• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Power cost minimization in data centers Via Lyapunov optimization①

    2016-12-29 05:34:27ZhangRanWanJianxiong
    High Technology Letters 2016年4期
    關鍵詞:隴西縣陳舊內生

    Zhang Ran (張 然), Wan Jianxiong

    (*School of Mathematics and Statistics of Central South University, Changsha 410083, P.R.China)(**School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, P.R.China)

    ?

    Power cost minimization in data centers Via Lyapunov optimization①

    Zhang Ran (張 然)②*, Wan Jianxiong**

    (*School of Mathematics and Statistics of Central South University, Changsha 410083, P.R.China)(**School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, P.R.China)

    With the advent of big data, the demand for computing has been increasing in a very large scale for the past decade, so geographically distributed data centers are erected in the direction of cloud computing development. A Lyapunov optimization approach is considered for the problem of minimizing energy cost for distributed Internet data centers (IDCs). By capturing the power cost of servers and cooling systems, the Lyapunov optimization technique is formulated to design a decisive strategy that offers provable power cost minimization and QoS guarantees. The algorithm performance and effectiveness are validated via simulations driven by real world traces.

    power cost, quality-of-service (QoS), workload

    0 Introduction

    The increasing Internet services and cloud computing have stepped into people lives in recent years so that big data and computation are migrated to or hosted on the Internet data centers (IDCs). The total construction area of a huge IDC is 300,000 square meters, which can host more than one million high-performance servers. However, consumed energy in IDCs and its cost have been gradually out of control. Qureshi et al. discovered that many IDC operators consumed more than 10 million dollars on their annual electricity bills[1], so the research focuses on how to reduce energy consumption and electricity cost of IDCs.

    Most previous jobs on power management paid close attention to how to reduce the total energy consumption. However, apart from the energy consumption, electricity price should be more concerned too since the electricity prices in western countries exhibit time and location diversities[2-5]. Although the above researches probed the energy cost spent in electricity from servers and practical applications, they ignored another aspect of energy cost, cooling system. Zhang designed and evaluated TEStore exploiting thermal and energy storage techniques to cut the electricity bill for data center cooling without causing servers in a data center to overheat[6]. Nevertheless, the study simply reduced the total cost in a coarse-grain pattern. Their research ignored the widen difference of server-temperatures across diverse server rackets and applications.

    An expense minimization of IDC’s electricity power (EMIEP) problem is formulated in this paper to minimize time-averaged expected energy cost subject to QoS and average temperature constraints. Meanwhile, the research designs an algorithm leveraging the Lyapunov Optimization technique to approximately solve the EMIEP problem and use real workload trace from Ordos UniCloud Technology Co., Ltd. to simulate the above algorithm. Numerical results illustrate that the presented algorithm can reduce total energy cost as well as guarantee QoS and temperature constraints.

    1 System model

    This section discovers a system model shown in Fig.1 and formulates the EMIEP problem. IDC physically consists of rackets of servers and is logically made up of a number of applications, each of which schedules its servers to process the arriving service. All requests preparing to enter an application share the same workload queue and follow the rule that the requests in buffer will be scheduled to the currently idle server. Quality-of-service (QoS) requirement must be considered in each application.

    The running servers generate massive waste heat inevitably. For the sake of the reliability of the servers, a computer room air conditioner (CRAC) is used to regulate the server temperatures by sucking cold air into the server racks, pushing waste heat out of the machine room, and recycling the inside air via the air chilling unit. Fig.1 exhibits the air flow of the system. The light arrow represents cold air and the brunet one symbolizes hot air exhausted from the racks. Apart from the above CRAC, an indoor air conditioner maintains the machine room temperature to predetermined Tsp.

    Fig.1 Layout of IDC Applications

    The whole industry is confronted with huge cost of energy consumption, including server energy consumption and cooling energy consumption. This paper formulates the problem of minimizing the total energy cost of the data center subject to QoS and server temperature constraint. The formulated model can be simply described as follows:

    minserver power cost + cooling power cost

    subject to:

    QoS constraint, for each application

    Average temperature constraint, for each server

    This problem describes three control variables: number of servers for each application, cold air temperature and electricity price discussed in details in the following sections.

    2 Problem formulation

    2.1 Energy cost model

    2.1.1 The server side

    Let J be the total number of applications hosted in IDC. At time slot t, define p(t), ej(t), Lj(t), and mj(t) as the electricity price, energy consumption for a single server, the workload, and the number of servers for application j∈[1,…,J], respectively. Refs[7,8] presented a linear function to display the relationship between power consumption and the server load as follows:

    (1)

    where a1is the marginal energy consumption for CPU and a2denotes the server energy consumption except CPU. The total energy consumption of an application j is Ej(t)=mj(t)×ej(t)=a1Lj(t)+a2mj(t), and the total server energy cost in IDC is

    (2)

    2.1.2 The air chiller side

    C(t)=cfρ(Tsp-Tc(t))

    (3)

    The energy cost is

    PC(t)=p(t)×cfρ(Tsp-Tc(t))

    (4)

    Obviously, it is the sum of PS(t) and PS(t) that equals the total power cost of the data center.

    2.2 Constraints

    2.2.1 QoS constraint

    (5)

    2.2.2 Temperature constraint

    At steady state, the temperature of server j can be controlled by the inlet cold air temperature Tc(t) and the CPU energy consumption ej(t):

    (6)

    where ζ is the heat exchange rate expressed in K·s/J. The processor and motherboard reliability of a server is mainly influenced by temperature gradient and thermal stress in a production data center. With respect to reliability issue, the expected server temperature must be maintained below a certain threshold Tmax. Plugging Eq.(1) into Eq.(6) yields:

    (7)

    2.3 Problem formulation

    After some alternations of Eq.(5) and inequation(7), now define the EMIEP problem as follows:

    (8)

    subject to:

    (9)

    ≤0,?j, t (10)

    Tmin≤Tc≤Tmax

    The EMIEP problem cannot be easily solved due to the following reasons: 1) The unknown probability distribution of Lj(t) and p(t) makes the expectation in Eq.(8) and constraint (10) computationally troublesome; 2) Traditional methods to deal with dynamic optimization problems such as dynamic programming suffers from the curse of dimensionality, i.e., the computation complexity grows exponentially with problem size. Therefore, a modern method will alternate the old approach to approximately solve this problem.

    3 A Lyapunov approach to solve EMIEP problem

    This section first relaxes constraint (10) and uses the Lyapunov optimization theory to obtain an optimal solution.

    3.1 Relaxing the EMIEP problem

    Constraint (10) can be relaxed into

    ≤0,?j (11)

    The relaxation suggests that the expected server temperature is occasionally beyond the temperature bound without destroying reliability as long as the time-averaged expected temperature is within the acceptable range.

    Replacing constraint (10) in the original problem by constraint (11) leads to an relaxed version of EMIEP. Constraint (11) can be further transformed into:

    +a2mj(t))-Tmaxmj(t)}≤0

    由于隴西縣的絕大部分勞動力受長期自然經(jīng)濟的影響,小農意識濃厚,思想保守,滿足于現(xiàn)狀和眼前利益,缺乏發(fā)展致富的成就動機,加之大多數(shù)貧困勞動力持有小富即安的陳舊思想,致富意識淡薄,缺乏脫貧致富的內生動力,存在“等靠要”思想。

    (12)

    To satisfy constraint (12), EMIEP can be transformed into a queue stability problem. Define virtual queue Zj(t) with update Eq.(13).

    Zj(t+1)=max{Zj(t)+mj(t)Tc(t)+ζ(a1Lj(t) +a2mj(t))-Tmaxmj(t),0}

    (13)

    3.2 The objective function

    The Lyapunov optimization framework subtly designs a control algorithm that chooses actions for all t to yield a time average expectation of the objective function value close to optimal solution with the mean-stable virtual queue Zj(t). The algorithm changes the original problem into an alternative, minimizing the time average of a cost function subject to queue stability.

    Let Zj(t) be a concatenated vector of all virtual queues with update Eq.(13). Define the Lyapunov function:

    (14)

    Define Δ(Ζ(t)) as the conditional Lyapunov drift for slot t:

    (15)

    where the expectation depends on the control policy and random workload arrivals.

    Instead of taking control actions to directly minimize Eq.(8), the Lyapunov optimization seeks to minimize a bound of the following drift-plus-penalty function

    Δ(Ζ(t))+VE{p(t)(E(t)+C(t))|Z(t))}

    (16)

    where V≥0 symbolizes an “importance weight” on how much the algorithm emphasizes cost minimization. In section 6, an algorithm minimizing Eq.(16) will achieve a close-to-optimal solution while stabilizing Ζ(t).

    The drift-plus-penalty objective function Eq.(16) can be bounded by the following

    Δ(Ζ(t))+VE{p(t)(E(t)+C(t))|Ζ(t))}

    +ζ(a1Lj(t)+a2mj(t))-Tmaxmj(t))|Ζ(t))}

    +VE{p(t)(E(t)+C(t))|Ζ(t))}

    (17)

    where B is a constant defined as B=mmaxTmax+ζ(a1Lmax+a2mmax). The designed algorithm minimizes the right-hand-side of Eq.(17).

    3.3 Algorithm design

    The objective function of problem Eq.(8) can be rewritten as

    +cfρ(TSP-Tc)]

    (18)

    The existing cross term of control variables plagues the solution of the problem. However, fixing Lj(t) and p(t) can simplify the solution for mj(t) by creating a linear function. To see that, dropping the constant terms in Eq.(18) yields

    +Vp(t)a2mj(t)}-Vp(t)cfρTc

    (19)

    Rearranging (19) yields

    -Vp(t)cfρTc

    (20)

    Algorithm1 EMIEP:Choosingthebestmbestj(t)fortheDrift?Plus?PenaltyAlgorithm1:Determinetheupperboundofmj(t)asmmaxj2:Calculatetheminimumofmj(t):mminj(t)=1Dj+Lj(t)μ3:Studythecoefficientofmj(t):4:ifZj(t)(Tc+ζa2-Tmax)+Vp(t)a2>0then5: returnmminj(t)6:else7: returnmmaxj8:endif

    The next step is to test all possible cooling air temperatures to find optimal Tc. This can be done via Algorithm 2.

    Algorithm2 EMIEP:MinimizingtheDrift?Plus?PenaltyAlgorithm1:Define: interval:Setofdecisionepoch Temperature:Setofpossiblecoolingairtemperature. Applications:Setofapplications. Fobj:Thevalueofobjectfunction DPP[Tc]:ThevalueofLyapunovDrift?plus?PenaltyatTc2:forallt∈intervaldo3: forallTc∈temperaturedo4: CallAlg.1,acquirembestj(Tc)forallj5: Fobj←∑Jj=1p(Tc)(a1Lj(Tc)+a2mbestj(Tc))+p(Tc)?c?f?ρ(TSP-Tc)6: DPP[Tc]←∑Jj=1Zj(Tc){mbestj(Tc)Tc+σ(a1Lj(Tc)+a2mbestj(Tc))-Tmaxmbestj(Tc)}+V×Fobj7:endfor8:minTc←argminTcDPP[Tc]9:mbest(t)←m[minTc]10:minFobj(t)←Fobj[minTc]11:minServerprice(t)←serverprice[minTc]12:minCoolingprice(t)←coolingprice[minTc]13:Zj(t+1)←max{Zj(t)+mbest(t)?Tc(t)+ζ(a1?Lj(t)+a2?mbest(t))-Tmax?mbest(t),0}14:endfor

    4 Performance analysis

    This section first shows that the minimum time-averaged IDC energy cost can be achieved using a randomized stationary control policy independent of the virtual queue state Ζ(t). Then, a performance bound for objective function is derived.

    Define E{p(t)(Eπ(t)+Cπ(t))} as the expected energy cost in the interval [1,…,T] under control policy π, and e*as the minimum achievable E{p(t) (Eπ(t)+Cπ(t))} over all possible π. If problem Eq.(8) is feasible, then for any δ>0, there is a policy π*which depends only on workload and power price which satisfies

    E{p(t)(Eπ*(t)+Cπ*(t))}≤e*+δ

    This result is a direct application of Theorem 4.5 in Ref.[9], which discovers that there is aqueue-independent randomized stationary yielding an energy cost arbitrary close to the optimum as long as the problem is feasible. Next the performance bound is given.

    Theorem 1 Suppose that E{L(Ζ(0))}<∞. The following results yield:

    1) The achievable total energy cost of the EMIEP algorithm can be bounded by

    (21)

    2) The virtual queue Ζ(t) is mean rate stable, i.e.,

    (22)

    According to the above theorems, the article concludes the [O(1/V), O(V)] tradeoff, i.e., the energy cost can be pushed arbitrarily closed to the optimum as V→∞.

    5 Numerical evaluations

    This section conducts extensive simulations to evaluate the proposed EMIEP algorithm.

    5.1 System configuration

    All data used in research were accumulated from four applications of Ordos Uni-Cloud Co., Ltd., after the authors had spent a week on their Internet Data Center (IDC). Because electricity in EMIEP relates to two factors: server power expenditure and cooling system, workload trace involved in server power contains mean request arrival rate shown in Fig.2 for interactive web service at intervals per hour.

    To analyze energy cost consumed in applications, machine room Tspis set to 25℃. In the light of Ref.[9], the algorithm acquires the heat capacity and the density of the air as c = 1005J/kg.K and ρ =1. 205kg/m3at 25℃. Without loss of generality, the service rate of single server μ is normalized as 1 across all applications. If the minimal and maximal power consumption of a single server is 40W and 80W, parameters in Eq.(1) can be set to a1=40 and a2=40. Suppose that heat exchange rate is ζ=0.625K·s/J, the air flow rate is f =5m3/s, and the maximum allowable server temperature is Tmax= 60℃.

    Fig.2 Workload trace involved in server power

    5.2 Result analysis

    Based on the above set parameters, the performance of the EMIEP algorithm is investigated and compared with a greedy policy, which is obtained by solving the following problem:

    minPS(t)+PC(t)

    (23)

    subject to:

    Note that problem (23) greedily minimizes power cost in current slot rather than the long term average power cost.

    5.2.1 Total energy cost and delay

    Fig.3 shows that dynamic programming price (DPP) is also a random variable. At the initial state, its number of samples is not enough that the expectation of objective function is over-estimated, but as time goes by, more samples will be obtained, which leads to more accurate estimation.

    Fig.3 Value of drift-plus-penalty objective function with V=10

    Different vertical ordinates shown in Fig.4(a), 4(b) and 4(c) individually denote total, server and cooling energy costs V, the horizontal ordinate, controls the weight of Lyapunov drift and objective function. The experiment also plots the performance of greedy strategy in the figure, as shown in Fig.4(a) and 4(b), the total and server energy costs descend in steps with the increase of V. In this way, the objective function is efficiently optimized. Though the cooling energy cost mildly increases at V=108, V=109and V=1010shown in Fig.4(c), this situation has not affected the general tendency of energy cost as V grows. When V grows to V=1011, this EMIEP outperforms greedy strategy.

    (a) Total energy cost vs. V

    (b) Server energy cost vs. V

    (c) Cooling energy cost vs. V

    The QoS (delay) for each application in Fig.7 discovers that the 10ms QoS requirement is met in this EMIEP strategy. Fig.5 and Fig.6 show the number of servers allocated to each application with time and the variation of drift-plus-penalty objective function, respectively. It can be shown that this EMIEP can effectively minimize the system power cost while ensuring QoS requirement.

    Fig.5 Servers allocated to each application with V=10

    Fig.6 QoS (delay)

    5.2.2 Cooling temperature and server temperature

    Compared with Fig.4(c), the variation trend of cooling cost in Fig.7 goes to different way. The case explains the fact that the lower the temperature of cooling air is set, the higher the cooling power consumption and cost.

    Fig.7 Cooling air temperature vs. V

    Since energy consumption directly influences server temperature, the server temperatures as shown in Fig.8 from four applications constantly keep heading up but occasionally fluctuate at V=109and V=1010in application 3 and 4. Raising V to 1011slightly increasing the average temperature, significant power cost savings can be obtained.

    Fig.8 Server temperature vs. V

    6 Conclusion

    This work concentrates on greening the data center by minimizing time-averaged expected energy cost subject to QoS and average temperature constraints.

    Since the workload distribution cannot be obtained in advance, it is challenging to design a dynamic control algorithm to achieve this goal.

    To address this opinion, the algorithm leverage the Lyapunov Optimization technique and develop an algorithm to approximately solve the Expense Minimization of IDC’s Electricity Power problem. By evaluating the simulation experiment, the algorithm can be pushed arbitrarily close to optimal solution as control parameter V is raised. Based on real workload trace from Ordos Uni-Cloud Technology Co., Ltd.to simulate the proposed algorithm, numerical results illustrate that the algorithm can practically reduce total energy cost while guaranteeing QoS and temperature constraints.

    [1] Qureshi A, Weber R, Balakrishnan H, et al. Cutting the electric bill for internet-scale systems. ACM SIGCOMM Computer Communication Review, 2009, 1:123-134

    [2] Dou H, Qi Y, Wang P J, et al. Hybrid power control and electricity cost management for distributed internet data centers in cloud computing. In: Proceedings of the 10th International Conference on Web Information System and Application, Yangzhou, China, 2013. 394-399

    [3] Yao J G, Liu X, He W B, et al. Dynamic control of electricity cost with power demand smoothing and peak shaving for distributed internet data centers. In: Proceedings of the 2012 IEEE 32nd International Conference on Distributed Computing Systems, Macau, China, 2012, 67: 416-424

    [4] Wang C, Urgaonkar B, Wang Q, et al. A hierarchical demand response framework for data center power cost optimization under real-world electricity pricing. In: Proceedings of the 2014 IEEE 22nd International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Paris, France, 2014, 45: 305-314

    [5] Xin Z, Reda S. Power budgeting techniques for data centers.IEEE Transactions on Computers, 2015, 64(8):2267-2278

    [6] Zhang Y W, Wang Y, Wang X. TEStore: exploiting thermal and energy storage to cut the electricity bill for datacenter cooling. In: Proceedings of the 8th International Conference on Network and Service Management International Federation for Information Processing, Las Vegas, USA, 2012, 1:19-27

    [7] Kaushik R T, Nahrstedt K. A data-centric cooling energy costs reduction approach for big data analytics cloud. In: Proceedings of the 2012 International Conference on High Performance Computing, Networking, Storage and Analysis, Madrid, Spain, 2012, 1: 1-11

    [8] Li S, Le H, Pham N, et al. Joint optimization of computing and cooling energy: analytic model and a machine room case study. In: Proceedings of the International Conference on Distributed Computing Systems, Macau, China, 2012, 1: 396-405

    [9] Neely M J. Stochastic network optimization with application to communication and queueing systems.Morgan & Claypool,2010, 4:53-62

    Zhang Ran, is a graduate pursuing Ph.D in School of Mathematics and Statistics of Central South University. He received B.S. in applied mathematics from Branch Campus of Peking University in 1994 and M.S in computer science from Xidian University in 2007. His research interests focus on probability and applied statistics, machine learning, IDC resource management, and data mining.

    10.3772/j.issn.1006-6748.2016.04.003

    ① Supported by the National Natural Science Foundation of China (No. 61502255), the Inner Mongolia Provincial Natural Science Foundation (No. 2014BS0607), and the Science Research Project for Inner Mongolia College (No. NJZY14064).

    ② To whom correspondence should be addressed. E-mail: seran_zhang@126.com Received on Oct. 9, 2015

    猜你喜歡
    隴西縣陳舊內生
    反義詞組訓練
    中醫(yī)藥文化進校園的實施策略——以甘肅省隴西縣為例
    甘肅教育(2020年18期)2020-10-28 09:06:02
    植物內生菌在植物病害中的生物防治
    湖北農機化(2020年4期)2020-07-24 09:07:16
    共享推動學前教育均衡發(fā)展——以隴西縣鞏昌幼兒園實施集團化辦園探索為例
    甘肅教育(2020年22期)2020-04-13 08:10:52
    內生微生物和其在作物管理中的潛在應用
    世界農藥(2019年4期)2019-12-30 06:25:10
    “黨建+”激活鄉(xiāng)村發(fā)展內生動力
    授人以漁 激活脫貧內生動力
    2017年7月26—27日隴西縣暴雨天氣過程分析
    陳舊的謊言
    放血療法治療陳舊熱痤瘡
    国产欧美日韩综合在线一区二区| 99久国产av精品国产电影| 汤姆久久久久久久影院中文字幕| 亚洲中文av在线| 赤兔流量卡办理| 亚洲欧美成人精品一区二区| 久久久久久久大尺度免费视频| 国语对白做爰xxxⅹ性视频网站| 男男h啪啪无遮挡| xxx大片免费视频| av片东京热男人的天堂| 性高湖久久久久久久久免费观看| 日韩欧美一区视频在线观看| 涩涩av久久男人的天堂| 水蜜桃什么品种好| 亚洲综合精品二区| 99九九在线精品视频| 9色porny在线观看| 有码 亚洲区| 多毛熟女@视频| 国产激情久久老熟女| 国产精品人妻久久久影院| 观看av在线不卡| av在线观看视频网站免费| 22中文网久久字幕| 免费高清在线观看日韩| 国产欧美亚洲国产| 欧美激情国产日韩精品一区| 久久亚洲国产成人精品v| kizo精华| 日韩欧美一区视频在线观看| tube8黄色片| 日韩精品免费视频一区二区三区 | 亚洲成人一二三区av| 久久精品夜色国产| 久久国内精品自在自线图片| 国产成人免费无遮挡视频| 日本爱情动作片www.在线观看| 久久影院123| 欧美亚洲 丝袜 人妻 在线| 亚洲精品aⅴ在线观看| 九九在线视频观看精品| 免费av不卡在线播放| 亚洲经典国产精华液单| 久久久久久久久久久免费av| 国产高清不卡午夜福利| 深夜精品福利| 日本黄色日本黄色录像| 欧美日本中文国产一区发布| 看免费成人av毛片| 国产在线视频一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久人妻精品一区果冻| 伦理电影免费视频| 久久久久久久精品精品| 久久青草综合色| 日韩成人av中文字幕在线观看| 一级毛片电影观看| 在线观看三级黄色| 色哟哟·www| 免费在线观看黄色视频的| 啦啦啦中文免费视频观看日本| av一本久久久久| 国产精品熟女久久久久浪| 香蕉丝袜av| 青春草视频在线免费观看| 高清毛片免费看| 又黄又爽又刺激的免费视频.| 日韩欧美一区视频在线观看| 尾随美女入室| 国产成人一区二区在线| 亚洲精品美女久久久久99蜜臀 | 中文字幕免费在线视频6| 国产成人欧美| 黄色毛片三级朝国网站| 日日撸夜夜添| 精品国产一区二区三区久久久樱花| 日本91视频免费播放| 中文乱码字字幕精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 熟女av电影| 黄片播放在线免费| freevideosex欧美| a级片在线免费高清观看视频| 亚洲欧美中文字幕日韩二区| 欧美精品国产亚洲| 亚洲精品自拍成人| 热99久久久久精品小说推荐| 少妇 在线观看| 黄片播放在线免费| 日韩中字成人| 女人精品久久久久毛片| 草草在线视频免费看| 18禁裸乳无遮挡动漫免费视频| 一边亲一边摸免费视频| 日本爱情动作片www.在线观看| 9色porny在线观看| 国产免费视频播放在线视频| 亚洲高清免费不卡视频| 毛片一级片免费看久久久久| 亚洲高清免费不卡视频| 欧美人与性动交α欧美软件 | 亚洲成av片中文字幕在线观看 | 韩国高清视频一区二区三区| 建设人人有责人人尽责人人享有的| 在线亚洲精品国产二区图片欧美| 九九爱精品视频在线观看| 在线观看人妻少妇| 又黄又爽又刺激的免费视频.| 免费看不卡的av| 亚洲,欧美,日韩| 欧美+日韩+精品| 色网站视频免费| 午夜福利网站1000一区二区三区| 亚洲激情五月婷婷啪啪| 免费观看a级毛片全部| 一区二区av电影网| xxx大片免费视频| 狂野欧美激情性xxxx在线观看| 啦啦啦中文免费视频观看日本| 99九九在线精品视频| 亚洲国产精品成人久久小说| 国产日韩欧美视频二区| 18禁动态无遮挡网站| 男女午夜视频在线观看 | 18在线观看网站| 国产极品粉嫩免费观看在线| xxx大片免费视频| 黑人欧美特级aaaaaa片| 精品卡一卡二卡四卡免费| 午夜福利视频精品| 国产在视频线精品| 国产亚洲精品久久久com| 97精品久久久久久久久久精品| 国产 精品1| 三上悠亚av全集在线观看| 乱码一卡2卡4卡精品| 国产色婷婷99| 久久久久久久久久成人| 看十八女毛片水多多多| 久久免费观看电影| 国产黄频视频在线观看| 国产精品一国产av| 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久噜噜老黄| 中文精品一卡2卡3卡4更新| 色哟哟·www| 丝袜美足系列| 夜夜骑夜夜射夜夜干| 黄色视频在线播放观看不卡| 建设人人有责人人尽责人人享有的| 极品少妇高潮喷水抽搐| 久久久欧美国产精品| 免费大片黄手机在线观看| 国产成人精品无人区| 大香蕉久久成人网| 亚洲一级一片aⅴ在线观看| 国产国拍精品亚洲av在线观看| av天堂久久9| 最后的刺客免费高清国语| 日韩一区二区三区影片| 伊人久久国产一区二区| 巨乳人妻的诱惑在线观看| 免费人成在线观看视频色| 国产一区二区三区综合在线观看 | 久久97久久精品| 国内精品宾馆在线| 99热6这里只有精品| av线在线观看网站| 亚洲精品久久成人aⅴ小说| 伦精品一区二区三区| 九九在线视频观看精品| av在线观看视频网站免费| av免费在线看不卡| 国产精品三级大全| 啦啦啦视频在线资源免费观看| 久久久久国产精品人妻一区二区| 国产乱来视频区| 一个人免费看片子| 日韩在线高清观看一区二区三区| 欧美日韩综合久久久久久| 亚洲国产色片| 97在线视频观看| 午夜老司机福利剧场| 亚洲五月色婷婷综合| 精品亚洲成a人片在线观看| 两个人免费观看高清视频| 色网站视频免费| 日产精品乱码卡一卡2卡三| 欧美日韩精品成人综合77777| 国产一区二区在线观看av| 高清av免费在线| 一区二区三区四区激情视频| 国内精品宾馆在线| 99热全是精品| 91成人精品电影| 成人午夜精彩视频在线观看| 亚洲经典国产精华液单| 亚洲精品日韩在线中文字幕| www.色视频.com| 黄片播放在线免费| 美国免费a级毛片| 少妇 在线观看| 精品亚洲成国产av| 国产精品人妻久久久久久| 看免费成人av毛片| 天天躁夜夜躁狠狠久久av| 视频区图区小说| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 999精品在线视频| 久久精品熟女亚洲av麻豆精品| 九草在线视频观看| 亚洲精品自拍成人| 国产国语露脸激情在线看| 久久久久人妻精品一区果冻| 国产亚洲精品久久久com| 精品99又大又爽又粗少妇毛片| 国产精品麻豆人妻色哟哟久久| 亚洲成av片中文字幕在线观看 | 亚洲欧美中文字幕日韩二区| 纯流量卡能插随身wifi吗| 成人午夜精彩视频在线观看| 99国产综合亚洲精品| 欧美日韩视频精品一区| 黑人高潮一二区| 久久 成人 亚洲| 国产精品久久久久久精品电影小说| 激情视频va一区二区三区| 97在线人人人人妻| 欧美激情 高清一区二区三区| 黑丝袜美女国产一区| 欧美日韩精品成人综合77777| 午夜久久久在线观看| 精品久久久精品久久久| 亚洲婷婷狠狠爱综合网| 久久久久精品性色| 高清在线视频一区二区三区| 亚洲性久久影院| 国产精品 国内视频| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 免费黄色在线免费观看| 在线观看一区二区三区激情| 亚洲国产精品999| 久久久久久久久久人人人人人人| 国产精品成人在线| 高清av免费在线| 久久国内精品自在自线图片| 成年av动漫网址| 中国美白少妇内射xxxbb| 肉色欧美久久久久久久蜜桃| 国产精品成人在线| 国产亚洲欧美精品永久| av电影中文网址| 中文字幕亚洲精品专区| 少妇的逼水好多| 国产福利在线免费观看视频| 26uuu在线亚洲综合色| 国产高清国产精品国产三级| 亚洲欧美清纯卡通| 狠狠精品人妻久久久久久综合| 亚洲国产毛片av蜜桃av| 女性生殖器流出的白浆| 日韩人妻精品一区2区三区| 精品一区二区免费观看| 天美传媒精品一区二区| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av天美| 午夜福利,免费看| 日产精品乱码卡一卡2卡三| 亚洲欧洲日产国产| 婷婷色综合www| 亚洲图色成人| 女性生殖器流出的白浆| 91aial.com中文字幕在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 美女福利国产在线| 久久人人97超碰香蕉20202| 精品酒店卫生间| 亚洲精品久久久久久婷婷小说| 久久久国产一区二区| 成年人午夜在线观看视频| videos熟女内射| 久久精品国产鲁丝片午夜精品| 人妻人人澡人人爽人人| 精品久久久精品久久久| 我要看黄色一级片免费的| 成年人午夜在线观看视频| 亚洲国产色片| 少妇 在线观看| av免费在线看不卡| 七月丁香在线播放| 亚洲国产欧美在线一区| 国产激情久久老熟女| 国产亚洲欧美精品永久| 午夜久久久在线观看| 成人影院久久| 多毛熟女@视频| 美女xxoo啪啪120秒动态图| 一级a做视频免费观看| 少妇的丰满在线观看| 欧美bdsm另类| 少妇人妻 视频| 成人国语在线视频| 国产av国产精品国产| 建设人人有责人人尽责人人享有的| 国产又爽黄色视频| 成人亚洲欧美一区二区av| 亚洲av男天堂| 亚洲精品国产色婷婷电影| 大香蕉97超碰在线| 亚洲国产毛片av蜜桃av| 夫妻性生交免费视频一级片| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| a 毛片基地| 97在线人人人人妻| 在线天堂中文资源库| 蜜臀久久99精品久久宅男| 亚洲av电影在线观看一区二区三区| 亚洲国产精品成人久久小说| 青春草视频在线免费观看| 亚洲精品aⅴ在线观看| 亚洲内射少妇av| 久久精品夜色国产| 国产精品不卡视频一区二区| 免费高清在线观看视频在线观看| 欧美另类一区| 亚洲欧美一区二区三区国产| 人妻 亚洲 视频| a级毛片在线看网站| 狂野欧美激情性xxxx在线观看| a级毛色黄片| 欧美+日韩+精品| 一区二区三区精品91| 两个人看的免费小视频| 国产亚洲一区二区精品| 国产午夜精品一二区理论片| 日韩av在线免费看完整版不卡| 一级片'在线观看视频| 久久久久精品性色| 国产成人午夜福利电影在线观看| 男女啪啪激烈高潮av片| 一级a做视频免费观看| 久久久久国产精品人妻一区二区| 免费看不卡的av| 国产黄色免费在线视频| av天堂久久9| 丝袜在线中文字幕| 免费大片黄手机在线观看| 精品一区二区免费观看| 一本久久精品| 久久狼人影院| 精品人妻偷拍中文字幕| 国产视频首页在线观看| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 日本午夜av视频| 18禁在线无遮挡免费观看视频| 精品亚洲成国产av| 午夜福利网站1000一区二区三区| 男女边吃奶边做爰视频| 亚洲欧美日韩另类电影网站| 亚洲成av片中文字幕在线观看 | 秋霞伦理黄片| 久久99精品国语久久久| 亚洲,一卡二卡三卡| 久久精品久久久久久久性| 黄色配什么色好看| 亚洲国产精品专区欧美| 久久久久网色| 国产精品国产av在线观看| 国产 一区精品| 午夜激情av网站| 亚洲精品一区蜜桃| 欧美xxⅹ黑人| 国产亚洲午夜精品一区二区久久| 国产日韩欧美视频二区| 99国产精品免费福利视频| 精品国产一区二区久久| 欧美人与性动交α欧美软件 | av在线观看视频网站免费| 看免费av毛片| 日韩制服丝袜自拍偷拍| 大话2 男鬼变身卡| 国产视频首页在线观看| 妹子高潮喷水视频| 90打野战视频偷拍视频| 亚洲av福利一区| 国产成人欧美| 国产有黄有色有爽视频| 91精品国产国语对白视频| 亚洲欧美日韩另类电影网站| 精品人妻在线不人妻| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 飞空精品影院首页| 免费观看av网站的网址| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 黄片无遮挡物在线观看| 91精品伊人久久大香线蕉| 免费黄频网站在线观看国产| 性高湖久久久久久久久免费观看| 亚洲一码二码三码区别大吗| 欧美xxⅹ黑人| 欧美国产精品va在线观看不卡| 视频中文字幕在线观看| 成人毛片60女人毛片免费| 国产一区二区激情短视频 | 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| 在线看a的网站| 午夜免费鲁丝| 久久久a久久爽久久v久久| 亚洲精品日韩在线中文字幕| 日日摸夜夜添夜夜爱| 青春草视频在线免费观看| av福利片在线| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 亚洲综合色惰| 最近2019中文字幕mv第一页| 色5月婷婷丁香| 美女国产视频在线观看| 丝袜脚勾引网站| 看免费成人av毛片| 黑人猛操日本美女一级片| 免费黄网站久久成人精品| 一级,二级,三级黄色视频| 国产1区2区3区精品| 日韩电影二区| 五月伊人婷婷丁香| 亚洲国产最新在线播放| 国产成人午夜福利电影在线观看| 精品一区二区免费观看| 秋霞在线观看毛片| 国产免费现黄频在线看| 国国产精品蜜臀av免费| av黄色大香蕉| 大香蕉久久成人网| 亚洲四区av| 精品人妻熟女毛片av久久网站| 精品久久蜜臀av无| 女人被躁到高潮嗷嗷叫费观| 男女免费视频国产| 亚洲色图综合在线观看| 精品人妻在线不人妻| 久久精品久久久久久噜噜老黄| 欧美精品亚洲一区二区| 亚洲经典国产精华液单| 国产精品一区二区在线不卡| 免费少妇av软件| 国产欧美日韩综合在线一区二区| 亚洲精品第二区| 亚洲欧美精品自产自拍| 国产综合精华液| 午夜影院在线不卡| 久久久久精品久久久久真实原创| 国内精品宾馆在线| 岛国毛片在线播放| 欧美国产精品一级二级三级| 男人舔女人的私密视频| 国产精品 国内视频| 午夜老司机福利剧场| 国产xxxxx性猛交| 看非洲黑人一级黄片| 你懂的网址亚洲精品在线观看| a级毛色黄片| 18禁国产床啪视频网站| 母亲3免费完整高清在线观看 | 毛片一级片免费看久久久久| 国产精品久久久久久精品古装| 热99久久久久精品小说推荐| 中文天堂在线官网| 天美传媒精品一区二区| 免费少妇av软件| 国产欧美日韩综合在线一区二区| 97人妻天天添夜夜摸| 久久久久国产网址| 自拍欧美九色日韩亚洲蝌蚪91| 内地一区二区视频在线| 满18在线观看网站| 日本av手机在线免费观看| 亚洲三级黄色毛片| 26uuu在线亚洲综合色| 亚洲五月色婷婷综合| 在线天堂最新版资源| 狂野欧美激情性xxxx在线观看| 国产乱人偷精品视频| 看非洲黑人一级黄片| 侵犯人妻中文字幕一二三四区| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 两个人免费观看高清视频| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 你懂的网址亚洲精品在线观看| 男男h啪啪无遮挡| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 亚洲国产成人一精品久久久| 91午夜精品亚洲一区二区三区| 毛片一级片免费看久久久久| 亚洲精品美女久久久久99蜜臀 | 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 天天操日日干夜夜撸| 最近手机中文字幕大全| 国产欧美亚洲国产| 美女xxoo啪啪120秒动态图| 久久国产精品男人的天堂亚洲 | 国产精品蜜桃在线观看| 婷婷色麻豆天堂久久| 亚洲av免费高清在线观看| videosex国产| 搡老乐熟女国产| 午夜福利乱码中文字幕| 99热网站在线观看| 熟妇人妻不卡中文字幕| 2022亚洲国产成人精品| 国产成人aa在线观看| 国产熟女欧美一区二区| av在线播放精品| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 国产在线一区二区三区精| 婷婷色综合大香蕉| 秋霞在线观看毛片| 一级,二级,三级黄色视频| 中文字幕精品免费在线观看视频 | 欧美少妇被猛烈插入视频| 亚洲国产精品国产精品| 欧美人与性动交α欧美精品济南到 | 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 日日啪夜夜爽| 看非洲黑人一级黄片| 女人被躁到高潮嗷嗷叫费观| 亚洲av国产av综合av卡| 亚洲国产精品成人久久小说| 欧美日韩综合久久久久久| 国产成人免费无遮挡视频| 欧美人与善性xxx| 伦理电影免费视频| 亚洲丝袜综合中文字幕| 一级片'在线观看视频| 亚洲精品一区蜜桃| 久久这里只有精品19| 欧美 日韩 精品 国产| 午夜av观看不卡| a级毛色黄片| 亚洲一区二区三区欧美精品| 一区二区三区乱码不卡18| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 人妻 亚洲 视频| 国产男女内射视频| 国产精品麻豆人妻色哟哟久久| 国产成人免费观看mmmm| 精品人妻一区二区三区麻豆| 欧美人与性动交α欧美精品济南到 | 国产高清三级在线| 亚洲精品自拍成人| av在线播放精品| 国产精品久久久av美女十八| 街头女战士在线观看网站| 成人无遮挡网站| 热99久久久久精品小说推荐| 欧美bdsm另类| av卡一久久| 少妇的逼水好多| 亚洲国产av新网站| 最近的中文字幕免费完整| 女性生殖器流出的白浆| 国产男女内射视频| 亚洲精品一区蜜桃| 18在线观看网站| 国语对白做爰xxxⅹ性视频网站| 久久久欧美国产精品| 亚洲国产av新网站| 51国产日韩欧美| 成人免费观看视频高清| 午夜激情久久久久久久| 国产精品久久久久久久久免| 欧美精品一区二区大全| 丝袜美足系列| 欧美激情国产日韩精品一区| 国产精品三级大全| 亚洲美女搞黄在线观看| 日本与韩国留学比较| a级毛片黄视频| 一级,二级,三级黄色视频| 国产精品一二三区在线看| 一区在线观看完整版| av线在线观看网站| 中文精品一卡2卡3卡4更新| 久久这里有精品视频免费| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| 久久国产亚洲av麻豆专区| 你懂的网址亚洲精品在线观看| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久精品古装| 一级毛片黄色毛片免费观看视频| 欧美日韩国产mv在线观看视频| 亚洲国产精品一区二区三区在线| 男人爽女人下面视频在线观看| 国产极品天堂在线| 国产欧美日韩一区二区三区在线| 免费在线观看黄色视频的| 精品亚洲成国产av|