黃 嫄,王曉春
·綜 述·
Zeste基因增強(qiáng)子同源物基因2與腫瘤發(fā)展的研究進(jìn)展
黃 嫄,王曉春
多聚梳抑制復(fù)合體2作為一種表觀遺傳調(diào)節(jié)因子可選擇性催化組蛋白H3第27位賴氨酸三甲基化,從而誘導(dǎo)靶基因轉(zhuǎn)錄抑制。Zeste基因增強(qiáng)子同源物2(enhancer of zeste homolog 2,EZH2)是多聚梳抑制復(fù)合體2中具有酶活性的亞基,在腫瘤觸發(fā)、進(jìn)展、轉(zhuǎn)移及耐藥性方面有重要作用。EZH2與其他表觀遺傳修飾酶相互協(xié)調(diào)介導(dǎo)基因沉默,EZH2超表達(dá)是多種實(shí)體腫瘤晚期和轉(zhuǎn)移性的標(biāo)志,EZH2的表達(dá)與活性受多種腫瘤相關(guān)轉(zhuǎn)錄因子的調(diào)節(jié),各位點(diǎn)氨基酸殘基的磷酸化狀態(tài)可影響EZH2的催化活性,EZH2基因突變?cè)谘合到y(tǒng)惡性腫瘤中頻繁發(fā)生,除通過(guò)經(jīng)典作用即催化抑癌基因啟動(dòng)子區(qū)組蛋白H3第27位賴氨酸甲基化來(lái)抑制轉(zhuǎn)錄外,EZH2還具有誘導(dǎo)基因活化功能。因此,EZH2成為腫瘤治療的一個(gè)理想靶點(diǎn),其特異性抑制劑EPZ6438正處于臨床Ⅰ/Ⅱ期試驗(yàn)階段。
Zeste基因增強(qiáng)子同源物2;多聚梳抑制復(fù)合體2;腫瘤;轉(zhuǎn)錄抑制;基因活化
在真核生物中,組蛋白的轉(zhuǎn)錄后修飾在調(diào)節(jié)染色質(zhì)結(jié)構(gòu)和基因表達(dá)過(guò)程中有重要作用。這種表觀遺傳改變與遺傳學(xué)改變是有區(qū)別的,一旦發(fā)生遺傳學(xué)改變,DNA序列通常無(wú)法恢復(fù)正常,而表觀遺傳改變則可被特異性抑制劑逆轉(zhuǎn)。由于表觀遺傳異常在人類(lèi)腫瘤中很常見(jiàn),并且在腫瘤進(jìn)展中有重要作用,因此對(duì)表觀遺傳改變的研究有利于對(duì)藥物開(kāi)發(fā)和腫瘤治療[1]。
Zeste基因增強(qiáng)子同源物2(enhancer of zeste homolog 2,EZH2)是多聚梳群基因家族成員之一,EZH2蛋白在胚胎發(fā)育早期普遍表達(dá),具有維持基因轉(zhuǎn)錄抑制的作用。EZH2對(duì)細(xì)胞增殖也是必需的,其高表達(dá)導(dǎo)致細(xì)胞進(jìn)入S期。除了維持胚胎正常發(fā)育作用之外,EZH2在衰老細(xì)胞中低表達(dá),p53基因通過(guò)下調(diào)EZH2的表達(dá)而使細(xì)胞發(fā)生復(fù)制性衰老。EZH2還能增強(qiáng)原代細(xì)胞的生長(zhǎng)能力,在多種原發(fā)性腫瘤中超表達(dá)。研究顯示,EZH2在腫瘤觸發(fā)、進(jìn)展、轉(zhuǎn)移及耐藥性方面有重要作用[2]。因此,EZH2成為潛在的抗腫瘤藥物作用的靶點(diǎn)。作者對(duì)當(dāng)前EZH2的致瘤作用,EZH2蛋白表達(dá)與活性的調(diào)節(jié)機(jī)制,EZH2與癌基因信號(hào)轉(zhuǎn)導(dǎo)通路新進(jìn)展以及EZH2靶向治療及其發(fā)展?jié)摿ψ饕痪C述。
人類(lèi)EZH2基因定位于染色體7q35,全長(zhǎng)近40 kb,含20個(gè)外顯子,外顯子長(zhǎng)度從41~323 bp不等,內(nèi)含子長(zhǎng)度從150~17 700 bp不等[3],編碼一個(gè)由746個(gè)氨基酸殘基組成的組蛋白賴氨酸甲基轉(zhuǎn)移酶家族蛋白。EZH2蛋白主要的功能性結(jié)構(gòu)域有CXC結(jié)構(gòu)域(富含半胱氨酸結(jié)構(gòu)域)、SET結(jié)構(gòu)域(suvar3-9,enhancer of zeste,trithorax)、非編碼RNA結(jié)合結(jié)構(gòu)域。其中外顯子17~20編碼高度保守的SET結(jié)構(gòu)域,EZH2介導(dǎo)的轉(zhuǎn)錄抑制依賴完整的SET結(jié)構(gòu)域[4]。當(dāng)甲基供體和底物進(jìn)入SET結(jié)構(gòu)域的側(cè)面時(shí),甲基供體與底物結(jié)合并將甲基基團(tuán)轉(zhuǎn)移至底物上,轉(zhuǎn)移后與SET結(jié)構(gòu)域分離以便結(jié)合下一個(gè)甲基供體,故EZH2催化3個(gè)連續(xù)的甲基化反應(yīng),分別形成單甲基化、二甲基化和三甲基化組蛋白H3第2位賴氨酸(histone H3 at lysine2,H3K2)[5]。
多聚梳抑制復(fù)合體2(polycomb repressive complex 2,PRC2)作為重要的染色質(zhì)修飾因子,在所有生物體(無(wú)論植物、果蠅還是人類(lèi))中都是保守的[6]。人類(lèi)PRC2包含EZH2、胚胎外胚層發(fā)育蛋白(embryonic ectoderm development,EED)和Zeste基因抑制子基因12(suppressorof Zeste12,SUZ12)3個(gè)核心亞基。WD40-重復(fù)蛋白EED與EZH2的N末端殘基相互作用,含有鋅指結(jié)構(gòu)的SUZ12則介導(dǎo)EZH2與核小體的結(jié)合,其中任何一個(gè)核心亞基發(fā)生突變將影響EZH2的穩(wěn)定性與催化活性[7-8]。研究顯示,EZH2、DNA甲基轉(zhuǎn)移酶(DNA methyltransferases,DNMTs)[9]與組蛋白去乙酰化酶(histone deacetylases,HDACs)[10-11]三者在結(jié)構(gòu)和功能上都有聯(lián)系。如圖1[1],PRC2催化組蛋白H3第27位賴氨酸三甲基化(trimethylatedhistone H3 lysine 27,H3K27me3)并沉默靶基因,但若K27處于乙?;癄顟B(tài),則需要HDACs先將組蛋白去乙?;DACs通過(guò)對(duì)H3K27以及其他賴氨酸殘基包括H3K29、H3K14和H4K8去乙?;?,使賴氨酸側(cè)鏈的ε-氨基基團(tuán)暴露,易于被PRC2甲基化。在細(xì)胞分化過(guò)程中,需甲基化標(biāo)志的基因先招募PRC2至啟動(dòng)子區(qū),隨后DNMTs催化該基因CpG島發(fā)生超甲基化,使靶基因染色質(zhì)永久沉默。因此,PRC2可以與HDACs協(xié)同改變組蛋白標(biāo)志,使之從乙?;揎椶D(zhuǎn)為甲基化修飾,PRC2也能招募DNMTs使染色質(zhì)更致密。在結(jié)腸癌、前列腺癌、肝癌、肺癌、卵巢癌和乳腺癌中均發(fā)現(xiàn)EZH2、DNMTs和HDACs三者功能相關(guān)聯(lián)[12]。
圖1 表觀遺傳沉默酶協(xié)作模式
EZH2在多種腫瘤中超表達(dá)。實(shí)體瘤中EZH2超表達(dá)與腫瘤侵襲性、轉(zhuǎn)移及不良預(yù)后有關(guān)[12-16]。調(diào)節(jié)EZH2表達(dá)的轉(zhuǎn)錄因子在細(xì)胞增殖、腫瘤形成和干細(xì)胞低分化狀態(tài)維持等過(guò)程中有重要作用。如前列腺癌中,Myc基因與EZH2啟動(dòng)子結(jié)合并直接激活轉(zhuǎn)錄,且EZH2的表達(dá)水平與Myc的表達(dá)水平呈正相關(guān)[17]。而在惡性膠質(zhì)瘤腫瘤干細(xì)胞中,c-Myc表達(dá)反過(guò)來(lái)受到EZH2的正調(diào)節(jié),內(nèi)在機(jī)制尚不清楚[17]。除Myc之外,另一個(gè)細(xì)胞周期調(diào)節(jié)因子E2F也正調(diào)節(jié)EZH2轉(zhuǎn)錄[18-19];反之,EZH2對(duì)pRb-E2F通路也有重要調(diào)節(jié)作用。在乳腺癌和前列腺癌中[16,20],ANCCA(AAA+nuclear coregulator cancer associated),一種包含溴結(jié)構(gòu)域的三磷酸腺苷酶、E2F的結(jié)合蛋白,可增強(qiáng)E2F誘導(dǎo)的EZH2轉(zhuǎn)錄。
磷酸化狀態(tài)可改變EZH2的催化活性與穩(wěn)定性。Cha等[21]報(bào)道,EZH2蛋白具有一個(gè)高度保守的蛋白激酶B磷酸化位點(diǎn)——第21位絲氨酸(serine 21,S21)。蛋白激酶B催化EZH2 S21磷酸化,該位點(diǎn)磷酸化后EZH2對(duì)組蛋白H3的親和力降低,導(dǎo)致H3K27me3減少,基因轉(zhuǎn)錄去抑制。S21磷酸化對(duì)EZH2的H3K27me3非依賴性功能至關(guān)重要[21]。在雄激素非依賴性前列腺癌細(xì)胞中,pS21 EZH2是雄激素受體的轉(zhuǎn)錄共激活因子,對(duì)雄激素非依賴性生長(zhǎng)有重要作用[22]。酪氨酸激酶磷酸化EZH2第641位酪氨酸(tyrosine 641,Y641),該位點(diǎn)磷酸化后EZH2與β-轉(zhuǎn)導(dǎo)重復(fù)相容蛋白的相互作用增強(qiáng),誘導(dǎo)EZH2蛋白降解[23]。細(xì)胞周期蛋白依賴性激酶(cyclin-dependent kinase,CDK)1/2磷酸化EZH2的多個(gè)蘇氨酸位點(diǎn),包括第345位蘇氨酸(threonine 345,T345)、T416和T487[24-26]。CDK介導(dǎo)的EZH2磷酸化位點(diǎn)與效應(yīng)具有多樣性,因細(xì)胞類(lèi)型與細(xì)胞狀態(tài)而異。T345磷酸化可促進(jìn)EZH2和HOTAIR基因相互作用,而T416磷酸化則誘導(dǎo)核抑制蛋白磷酸酶1與EZH2結(jié)合,核抑制蛋白磷酸酶1可抑制蛋白磷酸酶1對(duì)EZH2的去磷酸化作用。T345和T416磷酸化均對(duì)EZH2招募至特異性靶基因座至關(guān)重要[24,26]。CDK1磷酸化 T487,誘導(dǎo) EZH2從PRC2解離,導(dǎo)致EZH2失活、腫瘤細(xì)胞的浸潤(rùn)性降低[25]。與之相反,T345磷酸化則促進(jìn)細(xì)胞遷移與增殖[27]。EZH2的 T345和 T487磷酸化后,誘導(dǎo)EZH2發(fā)生泛素化,蛋白質(zhì)降解[28]。
2010 年,腫瘤基因組測(cè)序確定了EZH2雜合型體細(xì)胞錯(cuò)義突變?cè)跒V泡性淋巴瘤中發(fā)生率為7%,而在生發(fā)中心B細(xì)胞型彌漫性大B細(xì)胞淋巴瘤中發(fā)生率高達(dá)22%[29]。突變分別位于EZH2的SET結(jié)構(gòu)域第641位酪氨酸(Y641N、F、S或H)、第677位丙氨酸突變?yōu)楦拾彼?alanine 677 glycin,A677G)和第687位丙氨酸突變?yōu)槔i氨酸(alanine 687 valine,A687V)[29-31]。與EZH2超表達(dá)不同,EZH2基因突變導(dǎo)致H3K27me3豐度在全基因組范圍內(nèi)顯著上升[32]。此種功能獲得性突變的原理是:野生型EZH2催化H3K27單甲基化的活性較強(qiáng),但其在后續(xù)的二甲基化、三甲基化反應(yīng)中催化活性較弱;與之相反,Y641突變后EZH2修飾未甲基化組蛋白的能力減弱,而修飾單甲基化、二甲基化組蛋白的能力增強(qiáng)[29,33]。因此,在雜合型突變中,EZH2催化3次甲基化的能力均增強(qiáng)。A687V與Y641突變效果類(lèi)似,而發(fā)生A677G突變的EZH2催化組蛋白3次甲基化的能力都增強(qiáng)[30-31]。在B細(xì)胞發(fā)育過(guò)程中,EZH2在生發(fā)中心細(xì)胞內(nèi)表達(dá)并建立一個(gè)抑制性二價(jià)基因座特異性染色質(zhì)環(huán)境,使細(xì)胞周期檢查點(diǎn)與分化因子基因沉默,B細(xì)胞生長(zhǎng)分裂;B細(xì)胞成熟后,EZH2失活,細(xì)胞周期檢查點(diǎn)與分化因子基因重新活化,B細(xì)胞離開(kāi)生發(fā)中心,分化為漿細(xì)胞并停止分裂。在生發(fā)中心的B細(xì)胞若發(fā)生Y641突變,H3K27三甲基化增強(qiáng),導(dǎo)致EZH2靶基因的沉默放大,B細(xì)胞分化阻滯,細(xì)胞增殖增強(qiáng),促進(jìn)腫瘤形成[33]。
與在淋巴瘤中的情況相反,在T細(xì)胞型急性淋巴細(xì)胞白血病與髓系惡性腫瘤中,EZH2基因發(fā)生了一系列錯(cuò)義突變、無(wú)義突變和框移突變[34-36]。這些基因改變常常是純合性的,分布在整個(gè)基因范圍內(nèi),通常會(huì)導(dǎo)致EZH2失去組蛋白甲基轉(zhuǎn)移酶活性。因此,含有EZH2基因失活突變的細(xì)胞系內(nèi)H3K27me3水平整體下降。在T細(xì)胞型急性淋巴細(xì)胞白血病中,PRC2通常與該病的主要驅(qū)動(dòng)因子NOTCH1基因競(jìng)爭(zhēng)特異性靶基因,EZH2發(fā)生失活性突變后間接促進(jìn)了NOTCH1驅(qū)動(dòng)的癌基因活化[36]。在髓樣腫瘤中,EZH2基因突變?cè)诠撬柙錾惓>C合征與骨髓增生性腫瘤中更常見(jiàn),與不良轉(zhuǎn)歸有關(guān),而在急性粒細(xì)胞性白血病中罕見(jiàn)[34,37-39]。在裸鼠模型中發(fā)現(xiàn),EZH2發(fā)生失活性突變后導(dǎo)致H3K27me3銳減,癌基因如Hmga2、Pbx3、Lmo1和Myc靶基因轉(zhuǎn)錄抑制,導(dǎo)致骨髓增生異常綜合征或骨髓增生性腫瘤樣表型[40]。
EZH2突變對(duì)H3K27me3的影響截然不同,說(shuō)明EZH2的靶基因因組織類(lèi)型而異,同時(shí)顯示出組蛋白標(biāo)志的平衡對(duì)細(xì)胞內(nèi)穩(wěn)態(tài)的重要性。此外,盡管抑制EZH2在淋巴瘤中具有治療作用,在其他類(lèi)型細(xì)胞中卻可能是有害的,所以在開(kāi)展此種表觀遺傳治療之前應(yīng)進(jìn)行綜合性臨床前機(jī)制的研究。
EZH2在腫瘤細(xì)胞增殖、遷移、浸潤(rùn)和上皮間質(zhì)轉(zhuǎn)化中有重要作用,這些過(guò)程都與腫瘤發(fā)生、進(jìn)展和轉(zhuǎn)移有關(guān)。更重要的是,EZH2與干細(xì)胞尤其是腫瘤干細(xì)胞特性和腫瘤起始細(xì)胞功能密切相關(guān)。到目前為止,已經(jīng)發(fā)現(xiàn)了多種EZH2靶基因,其中大部分是抑癌基因。子宮內(nèi)膜癌中,抑癌基因APC受EZH2的調(diào)節(jié):YY1基因招募EZH2至APC啟動(dòng)子,EZH2三甲基化啟動(dòng)子區(qū)H3K27導(dǎo)致APC表觀沉默[41]。另一個(gè)靶基因是p57,在卵巢癌中,抑制EZH2可上調(diào)p57的表達(dá)水平,降低卵巢癌細(xì)胞的增殖和轉(zhuǎn)移能力[15]。CDK抑制因子1C編碼腫瘤抑制蛋白p57KIP2。在多種乳腺癌細(xì)胞系,CDK抑制因子表達(dá)減少與EZH2超表達(dá)及H3K27me3增加有關(guān)。跨膜受體E-鈣黏蛋白維持上皮細(xì)胞的黏附性和完整性,其下調(diào)可增強(qiáng)腫瘤的侵襲性。EZH2可抑制E-鈣黏蛋白的表達(dá),從而導(dǎo)致乳腺癌、胰腺癌、前列腺癌及卵巢癌的浸潤(rùn)與轉(zhuǎn)移[42-43]。
除基因抑制功能外,研究顯示EZH2也有基因活化的功能[22,44-46]。Xu等[22]報(bào)道,在去勢(shì)抵抗性前列腺癌中發(fā)現(xiàn)一組EZH2相關(guān)基因,它們不與PRC2亞基SUZ12結(jié)合,也不發(fā)生H3K27三甲基化。這些基因大多在EZH2敲除后下調(diào)。提示EZH2是這些基因的激活因子,而且這一作用不依賴PRC2,還發(fā)現(xiàn)這種功能轉(zhuǎn)變依賴EZH2的S21磷酸化和完整的甲基轉(zhuǎn)移酶結(jié)構(gòu)域。EZH2可能通過(guò)甲基化雄激素受體或其他相關(guān)蛋白而介導(dǎo)轉(zhuǎn)錄激活,這是EZH2的一個(gè)新的功能——非組蛋白甲基化。
乳腺癌中,EZH2通過(guò)2種不同的方式誘導(dǎo)基因轉(zhuǎn)錄,取決于細(xì)胞內(nèi)雌激素受體(estrogen receptor,ER)的水平。在ER-陰性基底細(xì)胞樣乳腺癌細(xì)胞MDA-MB-231中,EZH2與核因子-κB的2個(gè)亞基RelA及RelB形成一個(gè)三元復(fù)合體,組成性激活核因子-κB靶基因如白介素-6和腫瘤壞死因子的轉(zhuǎn)錄[44]。在ER-陽(yáng)性管腔型乳腺癌MCF-7細(xì)胞中,EZH2在cyclin B1與c-Myc啟動(dòng)子區(qū)作為一個(gè)橋梁物理性連接ERα與Wnt信號(hào)通路的2個(gè)元件——E-鈣黏蛋白與T細(xì)胞因子,反式激活雌激素靶基因與Wnt信號(hào)通路,促進(jìn)細(xì)胞周期進(jìn)展[45-46]。EZH2的反式激活結(jié)構(gòu)域Ⅱ位于N末端,是轉(zhuǎn)錄因子與轉(zhuǎn)錄中介體復(fù)合物連結(jié)的平臺(tái),通過(guò)與RNA聚合酶Ⅱ相互作用并誘導(dǎo)轉(zhuǎn)錄。EZH2對(duì)基因的反式激活作用不依賴PRC2的其他亞基,也不依賴SET結(jié)構(gòu)域與甲基轉(zhuǎn)移酶活性。在2種乳腺癌中,雖然EZH2都具有轉(zhuǎn)錄激活功能,但機(jī)制不同。
由于EZH2是腫瘤細(xì)胞增殖、遷移、浸潤(rùn)和干細(xì)胞特性保持的重要調(diào)節(jié)因子,因此EZH2是腫瘤治療的一個(gè)理想靶點(diǎn)。DZNep(3-deazaneplanocin A)是一種s腺苷同型半胱氨酸(S-adenosylhomocysteine,SAH)水解酶抑制劑,SAH參與蛋氨酸循環(huán)[47]。如圖2[48],DZNep抑制SAH水解酶,引起SAH水平升高,通過(guò)旁路途徑阻斷蛋氨酸循環(huán),間接抑制PRC2的活性,下調(diào)H3K27me3水平,重新活化PRC2的靶基因。DZNep誘導(dǎo)腫瘤細(xì)胞發(fā)生凋亡,但對(duì)正常細(xì)胞沒(méi)有影響[47]。為研究EZH2在腫瘤中的作用,該藥被廣泛用于各種腫瘤的臨床前和體外研究,并已證實(shí)能有效抑制細(xì)胞增殖和腫瘤生長(zhǎng)[49-51]。DZNep對(duì)乳腺癌易感蛋白1缺失型乳腺癌細(xì)胞的殺傷效果是乳腺癌易感蛋白1成熟型乳腺癌細(xì)胞的20倍,內(nèi)在機(jī)制尚不清楚[52]。
圖2 DZNep作為SAH水解酶抑制劑可間接降低EZH2和H3K27me3水平
開(kāi)發(fā)的幾種針對(duì)EZH2的高度選擇性小分子抑制劑,如GSK126、EPZ005678、EI1、和EPZ6438[53-56]。這些抑制劑在淋巴瘤患者中對(duì)含Y641突變型EZH2的作用比對(duì)野生型EHZ2的作用大。當(dāng)前,除EPZ6438正在B細(xì)胞淋巴瘤和晚期實(shí)體瘤患者中進(jìn)行臨床Ⅰ/Ⅱ期試驗(yàn)外,其余均處于臨床前實(shí)驗(yàn)階段。EZH2抑制后,腫瘤細(xì)胞對(duì)其他抗癌藥物敏感性提高,如HDACs抑制劑、伊馬替尼、吉西他濱、紫杉醇、順鉑,提示聯(lián)合用藥可能療效更好。
除特異性EZH2抑制劑外,一些飲食性天然成分也可以下調(diào)EZH2,包括ω-3多不飽和脂肪酸、姜黃素和表沒(méi)食子兒茶素沒(méi)食子酸酯。Dmiri等[57]報(bào)道,ω-3多不飽和脂肪酸可誘導(dǎo)EZH2蛋白泛素化,發(fā)生蛋白酶體介導(dǎo)的EZH2蛋白降解,下調(diào)EZH2蛋白在乳腺癌細(xì)胞中的表達(dá)與活性。ω-3多不飽和脂肪酸可以使被EZH2沉默的抑癌基因重新表達(dá),如E-鈣黏蛋白與胰島素樣生長(zhǎng)因子結(jié)合蛋白,最終降低乳腺癌的浸潤(rùn)性。姜黃素是姜黃根粉末中的一種天然成分,可調(diào)節(jié)EZH2水平并誘導(dǎo)G1期阻滯,從而抑制MDA-MD-435乳腺癌細(xì)胞增殖。分裂原活化蛋白激酶通路參與姜黃素介導(dǎo)的EZH2水平下調(diào),有助于姜黃素的抗乳腺癌細(xì)胞增殖效應(yīng)[58]。研究顯示,一種主要的綠茶多酚表沒(méi)食子兒茶素沒(méi)食子酸酯,在皮膚癌細(xì)胞中誘導(dǎo)EZH2發(fā)生蛋白酶體依賴性降解,且在與DZNep聯(lián)合用藥時(shí)抗癌效果更好[59]。
如圖3[2],EZH2的經(jīng)典作用是甲基化H3K27來(lái)介導(dǎo)基因沉默;但研究顯示EZH2甲基化底物不限于組蛋白[46],即EZH2具有甲基化非組蛋白底物從而激活基因轉(zhuǎn)錄的作用;此外,EZH2還可通過(guò)非甲基化作用直接反式激活基因轉(zhuǎn)錄,即EZH2具有甲基轉(zhuǎn)移酶非依賴性功能[47-48]。這些經(jīng)典作用以外的功能在腫瘤發(fā)生時(shí)有重要作用。特異性靶向EZH2抑制劑通過(guò)結(jié)合至EZH2催化活性位點(diǎn)直接抑制其酶活性,從而使組蛋白的甲基化水平整體性降低,其中EPZ6438正在B細(xì)胞淋巴瘤和晚期實(shí)體瘤患者中進(jìn)行臨床Ⅰ/Ⅱ期試驗(yàn),但該類(lèi)小分子抑制劑具有潛在的不良反應(yīng)。EZH2在維持細(xì)胞正常狀態(tài)中也有重要作用,因此未來(lái)應(yīng)重點(diǎn)解決如何在某種特定腫瘤細(xì)胞或某個(gè)特定微環(huán)境中有效控制EZH2表達(dá)的調(diào)節(jié)環(huán)路。
圖3 EZH2在人類(lèi)腫瘤中的多種作用
【參考文獻(xiàn)】
[1]Tan JZ,Yan Y,Wang XX,et al.EZH2:biology,disease,and structure-based drug discovery[J].Acta Pharmacol Sin,2014,35(2):161-174.
[2]Yamaguchi H,Hung MC.Regulation and role of EZH2 in cancer[J].Cancer Res Treat,2014,46(3):209-222.
[3]Cardoso C,Mignon C,Hetet G,et al.The human EZH2 gene: genomic organisation and revised mapping in 7q35 with in the critical region for malignant myeloid disorders[J].Eur J Hum Genet,2000,8(3):174-180.
[4]Copeland RA,Solomon ME,Richon VM.Protein methyltransferases as a target class for drug discovery[J].Nat Rev Drug Discov,2009,8(9):724-732.
[5]Xiao B,Wilson JR,Gamblin SJ.SET domains and histone methylation[J].Curr Opin Struct Biol,2003,13(6):699-705.
[6]O’Meara MM,Simon JA.Inner workings and regulatory inputs that control Polycomb repressive complex 2[J].Chromosoma,2012,121(3):221-234.
[7]Montgomery ND,Yee D,Montgomery SA,et al.Molecular and functional mapping of EED motifs required for PRC2-dependent histoneme thylation[J].J Mol Biol,2007,374 (5):1145-1157.
[8]Pasini D,Bracken AP,Jensen MR,et al.Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity[J].EMBO J,2004,23(20):4061-4071.
[9]Viré E,Brenner C,Deplus R,et al.The Polycomb group protein EZH2 directly controls DNA methylation[J].Nature,2006,439(7078):871-874.
[10]Wang H,Wang L,Erdjument-Bromage H,et al.Role of histone H2A ubiquitination in Polycomb silencing[J].Nature,2004,431(7010):873-878.
[11]van der Vlag J,Otte AP.Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation[J].Nat Genet,1999,23(4):474-478.
[12]Lee HW,Choe M.Expression of EZH2 in renal cell carcinoma as a novelprognostic marker[J].Pathol Int,2012,62 (11):735-741.
[13]Deb G,Thakur VS,Gupta S.Multifaceted role of EZH2 in breast and prostate tumorigenesis:epigenetics and beyond [J].Epigenetics,2013,8(5):464-476.
[14]Chen Y,Xie D,Yin Li W,et al.RNAi targeting EZH2 inhibits tumor growth and liver metastasis of pancreatic cancer in vivo[J].Cancer Lett,2010,297(1):109-116.
[15]Guo J,Cai J,Yu L,et al.EZH2 regulates expression of p57 and contributes to progression of ovarian cancerin vitro and in vivo[J].Cancer Sci,2011,102(3):530-539.
[16]Kalashnikova EV,Revenko AS,Gemo AT,et al.ANCCA/ ATAD2 overexpression identifies breast cancer patients with poor prognosis,acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2[J].Cancer Res,2010,70(22):9402-9412.
[17]Koh CM,Iwata T,Zheng Q,et al.Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms[J].Oncotarget,2011,2(9):669-683.
[18]Lu C,Han HD,Mangala LS,et al.Regulation of tumor angiogenesis by EZH2[J].Cancer Cell,2010,18(2):185-197.
[19]Bracken AP,Pasini D,Capra M,et al.EZH2 is downstream of the pRB-E2F pathway,essential for proliferation and amplified in cancer[J].EMBO J,2003,22(20):5323-5335.
[20]Duan Z,Zou JX,Yang P,et al.Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ ATAD2 in the prostate Via MLL histone methylase complex[J].Prostate,2013,73(5):455-466.
[21]Cha TL,Zhou BP,Xia W,et al.Akt-mediated phosphorylation of EZH2 suppresses methylatio n of lysine 27 in histone H3[J].Science,2005,310(5746):306-310.
[22]Xu K,Wu ZJ,Groner AC,et al.EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent[J].Science,2012,338(6113):1465-1469.
[23]Sahasrabuddhe AA,Chen X,Chung F,et al.Oncogenic Y641 mutations in EZH2 prevent Jak2/β-TrCP-mediated degradation[J].Oncogene,2015,34(4):445-454.
[24]Kaneko S,Li G,Son J,et al.Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA[J].Genes Dev,2010,24(23):2615-2620.
[25]Wei Y,Chen YH,Li LY,et al.CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells[J].Nat Cell Biol,2011,13(1):87-94.
[26]Minnebo N,G?rnemann J,O’Connell N,et al.NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes[J].Nucleic Acids Res,2013,41(2):842-854.
[27]Chen S,Bohrer LR,Rai AN,et al.Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2[J].Nat Cell Biol,2010,12(11):1108-1114.
[28]Wu SC,Zhang Y.Cyclin-dependent kinase 1(CDK1)-mediated phosphorylation of enhancer of zeste2(Ezh2)regulates its stability[J].J Biol Chem,2011,286(32):28511-28519.
[29]Morin RD,Johnson NA,Severson TM,et al.Somatic mutations altering EZH2(Tyr641)in follicular and diffuse large B-cell lymphomas of germinal-center origin[J].Nat Genet,2010,42(2):181-185.
[30]McCabe MT,Graves AP,Ganji G,et al.Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27(H3K27)[J].Proc Natl Acad Sci USA,2012,109 (8):2989-2994.
[31]Majer CR,Jin L,Scott MP,et al.A687V EZH2 is a gain-offunction mutation found in lymphoma patients[J].FEBS Lett,2012,586(19):3448-3451.
[32]Béguelin W,Popovic R,Teater M,et al.EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation[J].Cancer Cell,2013,23 (5):677-692.
[33]Sneeringer CJ,Scott MP,Kuntz KW,et al.Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3(H3K27) in human B-cell lymphomas[J].Proc Natl Acad Sci USA,2010,107(49):20980-20985.
[34]Ernst T,Chase AJ,Score J,et al.Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders[J].Nat Genet,2010,42(8):722-726.
[35]Nikoloski G,Langemeijer SM,Kuiper RP,et al.Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes[J].Nat Genet,2010,42(8):665-667.
[36]Ntziachristos P,Tsirigos A,Van Vlierberghe P,et al.Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia[J].Nat Med,2012,18 (2):298-301.
[37]Abdel-Wahab O,Pardanani A,Patel J,et al.Concomit antanalysis of EZH2 and ASXL1 mutations in myelofibrosis,chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms[J].Leukemia,2011,25(7):1200-1202.
[38]Bejar R,Stevenson K,Abdel-Wahab O,et al.Clinical effect of point mutations in myelodysplastic syndromes[J].N Engl J Med,2011,364(26):2496-2506.
[39]Patel JP,G?nen M,F(xiàn)igueroa ME,et al.Prognostic relevance of integrated genetic profiling in acute myeloid leukemia[J].N Engl J Med,2012,366(12):1079-1089.
[40]Muto T,Sashida G,Oshima M,et al.Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders[J].J Exp Med,2013,210(12):2627-2639.
[41]Yang Y,Zhou L,Lu L,et al.A novel miR-193a-5p-YY1-APC regulatory axis in human endometrioid endometrial adenocarcinoma[J].Oncogene,2013,32(29):3432-3442.
[42]Yoo KH,Hennighausen L.EZH2 methyltransferase and H3K27 methylation in breast cancer[J].Int J Biol Sci,2012,8(1): 59-65.
[43]Toll AD,Dasgupta A,Potoczek M,et al.Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma[J].Hum Pathol,2010,41(9):1205-1209.
[44]Lee ST,Li Z,Wu Z,et al.Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers [J].Mol Cell,2011,43(5):798-810.
[45]Shi B,Liang J,Yang X,et al.Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells[J].Mol Cell Biol,2007,27(14): 5105-5119.
[46]Jung HY,Jun S,Lee M,et al.PAF and EZH2 induce Wnt/ β-catenin signaling hyperactivation[J].Mol Cell,2013,52 (2):193-205.
[47]Tan J,Yang X,Zhuang L,et al.Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells[J].Genes Dev,2007,21(9):1050-1063.
[48]Chase A,Cross NC.Aberrations of EZH2 in cancer[J]. Clin Cancer Res,2011,17(9):2613-2618.
[49]Suvà ML,Riggi N,Janiszewska M,et al.EZH2 is essential for glioblastoma cancer stem cell maintenance[J].Cancer Res,2009,69(24):9211-9218.
[50]Wu Z,Lee ST,Qiao Y,et al.Polycomb protein EZH2 regulates cancer cell fat edecision in response to DNA damage [J].Cell Death Differ,2011,18(11):1771-1779.
[51]Sun F,Chan E,Wu Z,et al.Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells[J].Mol Cancer Ther,2009,8(12):3191-3202.
[52]Puppe J,Drost R,Liu X,et al.BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A[J].Breast Cancer Res,2009,11(4):R63.
[53]McCabe MT,Ott HM,Ganji G,et al.EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations[J].Nature,2012,492(7427):108-112.
[54]Knutson SK,Wigle TJ,Warholic NM,et al.A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphomacells[J].Nat Chem Biol,2012,8(11):890-896.
[55]Knutson SK,Kawano S,Minoshima Y,et al.Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma[J].Mol Cancer Ther,2014,13(4):842-854.
[56]Qi W,Chan H,Teng L,et al.Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation [J].Proc Natl Acad Sci USA,2012,109(52):21360-21365.
[57]Dimri M,Bommi PV,Sahasrabuddhe AA,et al.Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells[J].Carcinogenesis,2010,31 (3):489-495.
[58]Hua WF,F(xiàn)u YS,Liao YJ,et al.Curcumin induces downregulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells[J].Eur J Pharmacol,2010,637(1/3):16-21.
[59]Nandakumar V,Vaid M,Katiyar SK.(-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes,Cip1/p21 and p16INK4a,by reducing DNA methylation and increasing histones acetylation in human skin cance rcells[J].Carcinogenesis,2011,32(4):537-544.
Progress on enhancer of zeste homolog 2 gene and tumor development
HUANG Yuan1,WANG Xiaochun2
(1.Department of Clinical Laboratory,the First Hospital of Xi’an,Xi’an Shanxi 710002,China;2.Department of Laboratory,Medical School of Xiangya,Central South University,Changsha Hunan 410013,China)
Polycomb repressive complex 2(PRC2)is the epigenetic regulator that induces histone H3 lysine 27 methylation(H3K27me3)and silences specific gene transcription.Enhancer of zeste homolog 2(EZH2)is an enzymatic subunit of PRC2,and evidence shows that EZH2 plays an essential role in cancer initiation,development,progression,metastasis,and drug resistance.The EZH2 histone methyltransferase usually cooperates with other epigenetic silencing enzymes.In solid tumors,overexpression of EZH2 is associated with aggressive biology,metastasis,and poor clinical outcome.EZH2 expression is indeed regulated by various oncogenic transcription factors.EZH2 activity and stability are regulated by various phosphorylated state of each phosphorylation site.EZH2 gene mutations occur frequently in hematological malignances.In addition to its role as a transcriptional repressor,several studies have shown that EZH2 may also function in target gene activation. As a result,EZH2 is considered a potential drug target.Currently,its highly selective small molecule inhibitors EPZ-6438 is being tested in phaseⅠ/Ⅱclinical trials.
Enhancer of zeste homolog 2(EZH2);Polycomb repressive complex 2 (PRC2);Neoplasms;Transcriptional repression;Gene activation
Q71;R73
A
2095-3097(2016)06-0370-06
10.3969/j.issn.2095-3097.2016.06.014
2016-01-19 本文編輯:徐海琴)
湖南省科學(xué)技術(shù)廳科技計(jì)劃一般項(xiàng)目社會(huì)發(fā)展支撐計(jì)劃(2014SK3102)
710002陜西西安,西安市第一醫(yī)院檢驗(yàn)科(黃 嫄);410013湖南長(zhǎng)沙,中南大學(xué)湘雅醫(yī)學(xué)院檢驗(yàn)系(王曉春)