• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research of refrigeration system for a new type of constant temperature hydraulic tank①

    2016-12-29 05:34:29GuoRuiZhangZhenmiaoZhaoJingyiNingChaoLiBingliang
    High Technology Letters 2016年4期

    Guo Rui(郭 銳), Zhang Zhenmiao, Zhao Jingyi, Ning Chao, Li Bingliang

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University,Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Qinhuangdao 066004, P.R.China)(**Lianyungang Tianming Equipment Co., Ltd,Lianyungang 222000, P.R.China)

    ?

    Research of refrigeration system for a new type of constant temperature hydraulic tank①

    Guo Rui(郭 銳)②***, Zhang Zhenmiao*, Zhao Jingyi*, Ning Chao*, Li Bingliang*

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University,Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Qinhuangdao 066004, P.R.China)(**Lianyungang Tianming Equipment Co., Ltd,Lianyungang 222000, P.R.China)

    Different from the traditional hydraulic oil cooling method, a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated, and influence of the parameters on the outlet temperature, such as pipe pressure difference of inlet and outlet, pipe length, pipe radius, are gotten, and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37±1°C.

    refrigeration system, constant temperature control, semiconductor refrigeration technology, hydraulic tank, simulated analysis, experimental study

    0 Introduction

    The temperature of hydraulic oil is the direct affect function of hydraulic transmission, accuracy of action, and reliability of the system. Therefore, it is necessary to control the temperature to ensure the hydraulic system performance. The oil that is working in hydraulic system can dissipate heat through the tank, piping, accessories and so on. However, under the condition that system heating makes the oil temperature rising rate higher than that of natural cooling rate, a forced cooling system is needed to cool hydraulic oil.

    Semiconductor refrigeration system technology has attracted wide attentions due to their interesting characteristics and potential application. Ref.[1] pointed out that thermoelectric air-conditioning has the advantages of environmental protection, high reliability, long service life etc. Ref.[2] applied semiconductor refrigeration technology to the temperature control system of car mats, and adopted a robust algorithm based on sliding model control to control the temperature of cold end, thus good effect has been gotten. Ref.[3] introduced the constant temperature control system for high power laser by the method of semiconductor refrigeration and air mixed cooling. Ref.[4] used semiconductor refrigeration system to solve well the cooling problem of LED lighting systems. Ref.[5] introduced a subminiature and high-performance dehumidifier based on semiconductor refrigeration technology. Ref.[6] used semiconductor refrigerator to cool electronic devices. Currently, there are not literatures about semiconductor refrigeration technology used in the hydraulic system.

    This work applies semiconductor refrigeration technology to the hydraulic oil temperature control system, and studies the system through simulation test. It can effectively control the temperature of hydraulic oil and get a satisfactory design goal. Compared with the traditional cooling methods, semiconductor refrigeration has the advantages of long service life, low noise, and environmental protection and so on.[7]Semiconductor refrigeration technology realizes its application in new field.

    1 Analysis of the semiconductor refrigeration theory

    Semiconductor refrigeration is a special way of using thermoelectric refrigerating effect, so it is also called the thermoelectric refrigeration[8]. The semiconductor cooler is a special semiconductor device that uses directly electrical energy to accomplish heat transfer, and a thermocouple is basic elements. A plurality of semiconductor thermocouple is parallel in heat transfer and series in electric circuit, thus they constitute refrigeration thermopile, as shown in Fig.1. The lower part is the hot end and the upper part is the cold end. With the help of various heat transfers, such as heat exchanger, the hot end gives off heat and the cold end absorbs heat to reduce the temperature.

    Fig.1 Refrigeration thermopile

    1.1 Analysis for the semiconductor refrigeration working functions

    For a single semiconductor thermocouple, the exothermic joint properly radiates heat to maintain a certain temperature, and another joint starts cooling. When the heat from the surrounding environment and the heat along the couple arm is equal to Peltier heat[9], the cold junction temperature reaches equilibrium. Now refrigerating capacity of semiconductor thermocouple is

    (1)

    where R is total resistance of the couple arm; K is overall thermal transfer value of the couple arm (W/K); α is thermoelectric power of the thermocouple (V/K); Tcis absolute temperature of the cold end (K). When α, R, Tc, K, ΔT are constant according to Eq.(1), the relationship between the cooling capacity and the current is a parabolic function, and the opening direction is downward. Therefore, the cooling capacity has the maximum value. Now, suppose dQc/dI=0, the operating current of maximum cooling capacity is

    (2)

    By substituting Eq.(2) into Eq.(1), it leads to

    (3)

    where Qcmaxis the maximum cooling capacity.

    Refrigeration coefficient ε is defined as heat absorb per unit electrical power, and ε=Q/N. Electric power consumption of a thermocouple is

    N=I2R+IαΔT

    (4)

    Refrigeration coefficient of a thermocouple is

    (5)

    Under the condition of maximum cooling capacity and optimum current, the electric power consumption can be expressed as following:

    (6)

    The refrigeration coefficient of maximum cooling capacity is

    εcmax=Qcmax/Ncmax=[Tc-2ΔT/(ZTc)]/2Th

    (7)

    (8)

    where Z is the figure of merit of thermoelectric materials, and the unit is K-1. The bigger figure of merit is, the greater refrigeration coefficient is in the maximum refrigeration conditions. Figure of merit is a useful indicator of thermoelectric materials[10].

    The difference in temperature between the cold end and the hot end is got from Eq.(1) as

    (9)

    Eq.(9) shows that if the cold end is in adiabatic condition (Qc=0), the temperature difference Th-Tcwill reach a maximum value ΔTmax. When dΔT/dI=0, current intensity is optimum value IΔTmax, thus, it leads to

    (10)

    Now, the maximal temperature difference is

    (11)

    From the above equation, it can be seen that figure of merit decides the maximal temperature difference which semiconductor chilling plate can reach.

    When dε/dI=0, I=Iεmaxin Eq.(5), refrigeration coefficient reaches the maximum εmax.

    (12)

    Eq.(12) is concluded that refrigeration coefficient depends on the figure of merit Z and temperature difference Th-Tc.

    1.2 The heat transfer model of semiconductor refrigeration

    Thermal system of temperature-controlled equipment is composed of semiconductor chilling plate, cold end heat exchanger, hot end heat exchanger, cold end medium and hot end medium. In the environment of high temperature, a properly simplified heat transfer model is shown in Fig.2.

    The temperature of medium surrounding the hot end or cold end is often known under the practical condition. Refrigerating capacity of semiconductor cooler is equal to heat dissipating capacity of heat source in a steady state condition. Heat absorption capacity of cold end is given as

    (13)

    where Qcis heat absorption capacity of cold end (W); Twcis cold end medium temperature (K); Rctis thermal resistance between cold end medium and chilling plate (m2·K W-1).

    Heat dissipating capacity of hot end can be expressed as following:

    (14)

    where Qhis heat dissipating capacity of hot end (W); Thcis hot end medium temperature (K); Rhtis thermal resistance between hot end medium and chilling plate (m2·K/W).

    In practical application, a semiconductor cooler needs heat exchanger to work properly. According to the heat transfer model, a temperature difference simplified model is obtained, as shown in Fig.3. Performance of the heat exchanger is directly connected with property of semiconductor refrigeration equipment. The stronger the heat transfer-ability is, the smaller the temperature difference between the end face and the medium is. Semi-conductor chilling plate works under the condition of smaller temperature difference, refrigeration efficiency becomes higher.

    Fig.3 Temperature difference simplified model of semiconductor refrigeration

    Temperature difference between the cold end of semiconductor cooler and environment ΔTwcis expressed as

    ΔTwc=ΔTwc1+ΔTwc2+ΔTwc3

    (15)

    where ΔTwc1is temperature difference caused by the cold end contact with thermal resistance (K); temperature difference caused by heat transfer of cold end heat exchange is ΔTwc2(K); temperature difference caused by heat convection is ΔTwc3(K).

    Temperature difference between the hot end of semiconductor cooler and environment ΔTwhis expressed as following:

    ΔTwh=ΔTwh1+ΔTwh2+ΔTwh3

    (16)

    where ΔTwh1is temperature difference caused by the hot end contact with thermal resistance (K), temperature difference caused by heat transfer of hot end heat exchanger is ΔTwh2(K) and temperature difference caused by heat convection is ΔTwh3(K).

    As a result, heat dissipating capacity of hot end is larger than heat absorption capacity of cold end. Heat dissipated power is the sum of input power and cooling power. Thus, it is more difficult to reduce temperature difference between the hot end and environment for reducing temperature difference between the cold end and environment.

    2 Simulation and design of hydraulic oil pipe semiconductor refrigeration system

    Using the thermal analysis in ANSYS program, in the case of certain pipe inlet temperature TIN, the influence of parameters on the outlet temperature are analyzed, including pipe pressure difference of inlet and outlet ΔP, pipe length L, the cold end temperature of semiconductor cooler TC, pipe radius R, etc. Viscosity of hydraulic oil μ=34.935E-03 kg/(m·s), heat conduction coefficient k=0.144 W/(m·K), specific heat Cp=1970 J/(Kg·K), density ρ=863 kg/m3.

    2.1 Influence of pressure difference of inlet and outlet ΔP on the outlet temperature

    When the pipe radius R=5mm, the pipe length L=680mm, the inlet temperature TIN=323K, the cold end temperature of semiconductor cooler TC=283K, temperature distribution and outlet temperature curve are shown in Fig.4~Fig.7 under different pressure difference.

    Fig.4 Temperature distribution under R=5mm, ΔP=10Pa

    Fig.5 Outlet temperature curve under R=5mm, ΔP=10Pa

    Fig.6 Temperature distribution under R=5mm, ΔP=100Pa

    Fig.7 Outlet temperature curve under R=5mm, ΔP=100Pa

    Fig.8 Temperature distribution under R=5mm, ΔP=1000Pa

    Fig.9 Outlet temperature curve under R=5mm, ΔP=1000Pa

    From Fig.4 to Fig.9, it can be seen that when ΔP=1000Pa, the highest outlet temperature is 323K, cooling effect is poor; when ΔP=100Pa, the highest outlet temperature is 312.7K, pipe temperature difference of inlet and outlet is 10.3K; when ΔP=10Pa, the outlet temperature can be quickly stable to the cold end temperature of semiconductor cooler, and pipe temperature difference of inlet and outlet is 40K, cooling effect is better. The influence of pressure difference on the outlet temperature is relatively strong.

    2.2 Influence of pipe length L on the outlet temperature

    Influence of the heat exchange area between the cooler and hydraulic oil on the outlet temperature is studied, and simulation analysis by means of different pipe length is done.

    When the pipe radius R=5mm, the pressure difference of inlet and outlet ΔP=10Pa, the inlet temperature TIN=323K, the cold end temperature of semiconductor cooler TC=283K, temperature distribution and outlet temperature curve are shown in Fig.10~Fig.15 under different pipe length.

    From Fig.10 to Fig.15, it can be seen that when pipe length L=40mm, cooling effect is not obvious; when pipe length L=200mm, the highest outlet temperature is 315.2K, the temperature difference is 7.8K; when pipe length L=800mm, the outlet temperature can reach 283K. Therefore, under the certain pressure difference ΔP, there is a shortest length of pipe to make the outlet temperature to the cold end semiconductor cooler.

    Fig.10 Temperature distribution under R=5mm, L=40mm

    Fig.11 Temperature curve under R=5mm, L=40mm

    Fig.12 Temperature distribution under R=5mm, L=200mm

    Fig.13 Temperature curve under R=5mm, L=200mm

    Fig.14 Temperature distribution under R=5mm, L=800mm

    2.3 Influence of cold end temperature of semiconductor cooler TCon the outlet temperature

    When the pipe radius R=5mm, the pressure difference ΔP=10Pa, the pipe length L=200mm, the inlet temperature TIN=323K, the cold end temperature TC=273K, outlet temperature distribution and outlet temperature curve are shown in Fig.16 and Fig.17.

    Fig.15 Temperature curve under R=5mm, L=800mm

    Fig.16 Temperature distribution under R=5mm, L=200mm, Tc=273K

    Fig.17 Outlet temperature curve under R=5mm, L=200mm, Tc=273K

    Comparing Fig.17 with Fig.13, it can be seen that in the same other condition situation, when the cold end temperature TC=273K and the colder end temperature TC=283K, the outlet temperature decreases by 2K. Although it also improves the cooling effect by reducing the cold end temperature, the ef-fect is not obvious. Thus it is not an effective method.

    2.4 Influence of pipe radius R on the outlet temperature

    When the pipe radius R=10mm, the pressure difference ΔP=10Pa, the inlet temperature TIN=323K, the cold end temperature TC=283K, temperature distribution and outlet temperature curve are shown in Fig.18~Fig.21.

    From Fig.18 to Fig.21, it can be seen that the cooling effect of pipe radius R=10mm decreases obviously than R=5mm. When the pipe length increases to 800mm, the temperature difference is just 6.5K. It also needs to increase the pipe length for achieving the better cooling effect.

    Fig.18 Outlet temperature distribution under R=10mm, L=200mm

    Fig.19 Outlet temperature curve under R=10mm, L=200mm

    Fig.20 Outlet temperature distribution under

    Fig.21 Outlet temperature curve under R=10mm, L=800mm

    Based on the above analysis, it can be seen that reducing the pipe pressure difference ΔP, increasing the pipe length L and reducing the cold end temperature TCcan lower the outlet temperature to achieve the oil cooling.

    3 Experimental study of the constant temperature hydraulic tank cooling system

    3.1 Design of the constant temperature hydraulic tank semiconductor cooler

    By choosing an appropriate semiconductor chilling plate, heat absorbing element of the cold end, heat radiator of the hot end, insulation material and thermal conductivity aluminum and so on, the structure of a semiconductor cooler for a tank is designed, as shown in Fig.22.

    3.2 Design of the constant temperature tank control system

    The constant temperature hydraulic tank semiconductor refrigeration system is a control system with PLC as the core, and is shown in Fig.23.

    1,8-Mounting screws 2- cold end heat exchanger 3-mounting flange 4-heat storage cold plate 5,6,7-thermal isolation foaming material of polyester ammonia 9-cold end heat exchanger 10-cooling fan of the hot end 11-Sest rubber 12-thermal conductivity aluminum 13-chilling plate 14-the fan installation panel

    Fig.22 The structure of semiconductor cooler

    Fig.23 The composition diagram of semiconductor refrigeration system

    The system is mainly composed of temperature sensor, temperature controller, programmable logic controller (PLC), intermediate control circuit, and so on. The sensor detects the signal of hydraulic oil temperature; according to the detected signal, PLC can control the system to start and stop through the intermediate circuit; the controller can achieve hydraulic oil temperature constant.

    3.3 Test for the constant temperature hydraulic tank cooling system

    Heat is generated by the power loss of pump and overflow-valve. The specific method is: installing the O-function common valve with same specification in the position of original reversing valve, which is always in the middle position during the test, so that the oil flows back to the tank after a pump and overflow valve, the input power of pump is all transformed into heat, and the system’s calorific value can be adjusted by adjusting the overflow valve pressure. The semiconductor cooler will begin to work when the temperature of hydraulic oil exceeds the upper limit temperature of 38℃. The temperature of hydraulic oil is controlled at 37℃, and the test system is shown in Fig.24.

    Fig.24 The test system of constant temperature tank

    (1) The system pressure is 2MPa. After the system runs stably, the operating current of semiconductor cooler is 26A, and the heat sink’s temperature measured by portable thermometer is 29℃, the cold plate is 7℃ and ambient temperature is 12±2℃. By calculating, the gross system’s calorific value Phris 0.378kW, and the required cooling power Pzis 0.069kW. In the working situation, the system is tested, and the result is shown in Fig.25.

    From the above diagram, it can be seen that the oil temperature is gradually rising with time in the case of the refrigerator not working, and then beyond the specified temperature range. After the refrigerator works, the temperature can gradually educe to the specified temperature range.

    The hydraulic oil heating power is:

    Ps=γ·C·V·ΔT/60 =1.97×0.863×111.6×0.29=55(W)

    The hydraulic oil cooling power is:

    Pj=γ·C·V·ΔT/60 =1.97×0.863×111.6×0.41=78(W)

    By the above calculation, the actual power for heating is 55W, which is less than the calculated power 69W, the loss heat is mainly consumed by the pipe and valve. The refrigerator can lower effectively the temperature at the rate of 0.00041℃/s. Thus the actual cooling capacity which is calculated is 133W. The refrigeration coefficient is

    (17)

    It can be seen that actual cooling capacity is lower than the design capacity. The main reason is that the sealing of cold end is not enough.

    (2) The system pressure is 2.5MPa. After the system runs stably, the heat sink’s temperature measured by portable thermometer is 29℃, the cold plate is 7℃, ambient temperature is 12±2℃. By calculating, the gross system’s calorific value Phris 0.472kW, and the required cooling power Pzis 0.168kW. The system is tested in the situation, and the result is shown in Fig.26.

    Fig.26 Temperature curves

    From the above diagram, it can be seen that the oil temperature rises gradually with time, and also beyond the specified temperature range under the condition of refrigerator doesn’t work. After the refrigerator works, the temperature can gradually reduce to the specified temperature range. However, the cooling speed is slower than the speed of system pressure 2MPa. The fact conforms to the theory and actual situation.

    The hydraulic oil heating power is

    Ps=γ·C·V·ΔT/60 =1.97×0.863×111.6×0.45=85(W)

    The hydraulic oil cooling power is

    Pj=γ·C·V·ΔT/60 =1.97×0.863×111.6×0.32=60(W)

    As a result, there is great difference between the actual heating power 85W and the calculated power 168W. Loss heat is mainly consumed by the pipe and valve. The temperature can be lowered effectively at the rate of 0.00032℃/s by the refrigerator. Thus the actual cooling capacity is 145W, which is higher than the situation of the system pressure being 2MPa. The refrigeration coefficient is

    (18)

    The cooling capacity is increased when pressure of the system is increased, but the refrigeration coefficient is still small.

    4 Conclusion

    (1) The study proposes a new type of oil cooling method used in the hydraulic system. Semiconductor refrigeration technology is first applied to the hydraulic oil temperature control system, and it provides a new theoretical basis and engineering approach to solve the problem of the hydraulic oil temperature control.

    (2) The heat transfer model for semiconductor cooler is established and simulated. It proposes the structure of pipe semiconductor cooler on the basis, and designs a semiconductor cooler for a tank.

    (3) The application of semiconductor refrigeration technology in hydraulic system is realized, and the feasibility of the theory and design is verified. The test result indicates that, when the environment temperature is 12±2℃ and the initial oil temperature is 38℃, the cooling speed of system pressure 2MPa and 2.5MPa is 0.00041℃/s and 0.00032℃/s respectively. The oil temperature can gradually reduce to the specified temperature range, and verifies that the semiconductor refrigeration system meets the requirements of the oil temperature control.

    [ 1] Riffat S B, Qiu G. Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. Applied Thermal Engineering, 2004,24(14):1979-1993

    [ 2] Choi H S, Yun S, Whang K. Development of a temperature-controlled car-seat system utilizing thermoelectric device. Applied Thermal Engineering, 2007,27(2):2841-2849

    [ 3] Zhao X J, Cai Y X, Wang J, et al. Thermal model design and optimize of LED headlamp cooling device based on semiconductor refrigeration. Chinese Journal of Luminescence, 2014,35(10):1269-1275 (In Chinese)

    [ 4] Zhang H W, Zhang L, Li K, et al. Temperature control system of high power semiconductor laser. Journal of Jilin University, 2005,45(5):642-644 (In Chinese)

    [ 5] Zhang J B, Shao T G, Wang Y, et al. A new type of dehumidifier for enclosed high-voltage switchgear cabinet. TELKOMNIKA: Indonesian Journal of Electrical Engineering, 2013,10(7):102-110

    [ 6] Chang Y W, Chang C. Thermoelectric air-cooling module for electronic Devices. Applied Thermal Engineering, 2013, (29):2731-2737

    [ 7] Semeniouk V A, Pilipenko T V. Thermoelectric coolers with small resp-onse time. In: Proceedings of the 15th International Conference on Thermoelectrics, Pa-sadena, USA, 1996. 301-306

    [ 8] Wang W, Wang S X. The design of temperature control system based on the Cortex-MO and thermoelectric cooling. China Instrumentation, 2011, (3):51-54 (In Chinese)

    [ 9] Xu D S. Semiconductor Refrigeration and Application Technology. Shanghai: Shanghai Jiaotong University Press, 1992. 236 (In Chinese)

    [10] Dai W H, Dai Y J, Zhang P, et al. Measurement for the characteristic parameters and selection of thermoelectric cooling modules. Journal of Shanghai Jiaotong University, 2004,38(10):1669-1672 (In Chinese)

    Guo Rui, born in 1980. He is currently an associate professor in mechatronic engineering at Yanshan University, China. He received his Ph.D degree from the Department of Mechanical Engineering of Yanshan University, Qinhuangdao, China, in 2010.His research interests include innovative design and reliability of complex electromechanical products.

    10.3772/j.issn.1006-6748.2016.04.013

    ① Supported by the National Natural Science Foundation of China (No. 51175448, 51405424)

    ② To whom correspondence should be addressed. E-mail: guorui@ysu.edu.cn Received on June 16, 2015

    亚洲欧洲精品一区二区精品久久久| 制服丝袜大香蕉在线| 在线观看日韩欧美| 一级作爱视频免费观看| 欧美丝袜亚洲另类 | 无人区码免费观看不卡| 老司机福利观看| 亚洲第一电影网av| 久久这里只有精品19| 久久精品国产亚洲av香蕉五月| 国产午夜精品论理片| 在线观看免费午夜福利视频| 亚洲精品色激情综合| 99国产极品粉嫩在线观看| 老熟妇乱子伦视频在线观看| 脱女人内裤的视频| 黄色片一级片一级黄色片| 99国产精品一区二区蜜桃av| 变态另类丝袜制服| 日韩欧美 国产精品| 一二三四在线观看免费中文在| 亚洲一区二区三区不卡视频| 精品99又大又爽又粗少妇毛片 | 久久久久久九九精品二区国产| 一级毛片高清免费大全| 久久久久国产一级毛片高清牌| 中文字幕精品亚洲无线码一区| 香蕉国产在线看| 日本 欧美在线| 精品久久久久久久末码| 露出奶头的视频| 亚洲熟妇熟女久久| 日本一本二区三区精品| 日日干狠狠操夜夜爽| 久久久国产精品麻豆| 欧美黄色片欧美黄色片| 亚洲中文字幕日韩| 中文资源天堂在线| 两个人看的免费小视频| svipshipincom国产片| 成年人黄色毛片网站| 国产成人精品无人区| 少妇裸体淫交视频免费看高清| 99精品欧美一区二区三区四区| 五月伊人婷婷丁香| 亚洲精品在线观看二区| 久久精品亚洲精品国产色婷小说| 亚洲av成人一区二区三| 在线观看舔阴道视频| 欧美黄色淫秽网站| 岛国在线观看网站| 欧美黄色淫秽网站| 一边摸一边抽搐一进一小说| 俄罗斯特黄特色一大片| 国产精品,欧美在线| 18禁国产床啪视频网站| 国产av不卡久久| 久久久久久久久久黄片| 哪里可以看免费的av片| 麻豆国产av国片精品| 亚洲av熟女| www.999成人在线观看| 国产在线精品亚洲第一网站| 国产精品一区二区免费欧美| 99精品在免费线老司机午夜| 激情在线观看视频在线高清| 亚洲av五月六月丁香网| 精品久久久久久,| 丰满的人妻完整版| av视频在线观看入口| 色视频www国产| 欧美另类亚洲清纯唯美| 蜜桃久久精品国产亚洲av| 久久午夜综合久久蜜桃| 久久久久久久久免费视频了| 真实男女啪啪啪动态图| 国产熟女xx| 亚洲欧美日韩东京热| 国产99白浆流出| 欧美黄色片欧美黄色片| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区不卡视频| 日韩成人在线观看一区二区三区| 舔av片在线| 国产亚洲av嫩草精品影院| 亚洲一区高清亚洲精品| 最近在线观看免费完整版| 岛国在线免费视频观看| 一个人免费在线观看电影 | 国产欧美日韩一区二区三| 亚洲国产看品久久| 亚洲成人中文字幕在线播放| 成在线人永久免费视频| 啪啪无遮挡十八禁网站| 久久久国产成人精品二区| 人妻丰满熟妇av一区二区三区| 亚洲av五月六月丁香网| 97人妻精品一区二区三区麻豆| 中文字幕人妻丝袜一区二区| 欧美黄色片欧美黄色片| 中文字幕人成人乱码亚洲影| 免费av毛片视频| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 中文字幕久久专区| 怎么达到女性高潮| 在线a可以看的网站| 久久国产乱子伦精品免费另类| 国产精品综合久久久久久久免费| 人人妻,人人澡人人爽秒播| 国产一区二区激情短视频| 禁无遮挡网站| 欧美最黄视频在线播放免费| 国内少妇人妻偷人精品xxx网站 | 美女扒开内裤让男人捅视频| 麻豆成人av在线观看| 国产免费av片在线观看野外av| av视频在线观看入口| 国产v大片淫在线免费观看| 看免费av毛片| 国产男靠女视频免费网站| or卡值多少钱| 亚洲av电影不卡..在线观看| 又紧又爽又黄一区二区| 在线免费观看的www视频| 一个人观看的视频www高清免费观看 | 看免费av毛片| 久久久久精品国产欧美久久久| 非洲黑人性xxxx精品又粗又长| 国产精品久久视频播放| 偷拍熟女少妇极品色| 国产三级中文精品| 夜夜夜夜夜久久久久| 中文字幕熟女人妻在线| 亚洲乱码一区二区免费版| 亚洲av成人精品一区久久| 成人一区二区视频在线观看| 久久精品人妻少妇| 香蕉丝袜av| 国产单亲对白刺激| 久久国产精品影院| 中文字幕久久专区| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 欧美在线黄色| 中文字幕av在线有码专区| 国产真人三级小视频在线观看| 脱女人内裤的视频| 麻豆国产av国片精品| 中国美女看黄片| 国产又黄又爽又无遮挡在线| 此物有八面人人有两片| 啪啪无遮挡十八禁网站| 91老司机精品| 国产野战对白在线观看| 中国美女看黄片| 真实男女啪啪啪动态图| 久久久久久九九精品二区国产| 变态另类丝袜制服| 久久久久国产一级毛片高清牌| 又黄又爽又免费观看的视频| 亚洲av免费在线观看| 成人性生交大片免费视频hd| 超碰成人久久| 美女黄网站色视频| 午夜激情福利司机影院| 免费av不卡在线播放| 1024香蕉在线观看| 午夜激情福利司机影院| 国产精品乱码一区二三区的特点| 1024香蕉在线观看| 老司机午夜十八禁免费视频| 无限看片的www在线观看| 一区福利在线观看| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| 88av欧美| e午夜精品久久久久久久| 日本熟妇午夜| 88av欧美| 精品久久蜜臀av无| 国内精品美女久久久久久| 国产精品九九99| 日本撒尿小便嘘嘘汇集6| 久久中文看片网| 淫秽高清视频在线观看| 日韩欧美在线二视频| 国产极品精品免费视频能看的| 床上黄色一级片| 亚洲欧美激情综合另类| 黑人巨大精品欧美一区二区mp4| 五月玫瑰六月丁香| 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 黄频高清免费视频| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 18禁裸乳无遮挡免费网站照片| 99热精品在线国产| 男人舔女人下体高潮全视频| 99精品久久久久人妻精品| 一级毛片女人18水好多| 巨乳人妻的诱惑在线观看| 中国美女看黄片| 99精品在免费线老司机午夜| 热99在线观看视频| 99久久国产精品久久久| 99视频精品全部免费 在线 | 啦啦啦观看免费观看视频高清| 大型黄色视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 天堂网av新在线| 波多野结衣高清无吗| 91在线精品国自产拍蜜月 | 日本成人三级电影网站| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 此物有八面人人有两片| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 宅男免费午夜| 国产成人欧美在线观看| 1000部很黄的大片| 欧美黑人巨大hd| 怎么达到女性高潮| 久久这里只有精品中国| x7x7x7水蜜桃| 午夜两性在线视频| 亚洲精品中文字幕一二三四区| 制服人妻中文乱码| 91av网一区二区| 嫁个100分男人电影在线观看| 看片在线看免费视频| 在线观看一区二区三区| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 男女床上黄色一级片免费看| 99久国产av精品| 日本黄大片高清| 黄频高清免费视频| 精品久久久久久久人妻蜜臀av| avwww免费| 一本一本综合久久| 国产精品一区二区精品视频观看| 久久中文字幕一级| 窝窝影院91人妻| 亚洲片人在线观看| 夜夜夜夜夜久久久久| 国产亚洲精品久久久久久毛片| 露出奶头的视频| 亚洲国产精品久久男人天堂| 国产男靠女视频免费网站| 日韩高清综合在线| www日本在线高清视频| 中文字幕人妻丝袜一区二区| 亚洲精品乱码久久久v下载方式 | 偷拍熟女少妇极品色| 国产 一区 欧美 日韩| av中文乱码字幕在线| 精品久久久久久久末码| 国产精品99久久久久久久久| 女生性感内裤真人,穿戴方法视频| 国产v大片淫在线免费观看| 黄色 视频免费看| 亚洲七黄色美女视频| 午夜精品一区二区三区免费看| 成人三级黄色视频| 无人区码免费观看不卡| 色哟哟哟哟哟哟| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 床上黄色一级片| 法律面前人人平等表现在哪些方面| 国产爱豆传媒在线观看| 午夜福利视频1000在线观看| 亚洲av五月六月丁香网| 国产精品av久久久久免费| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| 欧美色欧美亚洲另类二区| 久久精品91蜜桃| 亚洲欧美一区二区三区黑人| 国产亚洲精品综合一区在线观看| 深夜精品福利| 国产精品永久免费网站| 成人三级黄色视频| 桃色一区二区三区在线观看| 亚洲 国产 在线| 日韩av在线大香蕉| 老司机深夜福利视频在线观看| 一二三四社区在线视频社区8| 亚洲avbb在线观看| 精品久久久久久,| 成人性生交大片免费视频hd| 久久精品91蜜桃| 久久久久久久精品吃奶| 无人区码免费观看不卡| 欧美成人免费av一区二区三区| 亚洲成av人片免费观看| 色综合亚洲欧美另类图片| 97超视频在线观看视频| 国产黄a三级三级三级人| 日韩 欧美 亚洲 中文字幕| 伊人久久大香线蕉亚洲五| 亚洲自偷自拍图片 自拍| 超碰成人久久| 亚洲国产高清在线一区二区三| 黄色 视频免费看| 日本五十路高清| 久久久久久久午夜电影| 国产精品亚洲av一区麻豆| 国产精品1区2区在线观看.| 亚洲av成人av| 很黄的视频免费| 在线十欧美十亚洲十日本专区| 国产精品久久久久久精品电影| 亚洲人成电影免费在线| 国产亚洲精品综合一区在线观看| 草草在线视频免费看| 嫁个100分男人电影在线观看| 欧美激情久久久久久爽电影| 亚洲欧美日韩卡通动漫| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月 | 嫩草影视91久久| 久久久国产成人免费| 精品不卡国产一区二区三区| 欧美黑人巨大hd| 欧美激情久久久久久爽电影| 99热只有精品国产| 国产成人av教育| 久久久水蜜桃国产精品网| 欧美一区二区精品小视频在线| 久久精品国产亚洲av香蕉五月| 日韩av在线大香蕉| 成人18禁在线播放| 99视频精品全部免费 在线 | 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| 亚洲激情在线av| 国产精华一区二区三区| 亚洲av中文字字幕乱码综合| 丁香欧美五月| 亚洲成av人片免费观看| 久久久久免费精品人妻一区二区| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 亚洲无线观看免费| 1024香蕉在线观看| 精品无人区乱码1区二区| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区| 精品久久蜜臀av无| 老汉色∧v一级毛片| 制服丝袜大香蕉在线| 91九色精品人成在线观看| 成年女人永久免费观看视频| 一区二区三区国产精品乱码| 九九热线精品视视频播放| 美女被艹到高潮喷水动态| 99在线人妻在线中文字幕| 免费在线观看日本一区| 久久久久久国产a免费观看| 啦啦啦韩国在线观看视频| 亚洲精品色激情综合| 日本一本二区三区精品| 一区福利在线观看| 精品无人区乱码1区二区| 国产伦一二天堂av在线观看| 精品久久久久久久久久免费视频| 99视频精品全部免费 在线 | 黄片大片在线免费观看| 国产激情久久老熟女| 国产三级中文精品| 久久九九热精品免费| 搡老熟女国产l中国老女人| 最新中文字幕久久久久 | 成人三级做爰电影| 国产高清视频在线播放一区| 制服丝袜大香蕉在线| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 老司机福利观看| 欧美一区二区精品小视频在线| 99久久无色码亚洲精品果冻| 一级毛片高清免费大全| 色综合亚洲欧美另类图片| 国产97色在线日韩免费| 搡老熟女国产l中国老女人| 97超视频在线观看视频| xxxwww97欧美| 亚洲欧美日韩东京热| 亚洲18禁久久av| 熟女少妇亚洲综合色aaa.| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 亚洲在线自拍视频| 久久这里只有精品中国| 欧美黄色淫秽网站| 国产三级中文精品| 亚洲色图 男人天堂 中文字幕| 国内精品一区二区在线观看| 成在线人永久免费视频| 成人欧美大片| 国产又色又爽无遮挡免费看| 老司机午夜十八禁免费视频| 人妻夜夜爽99麻豆av| a在线观看视频网站| 日本熟妇午夜| 亚洲九九香蕉| 久久久精品大字幕| 亚洲美女视频黄频| 老司机午夜十八禁免费视频| 久久精品91蜜桃| 91久久精品国产一区二区成人 | 少妇的丰满在线观看| 亚洲国产高清在线一区二区三| 欧美成人性av电影在线观看| 白带黄色成豆腐渣| 久久久久国内视频| 国内精品美女久久久久久| 久99久视频精品免费| 国产精品影院久久| 狂野欧美激情性xxxx| 国产真人三级小视频在线观看| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线| 窝窝影院91人妻| 成在线人永久免费视频| 国产毛片a区久久久久| 18美女黄网站色大片免费观看| 欧美日韩综合久久久久久 | 亚洲av成人一区二区三| 少妇裸体淫交视频免费看高清| 色老头精品视频在线观看| 欧美成人一区二区免费高清观看 | x7x7x7水蜜桃| 巨乳人妻的诱惑在线观看| 国产精品永久免费网站| 国产av不卡久久| 亚洲av成人一区二区三| 久久久久久久精品吃奶| 国产一区二区在线观看日韩 | www.熟女人妻精品国产| 长腿黑丝高跟| 色综合婷婷激情| 18禁美女被吸乳视频| 一二三四在线观看免费中文在| 午夜福利视频1000在线观看| 好男人电影高清在线观看| 欧美黄色淫秽网站| 久久这里只有精品中国| 怎么达到女性高潮| 久久中文字幕人妻熟女| 99久久99久久久精品蜜桃| 国产成人福利小说| 床上黄色一级片| 成熟少妇高潮喷水视频| 一进一出抽搐gif免费好疼| 免费搜索国产男女视频| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三| 午夜激情福利司机影院| 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 成人国产综合亚洲| 国产精品女同一区二区软件 | 悠悠久久av| 日本一二三区视频观看| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 欧美最黄视频在线播放免费| 91麻豆精品激情在线观看国产| 色综合欧美亚洲国产小说| 人人妻人人澡欧美一区二区| 三级毛片av免费| 两个人的视频大全免费| 亚洲五月婷婷丁香| 久久国产精品影院| 天天躁日日操中文字幕| 色老头精品视频在线观看| 国产黄色小视频在线观看| 国产亚洲精品综合一区在线观看| 床上黄色一级片| 精品国产乱子伦一区二区三区| 欧美日韩综合久久久久久 | 在线观看美女被高潮喷水网站 | 国产激情久久老熟女| 99精品欧美一区二区三区四区| 亚洲午夜理论影院| 舔av片在线| 成人国产综合亚洲| 精品一区二区三区视频在线 | 免费观看人在逋| 国产精品一区二区精品视频观看| 欧美日韩一级在线毛片| 美女午夜性视频免费| 制服人妻中文乱码| 最近视频中文字幕2019在线8| 色老头精品视频在线观看| 久久午夜亚洲精品久久| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久| 成年女人永久免费观看视频| 激情在线观看视频在线高清| av女优亚洲男人天堂 | 伦理电影免费视频| 女生性感内裤真人,穿戴方法视频| 免费看光身美女| 青草久久国产| 国产野战对白在线观看| 国产 一区 欧美 日韩| 亚洲狠狠婷婷综合久久图片| 国产精品98久久久久久宅男小说| 国产美女午夜福利| 久久精品夜夜夜夜夜久久蜜豆| 99热精品在线国产| 亚洲av熟女| 亚洲一区二区三区色噜噜| e午夜精品久久久久久久| 一进一出好大好爽视频| 亚洲国产日韩欧美精品在线观看 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产欧美人成| h日本视频在线播放| 成人av在线播放网站| 美女午夜性视频免费| 啦啦啦观看免费观看视频高清| 搡老妇女老女人老熟妇| 精品国产超薄肉色丝袜足j| 亚洲成a人片在线一区二区| 1024香蕉在线观看| 国产午夜精品论理片| 午夜免费激情av| 日本五十路高清| 中文在线观看免费www的网站| a级毛片a级免费在线| 婷婷亚洲欧美| bbb黄色大片| avwww免费| 免费一级毛片在线播放高清视频| 男女视频在线观看网站免费| 97碰自拍视频| 国产高清videossex| 亚洲性夜色夜夜综合| 亚洲成人免费电影在线观看| 成人鲁丝片一二三区免费| 欧美黄色片欧美黄色片| 超碰成人久久| 一级作爱视频免费观看| 少妇丰满av| 看片在线看免费视频| 嫩草影院入口| 日韩欧美国产一区二区入口| 欧美极品一区二区三区四区| 国产亚洲欧美在线一区二区| 国产精品一区二区精品视频观看| 精品无人区乱码1区二区| 1024香蕉在线观看| 国产精品99久久久久久久久| 麻豆国产av国片精品| 国产精品香港三级国产av潘金莲| 窝窝影院91人妻| 久久久久久久精品吃奶| www.自偷自拍.com| 国产久久久一区二区三区| 亚洲无线在线观看| 免费av不卡在线播放| 亚洲成人久久爱视频| av国产免费在线观看| 免费观看精品视频网站| 亚洲国产精品成人综合色| 欧美一区二区精品小视频在线| 亚洲精品乱码久久久v下载方式 | 无人区码免费观看不卡| 国产精品久久久人人做人人爽| 中文资源天堂在线| 一个人观看的视频www高清免费观看 | 亚洲成人中文字幕在线播放| 成人一区二区视频在线观看| 亚洲精华国产精华精| 2021天堂中文幕一二区在线观| 黑人欧美特级aaaaaa片| 亚洲七黄色美女视频| 老熟妇仑乱视频hdxx| 黄色丝袜av网址大全| 国产精品自产拍在线观看55亚洲| 黑人巨大精品欧美一区二区mp4| 国产精品亚洲av一区麻豆| 久久久水蜜桃国产精品网| 黄色日韩在线| 日本撒尿小便嘘嘘汇集6| 中文字幕人妻丝袜一区二区| 亚洲av五月六月丁香网| 日本撒尿小便嘘嘘汇集6| 婷婷六月久久综合丁香| 国产成人av激情在线播放| or卡值多少钱| 亚洲午夜精品一区,二区,三区| 中亚洲国语对白在线视频| 久久国产精品影院| 日本一二三区视频观看| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 国产又色又爽无遮挡免费看| 天堂影院成人在线观看| 亚洲精品美女久久久久99蜜臀| 丁香六月欧美| 制服丝袜大香蕉在线| 黄色日韩在线| av女优亚洲男人天堂 | 在线观看免费午夜福利视频| 精品久久久久久,| 中文字幕最新亚洲高清|