroscopy,fluorescence(FL) spectrometry,dynamic light scattering(DLS)and isothermal titration calorimetry(ITC)methods.The effect of alkyl chain length of surfactants on the interactions have also been discussed and explored.A series of important interaction parameters have been obtained to clarify the interaction mechanisms.

    2 Materials and methods

    2.1Materials

    BSAwas purchased fromAladdin(nitrogen content≥13.5%); trihydroxy aminomethane(Tris)(purity≥99.9%);HCl(concentration 36%-38%);NaCl(purity≥99.5%).Ultra-pure water was used for the preparation of all solutions.Three kinds of quaternary ammonium surfactants:N-dodecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(DHDAB),N-tetradecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(THDAB)and N-cetyl-N-(2-hydroxyethyl)-N,N-dimethyl ammoniu bromide (CHDAB)were synthesized in our laboratory.

    The synthesis process is listed below.

    Infrared(IR)spectroscopy,1H nuclear magnetic resonance (NMR)analyses and elemental analysis(EA)of the synthesized surfactants were carried out on a NEXES 470 Fourier infrared spectrometer and Bruker Advance 2B 400 MHz NMR spectrometer and Carlabo EA1110 elemental analyzer,respectively. The spectra and EA result are presented in the Supporting Information(Figs.S1-S3,Tables S1-S3,Supporting Information).

    IR and NMR spectra of DHDAB are shown in Fig.S1 and EA result of DHDAB is listed in Table S1.The IR characteristic absorption peaks are as follows:3238.3 cm-1(OH),2917.0 cm-1(C―H),1077.0 cm-1(C―N).The information obtained from the NMR spectra is as follows:(CDCl3,400 MHz,289 K)δH,0.85(t,J=6.8 Hz,3H),1.24-1.34(m,18H),1.75(m,2H),3.35(s,6H),3.50(t, J=8.4 Hz,2H),3.76(t,J=4.6 Hz,2H),4.08-4.14(m,2H), 4.30-4.51(m,1H).

    IR and NMR spectra of THDAB are shown in Fig.S2 and EA result of THDAB is listed in Table S2.The IR characteristic absorption peaks are as follows:3232.4 cm-1(OH),2914.0 cm-1(C―H),1060.5 cm-1(C―N).The chemical shifts of THDAB are as follows:(CDCl3,400 MHz,289 K)δH,0.86(t,J=6.8 Hz,3H), 1.24-1.33(m,22H),1.73(m,2H),3.34(s,6H),3.51(t,J=8.4 Hz,2H),3.78(t,J=4.6 Hz,2H),4.08-4.12(m,2H),4.62-4.67 (m,1H).

    IR and NMR spectra of CHDAB are shown in Fig.S3 and EA result of CHDAB is listed in Table S3.The IR characteristic absorption peaks are as follows:3229.4 cm-1(OH),2914.0 cm-1(C―H),1090.2 cm-1(C―N).The chemical shifts of CHDAB are as follows:(CDCl3,400 MHz,289 K)δH,0.86(t,J=6.6 Hz,3H), 1.21-1.31(m,26H),1.72-1.77(m,2H),3.34(s,6H),3.53(t,J= 8.2 Hz,2H),3.72(t,J=4.6 Hz,2H),4.09-4.13(m,2H),4.31-4.53(m,1H).

    The thermogravimetric analysis(TGA)curves are presented in Figs.S4-S6(Supporting Information).TGA results showed that the decomposition temperature is increased with the increase of alkyl chain length of surfactants.

    Tris-HCl buffer solution(pH=7.0,containing 0.1 mol·L-1NaCl to maintain ionic strength)was prepared,which was used to prepare 50 μmol·L-1BSA solution and a series of different concentrations of surfactant solutions.

    2.2Spectral measurements

    The fluorescence spectra were obtained using a RF-5301PC fluorescence spectrophotometer(Shimadzu,Japan)equipped with a 1.0 cm path length quartz cell.The excitation and emission wavelengths of BSA were monitored at 280 and 350 nm,respectively.The excitation and emission slits are 3 nm.Synchronous fluorescence spectra acquired by fixing the difference of excitation and emission wavelength(Δλ)at 15 and 60 nm.All samples were thermostated at 298 K.

    The UV-visible absorption spectra were measured on a UV-2450 ultraviolet-visible spectrophotometer(Shimadzu,Japan)at 298 K.The absorption spectra were recorded in the wavelength range from 250 to 350 nm,and a 1.0 cm path length quartz cell was used for the absorbance measurements.

    2.3DLS measurements

    DLS experiments were performed using a Ζ-sizer nano ZS (Malvern,UK)at 298 K.The concentration of BSA was 5.0 μmol·L-1and all BSA-surfactants mixed solutions went through 0.22 μm micro membrane filter twice.For each concentration of BSA-surfactant mixed solution,particle size was measured three times and the average values are reported.

    2.4ITC determination

    ITC data were collected on a high precision microcalorimeter VP-ITC(Micro Co.,USA).The enthalpy changes(ΔH)were obtained by injecting surfactant into the 1.4 mL calorimetric cell, in the absence and presence of BSAin Tris-HCl buffer solution at pH=7.0.The experiments were performed by one injection of 10 μL with a 240 s interval between each injection and the temperature was set to 298 K.The surfactant solution in the cell was stirred at 270 r·min-1.

    3 Results and discussion

    3.1BSA-surfactants interactions by fluorescencespectrometry

    Previous studies suggested that the chromophores of BSA including tryptophan(Trp),tyrosine(Tyr)and phenylalanine(Phe) can launch strong intrinsic fluorescence21,22.In present experiments,the excitation and emission wavelengths of BSA were monitored at 280 and 340 nm,respectively(Fig.1).The results showed that three surfactants can lead to the fluorescence quenching,similar to other cationic surfactants23.With the increase of the concentration of surfactant solutions,it showed good fluorescence quenching to BSA,and the blue shift of maximum emission wavelength of BSAwas also observed,which were attributed to the unfold of the BSA structure.Previous researches reported that the interaction information involving the quenching mechanism,binding constant and binding sites between BSA and surfactants can be obtained by analyzing the fluorescence spectra24.On the basis of the fluorescence emission spectra of BSA-surfactants mixed systems,fluorescence intensity ratio(I0/I)can be obtained by the addition of different concentrations of surfactants,where I0and I are the fluorescence intensities of BSAin the absence and presence of quenchers(surfactants),respectively.

    Fig.1 Fluorescence emission spectra of BSA(5.0 μmol·L-1)in the surfactants/Tris-HCl buffer systems(T=298 K)

    As shown in Fig.2,the fluorescence quenching effect of three surfactants on BSA is related to the alkyl chain length of surfactants,and the surfactants with long alkyl chain length have strong fluorescence quenching effect on BSA.The isoelectric point of BSAwas 4.9,thus the BSAcarries negative charge at the pH value of 7.0.As three kinds of quaternary ammonium surfactants carries positive charge,electrostatic interactions between surfactants and BSA play an important role in the mixed systems25,26.Another important role is the hydrophobic interactions between the hydrophobic carbon chains of the surfactants and the hydrophobic groups of the protein.Three surfactants have same structures of cationic quaternary ammonium moiety and show similar electrostatic interactions with BSA.Thus the main factors affecting the interactions between different surfactants and BSA are hydrophobic interactions.It is interesting to note that a long length of alkyl chain of surfactant can lead to the strong hydrophobic interactions.Therefore,the hydrophobic interaction strength of surfactants follows the order.CHDAB>THDAB>DHDAB.The curve of I0/I-surfactant concentration(C)rela-tionship for CHDAB with the longest alkyl chain has an inflection point,after which it changes slowly to the platform;the curve of I0/I-C relationship for THDAB also has a inflection point,and after the inflection point the increase of I0/I tends to be gentle;the curve of I0/I-C surfactant relationship for DHDAB with the shortest alkyl chain does not show a inflection point.The inflexion point,especially with the emergence of the platform,indicates that the combination of surfactants and BSA tends to be complete or the aggregation of surfactants on the surface of BSA gradually tends to be saturated27.

    Fig.2 Fluorescence intensity ratio(I0/I)versus concentration of three surfactants(C)

    Fluorescence quenching contains static and dynamic quenching28-31,and the static quenching is caused by the formation of a non-fluorescence complex between quencher and fluorophore, while dynamic quenching is caused by collisional encounters between quencher and fluorophore.The fluorescence data were further analyzed via Stern-Volmer equation32,33.

    where I0and I are the fluorescence intensity of BSAin the absence and presence of quencher,respectively.Tois the average lifetime of BSA(To=10-8s)34.Kqstands for the quenching rate constant of the biological macromolecule;Ksvis the Stern-Volmer quenching constant.

    Fig.3 shows the Stern-Volmer plots of the surfactants interactions with BSAat 289 and 298 K,and the Stern-Volmer quenching constants of three interactions can be found inTable 1.For the lowconcentration linear region of the surfactants,the fluorescence quenching effect of surfactants on the BSAis well accord with the Stern-Volmer equation.In Table 1,Ksvis inversely correlated with temperature and Kqis much greater than the value of the maximum scatter collision quenching constant of 2.0×1010L·mol-1·s-135,36, thus this quenching process is static quenching37.

    Fig.3 Stern-Volmer plots of interactions of three surfactants with BSAat 289 and 298 K

    The following double-reciprocal formula was used to deal with the experimental data for static quenching interaction38.

    where KAis the binding constant between BSAand quencher;n is the number of binding sites.Fig.4 shows the double-reciprocal curve of surfactants interacting with BSA at 289 and 298 K,and the binding constant KAand binding sites n are listed in Table 1.

    For different surfactants,both quenching(Ksv)and binding(KA) constants follow the order:CHDAB>THDAB>DHDAB.The results indicated that the long alkyl chains of surfactants have the stronger binding interactions with BSA.The numbers of binding sitesofthreesurfactantswithBSAat289and298Karecloseto1.

    Synchronous fluorescence spectroscopy can give information about the change of protein microenvironment.A shift of the maximum emission wavelength is involved in the alteration of the polarity in the microenvironment around the chromophore39.Δλ represents the value of the difference between excitation and emission wavelengths.When the values of Δλ are stabilized at 15 and 60 nm,the synchronous fluorescence shows the characteristics of tyrosine and tryptophan residues,respectively40.Since the maximum emission wavelength of residues is related to its environmental polarity,the change of the protein conformation is determined by the analysis of emission wavelength change41. When Δλ was set at 15 nm,the fluorescence intensity decreased obviously with the increase of surfactant concentrations(Figs.5A-7A);when Δλ was set at 60 nm,the fluorescence intensity increased significantly with the increase of surfactants concentrations(Figs.5B to 7B).In addition,the maximum emission wavelength showed a blue shift,which indicated that the microenvironment around Trp residues was disturbed and the hydrophobicity was increased in the presence of surfactants42. The fluorescence intensity of Trp residues was significantly higher than that of Tyr residues,indicating that the main contribution of the intrinsic fluorescence of BSA comes from Trp residues,thus three surfactants mainly interact with Trp residues of BSA.

    Table 1 Binding constant(KA),quenching constant(Ksv)and binding sites(n)of surfactants with BSAat 289 and 298 K

    Fig.4 Double-reciprocal curve of interactions of three surfactants with BSAat 289 and 298 K

    Fig.5 Synchronous fluorescence spectra of BSAin the DHDAB/Tris-HCl buffer system

    Fig.6 Synchronous fluorescence spectra of BSAin the THDAB/Tris-HCl buffer system

    3.2BSA-surfactants interactions by UV-Vis absorption spectroscopy

    Further evidence of static quenching of BSA upon addition of surfactants was provided by UV-visible absorption spectrum data. Collisional encounters between quencher and fluorophore have no effect on the absorption spectra of protein,and they only affect the excited states of the fluorophores.In contrast,the formation of a ground-state complex between quencher and fluorophore can influence on the absorption spectra43,44.Fig.8 shows the UV-visible absorption spectra of BSAin surfactants/Tris-HCl buffer systems. As shown in Fig.8,the intensity of absorption spectra decreases gradually with the increase of surfactant(DHDAB,THDAB and CHDAB)concentrations from 1 to 6,which indicates that surfactants and protein may form complex,and also proves that the fluorescence quenching of BSA is caused by static quenching. While three surfactant solutions without BSA have no absorption peak near 280 nm.

    3.3BSA-surfactants interactions by DLS

    As shown in Fig.9,the initial particle size of BSA(5.0 μmol·L-1)in the Tris-HCl buffer solution(pH=7.0)at 298 K is about 7.58 nm.The particle size of surfactant-BSAcomplexes gradually grows with the increase of the surfactants concentrations.The particle size of three surfactants-BSA complexes at low concentration(less than 1 mmol·L-1)follows the order:CHDAB>THDAB>DHDAB.Moreover,the surfactants with longer alkylchain interact much stronger with BSA.As the concentrations of DHDAB,THDAB and CHDAB reach to 6,2.56 and 1.28 mmol·L-1,it shows the largest particle size of surfactant-BSAcomplexes with the values of 10.76,11.30 and 11.42 nm,respectively.As the surfactant concentrations continue to increase,the particle size of surfactant-BSA complexes began to decline,and finally the particle diameters fall below the initial value,which indicates that the geometry of BSAhas changed.

    Fig.7 Synchronous fluorescence spectra of BSAin the CHDAB/Tris-HCl buffer system

    3.4BSA-surfactants interactions by ITC

    We then determined the CMC values of three surfactants in buffer solution by isothermal titration calorimetry(ITC)45-47.Fig.10 (A,C,E)displays the representative heat flow profiles as a function of time,which is related to 10 μL aliquot injections of three surfactants(80,10 and 1 mmol·L-1)into the cell containing Tris-HCl buffer solution(pH=7.0,T=298 K).The enthalpy changes of surfactants(ΔH)as a function of surfactants concentration are shown in Fig.10(B,D,F).ΔH was calculated by integrating each heat flow peak with time.According to Fig.10(A, C,E),when the first surfactant aliquots are added into the cell, intense endothermic peaks are observed due to the demicellization of surfactants.It is known that the concentrations of three surfactants in the cell at the first injections remain below the CMC. Upon the increase of surfactant concentration in the cell,the intensity of the endothermic peaks decreases drastically owing to the formation of micelles in solution.Further increase of surfactants concentration above the CMC,the intensity of the endothermic peaks keeps constant resulting from the micelle dilution.The CMC values of three surfactants in Tris-HCl buffer solution were determined from the first derivative of the ΔH curve against surfactant concentration.The CMC values of DHDAB,THDAB and CHDAB are around 6.44,0.58 and 0.06 mmol·L-1(Fig.10(B, D,F)),which indicates that the CMC values of surfactants increase with the increase of alkyl chain length of surfactants.

    Fig.8 UV-visible spectra of BSA(5.0 μmol·L-1)in surfactants/Tris-HCl buffer systems(T=298 K)

    Fig.9 Hydrodynamic diameter(DH)of BSAin surfactants/Tris-HCl buffer systems at 298 K

    In the ITC experiments,the blank experiments involving thesurfactants and BSA solutions titration into the buffer solution were separately carried out,which can offset the effects related to the dissociation of surfactant micelles and the dilution of the surfactant micelles.ΔH was then obtained via deducting the dilution effect of surfactants and BSA solution during titration (Fig.11(B,D,F)).The concentrations of surfactants in these ITC experiments are far greater than that of CMC.Several factors may mediate the interaction enthalpy ΔH between surfactants and BSA, including the dissociation of surfactant micelles,the dilution of the surfactant micelles,the interaction between surfactant monomer and BSA,the interaction between micelles and BSA,and the break of the secondary structure of BSA48.

    Fig.10 Control experiment showing typical calorimetric titration curves for three surfactants dilution in buffer solution

    Heat flow and interaction enthalpy for surfactants solution titration into BSA solution are shown in Fig.11.As shown inFig.11A,the interaction between DHDAB and BSA is an endothermic process in the experimental concentration range.In Fig. 11C,the interaction process between THDAB and BSA was initially exothermic,and then endothermic with the increase of concentration of THDAB.For Fig.11E,the interaction between CHDAB and BSAis an exothermic process.Fig.11(B,D,F)reveal that when the concentrations of three surfactants are less than CMC,the reaction enthalpy between surfactant and BSA is gradually increased with the increase of concentration of three surfactants.In the case of DHDAB,when the concentration of DHDAB goes beyond CMC,the reaction enthalpy decreases until almost zero.In the case of THDAB and CHDAB,when the concentration of surfactant goes beyond CMC,the reaction enthalpy tends to keep constant.

    Fig.11 Heat flow and interaction enthalpy for three surfactants solution titration to 5.0 μmol·L-1BSAsolution in pH 7.0 Tris-HCl buffer solution against the concentration of surfactant at 298 K

    The BSAcarries negative charge at the pH value of 7.0,thus the electrostatic interaction caused mainly by the polar positive groupsof surfactants and amino acid residues is an exothermic process. While the hydrophobic interaction between the hydrophobic carbon chains of surfactants and the hydrophobic groups of the protein is an exothermic process.The destruction of the hydrated layer structure of polar groups and BSA molecules is an endothermic process49.In addition,the alternation of secondary structure of BSAis an endothermic process50.

    The initial titration concentrations of DHDAB,THDAB and CHDAB solution in syringe are 80,10 and 1 mmol·L-1,respectively.In the case of high titration concentration of surfactant (Fig.11A),the exothermic value from the electrostatic attraction and hydrophobic interaction is less than the endothermic value from the destroyed of hydrated layer structure and the change of secondary structure of BSA.When the concentration of surfactant in the cell is higher than CMC,the surfactant micelles is formed, and the electrostatic attraction is weakened.The interaction enthalpy between surfactants and BSA becomes stable at certain concentrations of surfactants.

    4 Conclusions

    In this manuscript,the interactions between three kinds of quaternary ammonium cationic surfactants with different lengths of alkyl chains(C12,C14and C16)in the Tris-HCl buffer solution (pH=7.0)with BSAhave been investigated by UV-Vis,FL,DLS and ITC.The results showed that the conformation of BSA is changed by the addition of surfactants,and the increase of alkyl chain length of surfactant is beneficial to the binding of BSA. Three quaternary ammonium cationic surfactants have the static quenching effect on the intrinsic fluorescence of BSA and the maximum emission wavelength of BSA occurs blue shift.In the cases of solutions with low surfactant concentrations,the particle size of surfactants-BSA systems is increased with the increase of alkyl chain length of surfactants.While in concentrated surfactant solutions,surfactant is able to destroy the secondary structure of BSA.ITC results indicated that the main force types of interactions between BSAand three surfactants at low concentrations are hydrophobic and electrostatic interactions,and surfactants with long alkyl chain interact with BSA completely at very low concentrations without the break of the secondary structure of BSA.

    The results of interaction between BSAand DHDAB,THDAB, CHDAB are similar to the interaction between BSAand traditional quaternary ammonium cationic surfactants:dodecyltrimethylammonium bromide(DTAB),tetradecyltrimethylammonium bromide(TTAB),and cetyltrimethylammonium bromide(CTAB). While,since the existence of―OH group,the electrostatic interaction between DHDAB,THDAB,CHDAB and BSA is stronger than the electrostatic interaction between DTAB,TTAB, CTAB and BSA51.

    Supporting Information:The infrared spectra,NMR,EAand TG-DTG curves of DHDAB,THDAB and CHDAB have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Fainerman,V.B.;Zholob,S.A.;Leser,M.;Michel,M.;Miller, R.J.Colloid Interface Sci.2004,274,496.doi:10.1016/j. jcis.2003.12.057

    (2) Gull,N.;Chodankar,S.;Aswal,V.K.;Sen,P.;Khan,R.H. Colloids Surf.B:Biointerfaces 2009,69,122.doi:10.1016/j. colsurfb.2008.11.009

    (3) Mehta,S.K.;Bhasin,K.K.;Kumar,A.Colloids Surf.A: Physicochem.Eng.Aspects 2009,346,195.doi:10.1016/j. colsurfa.2009.06.016

    (4) Turro,N.J.;Lei,X.G.;Ananthapadmanabhan,K.P.;Aronson, M.Langmuir 1995,11,2525.doi:10.1021/la00007a035

    (5) Mehan,S.;Aswal,V.K.;Kohlbrecher,J.Langmuir 2014,30, 9941.doi:10.1021/la502410v

    (6) Mackie,A.;Wilde,P.Adv.Colloid Interface Sci.2005,117,3. doi:10.1016/j.cis.2005.04.002

    (7) Chi,E.Y.;Krishnan,S.;Randolph,T.W.;Carpenter,J.F. Pharm.Res.2003,20,1325.doi:10.1023/A:1025771421906

    (8) De,S.;Girigoswami,A.;Das,S.J.Colloid Interface Sci.2005, 285,562.doi:10.1016/j.jcis.2004.12.022

    (9) Miller,R.;Fainerman,V.B.;Makievski,A.V.;Kr?gel,J.; Grigoriev,D.O.;Kazakov,V.N.;Sinyachenko,O.V.Adv. Colloid Interface Sci.2000,86,39.doi:10.1016/S0001-8686 (00)00032-4

    (10) Coke,M.;Wilde,P.J.;Russell,E.J.;Clark,D.C.J.Colloid Interface Sci.1990,138,489.doi:10.1016/0021-9797(90) 90231-C

    (11) McCormack,F.X.;King,T.E.,Jr.;Voelker,D.R.;Robinson,P. C.;Mason,R.J.American Review of Respiratory Disease 1991, 144,160.doi:10.1164/ajrccm/144.1.160

    (12) Bordbar,A.K.;Taheri-Kafrani,A.Colloids Surf.B: Biointerfaces 2007,55,84.doi:10.1016/j.colsurfb.2006.11.012

    (13) Wang,Y.;Guo,R.;Xi,J.J.Colloid Interface Sci.2009,331, 470.doi:10.1016/j.jcis.2008.12.020

    (14) Gelamo,E.L.;Tabak,M.Spectrochim.Acta.A 2000,56,2255. doi:10.1016/S1386-1425(00)00313-9

    (15) Kwaambwa,H.M.;Maikokera,R.Colloids Surf.B: Biointerfaces 2008,64,118.doi:10.1016/j.colsurfb.2008.01.014

    (16) Klajnert,B.;Bryszewska,M.Bioelectrochemistry 2002,55,33. doi:10.1016/S1567-5394(01)00170-0

    (17) Carvalho,C.M.L.;Cabral,J.M.S.Biochimie 2000,82,1063. doi:10.1016/S0300-9084(00)01187-1

    (18) Rozema,D.;Gellman,S.H.J.Am.Chem.Soc.1995,117,2373. doi:10.1021/ja00113a036

    (19) Al-Shakhshir,R.H.;Regnier,F.E.;White,J.L.;Hem,S.L. Vaccine 1995,13,41.doi:10.1016/0264-410X(95)80009-3

    (20) Ahmad,A.L.;Hairul,N.A.H.Sep.Purif.Technol.2009,66, 273.doi:10.1016/j.seppur.2008.12.027

    (21) Gentili,P.L.;Ortica,F.;Favaro,G.J.Phys.Chem.B 2008,112, 16793.doi:10.1021/jp805922g

    (22) Deep,S.;Ahluwalia,J.C.Phys.Chem.Chem.Phys.2001,3,4583.doi:10.1039/B105779K

    (23) Madaeni,S.S.;Rostami,E.Chem.Eng.Technol.2008,31, 1265.doi:10.1002/ceat.200700496

    (24) Zhao,L.;Liu,R.;Zhao,X.;Yang,B.;Gao,C.;Hao,X.;Wu,Y. Sci.Total.Environ.2009,47,5019.doi:10.1016/j. scitotenv.2009.05.052

    (25) Reynolds,J.A.;Herbert,S.;Polet,H.;Steinhardt,J. Biochemistry 1967,6,937.doi:10.1021/bi00855a038

    (26) Mehta,S.K.;Bhasin,K.K.;Kumar,A.J.Colloid Interface Sci. 2008,323,426.doi:10.1016/j.jcis.2008.04.026

    (27) Lissi,E.;Abuin,E.;Lanio,M.E.;Alvarez,C.J.Biochem. Biophys.Methods 2002,50,261.doi:10.1016/S0165-022X(01) 00237-8

    2.父母在批評孩子時,切忌用手指指著孩子,這樣做只能適得其反,讓孩子產(chǎn)生更強烈的逆反心理。同時不可忽視目光的交流,真誠的目光會讓孩子有充分的安全感,這有助于雙方的溝通并取得好效果。

    (28) Wang,Y.Q.;Zhang,H.M.;Zhang,G.C.;Tao,W.H.;Tang,S. H.J.Lumin.2007,126,211.doi:10.1016/j.jlumin.2006.06.013

    (29) Gauthier,T.D.;Shane,E.C.;Guerin,W.F.;Seitz,W.R.;Grant, C.L.Environ.Sci.Technol.1986,20,1162.doi:10.1021/ es00153a012

    (30) Marras,S.A.;Kramer,F.R.;Tyagi,S.Nucleic.Acids.Res. 2002,30,122.doi:10.1093/nar/gnf121

    (31) Fraiji,L.K.;Hayes,D.M.;Werner,T.C.J.Chem.Educ.1992, 69,424.doi:10.1021/ed069p424

    (32) Lakowicz,J.R.;Weber,G.Biochemistry 1973,12,416. doi:10.1021/ed069p424

    (34) Seetharamappa,J.;Kamat,B.P.Chem.Pharm.Bul.2004,52, 1053.doi:10.1248/cpb.52.10531

    (35) Eftink,M.R.;Ghiron,C.A.Anal.Biochem.1981,114,199. doi:10.1016/0003-2697(81)90474-7

    (36) Ware,W.R.J.Phys.Chem.1962,66,455.doi:10.1021/ j100809a020

    (37) Papadopoulou,A.;Green,R.J.;Frazier,R.A.J.Agric.Food. Chem.2005,53,158.doi:10.1021/jf048693g

    (38) Barik,A.;Priyadarsini,K.I.;Mohan,H.Photochem.Photobiol. 2003,77,597.doi:10.1562/0031-8655(2003)077<0597: PSOBOC>2.0.CO;2

    (39) Congdon,R.W.;Muth,G.W.;Splittgerber,A.G.Anal. Biochem.1993,213,407.doi:10.1006/abio.1993.1439

    (40) Martin,V.I.;Rodriguez,A.;Maestre,A.;Moya,M.L. Langmuir 2013,29,7629.doi:10.1021/la400789k

    (41) Zhang,Y.Z.;Zhou,B.;Liu,Y.X.;Zhou,C.X.;Ding,X.L.; Liu,Y.J.Fluoresc.2008,18,109.doi:10.1007/s10895-007-0247-4

    (42) Hu,Y.J.;Liu,Y.;Jiang,W.;Zhao,R.M.;Qu,S.S.J. Photochem.Photobiol.B.2005,80,235.doi:10.1016/j. jphotobiol.2005.04.005

    (43) Zhou,T.;Ao,M.;Xu,G.;Liu,T.;Zhang,J.J.Colloid Interface Sci.2012,389,175.doi:10.1016/j.jcis.2012.08.067

    (44) Ojha,B.;Das,G.Chem.Phys.Lipids 2011,164,144. doi:10.1016/j.chemphyslip.2010.12.004

    (45) Jaiswal,S.;Mondal,R.;Paul,D.;Mukherjee,S.Chem.Phys. Lett.2016,646,18.doi:10.1016/j.cplett.2015.12.051

    (46) Ró?ycka-Roszak,B.;Wo?niak,E.;Misiak,P.;Fr?ckowiak,R.; Wilk,K.A.J.Chem.Thermodyn.2013,66,1.doi:org/10.1016/j. jct.2013.06.012

    (47) Covis,R.;Vives,T.;Gaillard,C.;Benoit,M.;Benvegnu,T. Carbohydrate Polymers 2015,121,436.doi:10.1016/j. carbpol.2015.01.001

    (48) Xiang,J.;Fan,J.B.;Chen,N.;Chen,J.;Liang,Y.Colloids Surf. B:Biointerf.2006,49,175.doi:10.1016/j.colsurfb.2006.03.015

    (49) Asker,D.;Weiss,J.;McClements,D.J.Langmuir 2009,25, 116.doi:10.1021/la803038w

    (50) Bordbar,A.K.;Taheri-Kafrani,A.;Mousavi,H.A.;Haertle,T. Arch.Biochem.Biophys.2008,470,103.doi:10.1016/j. abb.2007.11.015

    (51) Misra,P.K.;Dash,U.;Maharana,S.Colloids Surf.A: Physicochem.Eng.Aspects 2015,483,36. doi:10.1016/j.colsurfa.2015.06.052

    The Interactions between Quaternary Ammonium Cationic Surfactants and Bovine Serum Albumin

    XIE Hu-Jun1,*LIU Cheng-Cheng1SUN Qiang1GU Qing2,*LEI Qun-Fang3FANG Wen-Jun3,*
    (1Department of Applied Chemistry,Zhejiang Gongshang University,Hangzhou 310018,P.R.China;
    2School of Food Science and Biotechnology,Zhejiang Gongshang University,Hangzhou 310018,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310028,P.R.China)

    UV-visible(UV-Vis)absorption spectroscopy,fluorescence spectroscopy(FL),dynamic light scattering(DLS)and isothermal titration calorimetry(ITC)were used to study the interactions between bovine serum albumin(BSA)and the three quaternary ammonium surfactants N-dodecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(DHDAB),N-tetradecyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide (THDAB)and N-cetyl-N-(2-hydroxyethyl)-N,N-dimethyl ammonium bromide(CHDAB).These surfactants quenched the intrinsic fluorescence of BSA,with longer alkyl chains resulting in more significant quenching. This was attributed to static quenching.Further evidence of static quenching was provided by UV-Vis absorption spectroscopy.The particle size of BSA was found to initially increase and then decrease with increasing surfactant concentration.The concentration of surfactant changed the type of interaction mode.This work revealed the mechanism and binding characteristics between surfactants and protein,and provides the basisfor further applications of surfactants.

    Surfactants;Bovine serum albumin;Fluorescence quenching;Dynamic light scattering; Isothermal titration calorimetry

    O648

    10.3866/PKU.WHXB201609231

    Received:July 18,2016;Revised:September 22,2016;Published online:September 23,2016.

    *Corresponding authors.XIE Hu-Jun,Email:hujunxie@gmail.com;Tel:+86-571-28008974.FANG Wen-Jun,Email:fwjun@zju.edu.cn.

    GU Qing,Email:guqing2002@hotamail.com.

    The project was supported by the National Natural Science Foundation of China(21203166,21473157),Natural Science Foundation of Zhejiang

    Province,China(LY16B030001),and Food Science and Engineering the Most Important Discipline of Zhejiang Province,China(JYTsp2014111).

    國家自然科學基金(21203166,21473157),浙江省自然科學基金(LY16B030001)與浙江省重中之重學科食品科學與工程(JYTsp2014111)資助項目

    猜你喜歡
    溴化銨化學系工商大學
    重慶工商大學作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    重慶工商大學學科簡介
    離子沉淀浮選法回收廢水中的Cu2+
    溶液濃度對四丁基溴化銨水合物蓄冷性能的影響
    云南化工(2021年11期)2022-01-12 06:06:16
    重慶工商大學
    磷鎢酸電極材料的超級電容器性能研究
    重慶工商大學
    首都師范大學化學系自充電功能材料研究取得重要進展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    狂野欧美白嫩少妇大欣赏| 在线国产一区二区在线| 麻豆成人av在线观看| 此物有八面人人有两片| 18禁国产床啪视频网站| 美女cb高潮喷水在线观看 | 成人国产综合亚洲| 男人舔奶头视频| 日韩成人在线观看一区二区三区| 草草在线视频免费看| 国产高清视频在线观看网站| 精品久久久久久久毛片微露脸| 国内毛片毛片毛片毛片毛片| 搡老妇女老女人老熟妇| 亚洲av电影在线进入| 免费电影在线观看免费观看| 亚洲国产欧洲综合997久久,| 日韩欧美三级三区| 男女做爰动态图高潮gif福利片| 欧美午夜高清在线| 久久久久久久午夜电影| 最近最新中文字幕大全免费视频| 麻豆av在线久日| 麻豆国产av国片精品| 久久久国产成人精品二区| 成熟少妇高潮喷水视频| 91老司机精品| 成人欧美大片| 91在线观看av| 久久精品亚洲精品国产色婷小说| 国产1区2区3区精品| 日韩欧美在线乱码| 在线a可以看的网站| 久久久久久人人人人人| 丁香欧美五月| 亚洲精品美女久久久久99蜜臀| 亚洲五月天丁香| 亚洲国产中文字幕在线视频| 国产视频一区二区在线看| 久久这里只有精品中国| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看| 欧美激情久久久久久爽电影| 最新中文字幕久久久久 | 精品久久久久久久久久免费视频| 精品电影一区二区在线| 露出奶头的视频| 午夜激情福利司机影院| 免费看光身美女| 在线视频色国产色| 国产成人精品久久二区二区91| www国产在线视频色| 搞女人的毛片| 最新中文字幕久久久久 | 搡老熟女国产l中国老女人| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 亚洲精品美女久久久久99蜜臀| 国产精品亚洲美女久久久| 亚洲午夜理论影院| 国产成+人综合+亚洲专区| 午夜成年电影在线免费观看| 亚洲欧洲精品一区二区精品久久久| 蜜桃久久精品国产亚洲av| 日本一本二区三区精品| 国产亚洲精品一区二区www| av天堂中文字幕网| 两个人的视频大全免费| 欧美黑人欧美精品刺激| 婷婷丁香在线五月| 日日干狠狠操夜夜爽| 亚洲成av人片免费观看| 欧美国产日韩亚洲一区| 一本综合久久免费| 12—13女人毛片做爰片一| 美女黄网站色视频| 欧美zozozo另类| 好男人在线观看高清免费视频| 国内久久婷婷六月综合欲色啪| 热99re8久久精品国产| 性欧美人与动物交配| 午夜久久久久精精品| 国内精品久久久久精免费| 国产亚洲精品综合一区在线观看| 国产精品1区2区在线观看.| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人成人乱码亚洲影| 老汉色av国产亚洲站长工具| 十八禁人妻一区二区| 三级毛片av免费| 亚洲男人的天堂狠狠| 亚洲第一电影网av| 免费一级毛片在线播放高清视频| 国产精品98久久久久久宅男小说| 国产乱人视频| 国产精品,欧美在线| 国产精品女同一区二区软件 | 国产高清视频在线播放一区| 极品教师在线免费播放| 久久伊人香网站| 亚洲欧美精品综合一区二区三区| 精品久久久久久,| 国产91精品成人一区二区三区| 国产一区二区激情短视频| 精品免费久久久久久久清纯| 国产欧美日韩一区二区精品| 精品99又大又爽又粗少妇毛片 | 久久精品人妻少妇| 亚洲无线在线观看| 成熟少妇高潮喷水视频| 精品国产超薄肉色丝袜足j| 中文字幕人妻丝袜一区二区| 亚洲人与动物交配视频| 一本综合久久免费| avwww免费| 嫩草影院入口| 高潮久久久久久久久久久不卡| 日本免费一区二区三区高清不卡| 午夜亚洲福利在线播放| xxx96com| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| 日日夜夜操网爽| 国产精品影院久久| 男女视频在线观看网站免费| 级片在线观看| 不卡av一区二区三区| 97人妻精品一区二区三区麻豆| 夜夜爽天天搞| 一级毛片精品| 亚洲片人在线观看| 午夜免费激情av| 99精品在免费线老司机午夜| 国产成人系列免费观看| 国产精华一区二区三区| 日日摸夜夜添夜夜添小说| 久久人人精品亚洲av| 久久亚洲真实| 中文字幕高清在线视频| 亚洲片人在线观看| 国产欧美日韩一区二区精品| 欧美乱码精品一区二区三区| 美女午夜性视频免费| 午夜亚洲福利在线播放| 亚洲成a人片在线一区二区| 看免费av毛片| 手机成人av网站| 村上凉子中文字幕在线| АⅤ资源中文在线天堂| 中国美女看黄片| 亚洲av电影不卡..在线观看| 不卡av一区二区三区| 国产男靠女视频免费网站| 欧美日韩中文字幕国产精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 成年女人毛片免费观看观看9| 99热精品在线国产| av天堂中文字幕网| 在线观看一区二区三区| 色播亚洲综合网| www国产在线视频色| 国产亚洲精品综合一区在线观看| 成人av一区二区三区在线看| 日韩成人在线观看一区二区三区| 亚洲成av人片在线播放无| 999精品在线视频| 免费av毛片视频| 亚洲狠狠婷婷综合久久图片| 中国美女看黄片| 成年免费大片在线观看| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| www.999成人在线观看| 国产亚洲精品久久久com| 高清在线国产一区| 精品福利观看| 18禁黄网站禁片免费观看直播| 综合色av麻豆| 国产 一区 欧美 日韩| 好男人电影高清在线观看| 日本a在线网址| 久久久久久久久免费视频了| 在线视频色国产色| 国产精品美女特级片免费视频播放器 | 国产单亲对白刺激| 1000部很黄的大片| 精品久久久久久久末码| 香蕉久久夜色| 国产av不卡久久| 一本一本综合久久| 国产在线精品亚洲第一网站| 麻豆av在线久日| 亚洲国产色片| 国产精品永久免费网站| 国产成+人综合+亚洲专区| av中文乱码字幕在线| 亚洲狠狠婷婷综合久久图片| 日韩有码中文字幕| 日日夜夜操网爽| 老熟妇仑乱视频hdxx| 亚洲熟妇熟女久久| 色av中文字幕| 日韩免费av在线播放| 狠狠狠狠99中文字幕| 天堂网av新在线| 在线视频色国产色| 久久久色成人| 变态另类成人亚洲欧美熟女| 久久中文字幕人妻熟女| 国产激情欧美一区二区| 五月伊人婷婷丁香| 男女视频在线观看网站免费| 国产精品久久电影中文字幕| 亚洲无线观看免费| 午夜福利在线在线| av在线天堂中文字幕| 最新在线观看一区二区三区| 亚洲最大成人中文| 国产欧美日韩精品亚洲av| 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| 51午夜福利影视在线观看| 欧美一级a爱片免费观看看| 国产成人系列免费观看| 免费在线观看成人毛片| 三级国产精品欧美在线观看 | 成人永久免费在线观看视频| 国产一区二区在线av高清观看| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 男女视频在线观看网站免费| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 亚洲熟妇熟女久久| 午夜福利欧美成人| 亚洲国产欧美一区二区综合| 操出白浆在线播放| 久久久久久久久中文| 熟女电影av网| 欧美黑人欧美精品刺激| bbb黄色大片| 女人被狂操c到高潮| 亚洲国产日韩欧美精品在线观看 | 婷婷亚洲欧美| 国产伦精品一区二区三区视频9 | 在线观看美女被高潮喷水网站 | 伊人久久大香线蕉亚洲五| 亚洲av日韩精品久久久久久密| 欧美乱妇无乱码| 精品国产乱子伦一区二区三区| 日本熟妇午夜| 一区福利在线观看| 日本一二三区视频观看| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| 在线观看美女被高潮喷水网站 | 12—13女人毛片做爰片一| 亚洲av免费在线观看| 国产欧美日韩一区二区精品| 美女被艹到高潮喷水动态| 久久久久久九九精品二区国产| 国产精品日韩av在线免费观看| 免费在线观看成人毛片| 欧美乱色亚洲激情| 搡老岳熟女国产| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| 亚洲美女黄片视频| 国模一区二区三区四区视频 | 亚洲国产欧洲综合997久久,| 亚洲国产精品久久男人天堂| 精华霜和精华液先用哪个| 操出白浆在线播放| 成人av一区二区三区在线看| 桃红色精品国产亚洲av| 国产亚洲av高清不卡| 日日干狠狠操夜夜爽| 久久久久久久久中文| 亚洲18禁久久av| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 精品一区二区三区视频在线 | 色吧在线观看| 国内久久婷婷六月综合欲色啪| 亚洲国产精品999在线| 丝袜人妻中文字幕| 午夜日韩欧美国产| 国产精品av视频在线免费观看| 日韩有码中文字幕| 国产亚洲精品综合一区在线观看| 午夜福利18| 欧美xxxx黑人xx丫x性爽| 天堂网av新在线| av中文乱码字幕在线| 老鸭窝网址在线观看| 欧美乱码精品一区二区三区| 90打野战视频偷拍视频| 99久久精品一区二区三区| 美女黄网站色视频| 最近最新中文字幕大全电影3| 精华霜和精华液先用哪个| 免费在线观看亚洲国产| av天堂中文字幕网| АⅤ资源中文在线天堂| 精品无人区乱码1区二区| 一本综合久久免费| 国产伦精品一区二区三区视频9 | 国产主播在线观看一区二区| 久9热在线精品视频| 亚洲午夜理论影院| 最好的美女福利视频网| 亚洲五月天丁香| 可以在线观看毛片的网站| 18禁黄网站禁片免费观看直播| 一边摸一边抽搐一进一小说| 麻豆一二三区av精品| 日韩欧美精品v在线| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美网| av天堂在线播放| 欧美日韩一级在线毛片| 国内精品美女久久久久久| 国产一区二区三区在线臀色熟女| 欧美xxxx黑人xx丫x性爽| 母亲3免费完整高清在线观看| 成年女人毛片免费观看观看9| 日韩国内少妇激情av| 久久久成人免费电影| 操出白浆在线播放| 色老头精品视频在线观看| 久久精品国产清高在天天线| 成人av在线播放网站| 亚洲欧美日韩东京热| 91av网站免费观看| 天天一区二区日本电影三级| 亚洲欧美日韩卡通动漫| 亚洲午夜精品一区,二区,三区| 国产伦人伦偷精品视频| 韩国av一区二区三区四区| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 日韩三级视频一区二区三区| 日日摸夜夜添夜夜添小说| 久久久水蜜桃国产精品网| 日本一本二区三区精品| 免费高清视频大片| 国产激情欧美一区二区| 久久久国产精品麻豆| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 窝窝影院91人妻| 亚洲熟妇熟女久久| 啦啦啦韩国在线观看视频| 亚洲精品美女久久av网站| 日韩大尺度精品在线看网址| 床上黄色一级片| 成人一区二区视频在线观看| 久久久久久大精品| 一本综合久久免费| 岛国在线免费视频观看| 国产精品98久久久久久宅男小说| a在线观看视频网站| 在线a可以看的网站| 麻豆av在线久日| 小说图片视频综合网站| 亚洲精品久久国产高清桃花| 精品国产亚洲在线| 99精品久久久久人妻精品| 悠悠久久av| 欧美日韩一级在线毛片| 人人妻,人人澡人人爽秒播| 国内精品久久久久久久电影| 日韩成人在线观看一区二区三区| 成人亚洲精品av一区二区| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 午夜精品一区二区三区免费看| 亚洲熟妇中文字幕五十中出| 看片在线看免费视频| 亚洲国产欧美人成| 国产激情欧美一区二区| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 蜜桃久久精品国产亚洲av| 久99久视频精品免费| 精品国产超薄肉色丝袜足j| 偷拍熟女少妇极品色| 国产综合懂色| 国产又色又爽无遮挡免费看| aaaaa片日本免费| 一区二区三区高清视频在线| 亚洲五月婷婷丁香| 国产伦一二天堂av在线观看| 国产私拍福利视频在线观看| 国产成人欧美在线观看| 夜夜看夜夜爽夜夜摸| 亚洲性夜色夜夜综合| 制服人妻中文乱码| 91av网一区二区| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 午夜亚洲福利在线播放| 成人欧美大片| 久久久久久久久久黄片| www.精华液| 在线永久观看黄色视频| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久| 99国产精品99久久久久| 制服丝袜大香蕉在线| 少妇熟女aⅴ在线视频| 欧美黑人巨大hd| 亚洲中文字幕日韩| 欧美日韩一级在线毛片| 色在线成人网| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 嫩草影院入口| 国内精品美女久久久久久| 国产精品美女特级片免费视频播放器 | 天堂√8在线中文| 精品久久久久久久人妻蜜臀av| 久久久水蜜桃国产精品网| 欧美大码av| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 在线十欧美十亚洲十日本专区| 欧美黑人欧美精品刺激| 亚洲成a人片在线一区二区| 身体一侧抽搐| 国产淫片久久久久久久久 | 亚洲av片天天在线观看| 亚洲av熟女| 在线a可以看的网站| 给我免费播放毛片高清在线观看| 精品电影一区二区在线| 成年女人毛片免费观看观看9| 热99在线观看视频| 欧美一级a爱片免费观看看| 成人特级av手机在线观看| 无限看片的www在线观看| 夜夜爽天天搞| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 一区福利在线观看| 午夜精品一区二区三区免费看| 亚洲无线在线观看| 757午夜福利合集在线观看| 久久久久国内视频| 日韩免费av在线播放| 在线观看免费午夜福利视频| 变态另类成人亚洲欧美熟女| 99精品久久久久人妻精品| av中文乱码字幕在线| 亚洲av电影不卡..在线观看| 欧美黄色片欧美黄色片| 国产亚洲精品综合一区在线观看| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区免费观看 | 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区| 热99在线观看视频| 在线看三级毛片| 久久久久久九九精品二区国产| 欧美成狂野欧美在线观看| 一二三四在线观看免费中文在| 狠狠狠狠99中文字幕| 好看av亚洲va欧美ⅴa在| 露出奶头的视频| 看片在线看免费视频| 黄色视频,在线免费观看| 白带黄色成豆腐渣| 好男人在线观看高清免费视频| av中文乱码字幕在线| 国产成人啪精品午夜网站| 十八禁网站免费在线| 日韩欧美在线乱码| 日本 欧美在线| 黄色 视频免费看| 亚洲一区高清亚洲精品| 久久天堂一区二区三区四区| 亚洲中文日韩欧美视频| 母亲3免费完整高清在线观看| 999精品在线视频| 国产成人aa在线观看| 午夜视频精品福利| 99精品久久久久人妻精品| 亚洲欧美激情综合另类| h日本视频在线播放| 国产亚洲欧美在线一区二区| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| 中出人妻视频一区二区| 丁香欧美五月| 老司机福利观看| 国产精品久久久av美女十八| 夜夜夜夜夜久久久久| 亚洲乱码一区二区免费版| 成年免费大片在线观看| 2021天堂中文幕一二区在线观| 首页视频小说图片口味搜索| 18禁国产床啪视频网站| 欧美乱码精品一区二区三区| 丝袜人妻中文字幕| 精品人妻1区二区| 日本三级黄在线观看| 国产黄a三级三级三级人| www日本在线高清视频| 给我免费播放毛片高清在线观看| 国产野战对白在线观看| 九色国产91popny在线| 国产精品自产拍在线观看55亚洲| 一二三四在线观看免费中文在| 国产美女午夜福利| 亚洲美女视频黄频| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区成人 | 精品国产亚洲在线| 久久久国产成人精品二区| 黄片小视频在线播放| 91在线观看av| 桃红色精品国产亚洲av| 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 91av网站免费观看| 亚洲精品在线美女| 老司机午夜福利在线观看视频| 亚洲18禁久久av| 免费看光身美女| 好男人在线观看高清免费视频| 丁香欧美五月| 啦啦啦韩国在线观看视频| 国产成人精品无人区| 国产高潮美女av| 美女扒开内裤让男人捅视频| 女生性感内裤真人,穿戴方法视频| 手机成人av网站| 女警被强在线播放| 久久99热这里只有精品18| 色综合婷婷激情| 在线观看午夜福利视频| 日本五十路高清| 中文字幕最新亚洲高清| av在线天堂中文字幕| 成人特级黄色片久久久久久久| 夜夜夜夜夜久久久久| 88av欧美| 亚洲欧美日韩东京热| 国产淫片久久久久久久久 | 麻豆成人av在线观看| 在线看三级毛片| 99热只有精品国产| 超碰成人久久| 欧美日韩福利视频一区二区| 久久精品aⅴ一区二区三区四区| 中文字幕av在线有码专区| 欧美成人一区二区免费高清观看 | 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区在线臀色熟女| 九九在线视频观看精品| 成年免费大片在线观看| www.999成人在线观看| 又黄又爽又免费观看的视频| 狂野欧美白嫩少妇大欣赏| 色综合亚洲欧美另类图片| 搡老熟女国产l中国老女人| 久久九九热精品免费| 丁香欧美五月| 国产1区2区3区精品| 免费看十八禁软件| 久久久国产欧美日韩av| 脱女人内裤的视频| 久久亚洲真实| 人人妻人人澡欧美一区二区| 久久久久久久久免费视频了| 亚洲av熟女| 亚洲av成人不卡在线观看播放网| 一本精品99久久精品77| 搡老妇女老女人老熟妇| 日韩免费av在线播放| av黄色大香蕉| 中文字幕熟女人妻在线| 国产一级毛片七仙女欲春2| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久大精品| 一区二区三区激情视频| 亚洲av电影不卡..在线观看| 国产精品爽爽va在线观看网站| 成人特级黄色片久久久久久久| 特大巨黑吊av在线直播| 淫秽高清视频在线观看| 久久精品91蜜桃| 欧美另类亚洲清纯唯美| 成在线人永久免费视频| 我的老师免费观看完整版| 成人18禁在线播放| 少妇裸体淫交视频免费看高清| 日韩欧美 国产精品| 国产高清videossex| 男女之事视频高清在线观看| 91字幕亚洲| 真实男女啪啪啪动态图| 91久久精品国产一区二区成人 | 亚洲激情在线av| 亚洲最大成人中文| 美女 人体艺术 gogo| 99精品欧美一区二区三区四区| 欧美日韩精品网址| 日本黄色片子视频| 麻豆国产97在线/欧美| 全区人妻精品视频| 熟女少妇亚洲综合色aaa.| 精品久久久久久久毛片微露脸|