• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    2016-12-27 01:08:19GopCHAKRABORTYREJEESHALBERT
    Defence Technology 2016年6期

    Gop CHAKRABORTY,R.REJEESH,S.K.ALBERT

    aMaterials Technology Division,Indira Gandhi Centre for Atomic Research,Kalpakkam,603102,India

    bNational Institute of Technology,Surathkal,India

    Study on hydrogen assisted cracking susceptibility of HSLA steel by implant test

    Gopa CHAKRABORTYa,*,R.REJEESHb,S.K.ALBERTa

    aMaterials Technology Division,Indira Gandhi Centre for Atomic Research,Kalpakkam,603102,India

    bNational Institute of Technology,Surathkal,India

    DMR-249A is an indigenously developed high strength low alloy steel for Indian ship building industry for making ship-hull and is extensively used in the construction of war ships and submarines.Welding electrodes conforming to SFA 5.5AWS E8018 C1 has been indigenously developed for welding of this steel using shielded metal arc welding process.In the present study,susceptibility to hydrogen assisted cracking of DMR-249A steel welds made using this electrode has been assessed using implant test.Implant tests were conducted using this electrode at two different levels of diffusible hydrogen,measured using gas chromatography technique.It is observed that both the steel and the welding consumable are not susceptible to hydrogen assisted cracking even with a high diffusible hydrogen level of 9 mL/100g of weld metal.In implant tests,specimen did not fracture even after loading to stress levels higher than the yield strength of the base metal.The good resistance of this steel and the welding consumable,even with high levels of diffusible hydrogen,is attributed to absence of a susceptible microstructure in both the weld metal and heat affected zone.Hence,this study shows that,in the absence of a susceptible microstructure,hydrogen assisted cracking is unlikely to occur even if hydrogen level is high.It also confirms that in welding of DMR-249A with indigenously developed E8018 C1 electrode,hydrogen assisted cracking is not a concern and no preheating is required to avoid it during welding.

    HSLA steel;Hydrogen assisted cracking;Diffusible hydrogen;Implant test;Lower critical stress

    1.Introduction

    Microalloyed high strength low alloy(HSLA)steels containing low carbon and small additions of Nb,V,Ti exhibit an outstanding combination of high strength,resistance to brittle fracture and good weldability[1].DMR-249A is a low carbon HSLA steel with micro additions of Nb,V andTi,indigenously developed for Indian ship-building industries and is being used in the construction of war ships and submarines[2].Shielded metal arc welding(SMAW)is one of the major welding processes employed by shipping industries.Complex dynamic loading,extreme temperature conditions during service together with residual stresses generated in the weld due to fit up and fabrication can make these weld joints susceptible to brittle fracture in service[3].The presence of undetected cracks caused by hydrogen assisted cracking(HAC)during fabrication can further assist brittle fracture in service.Hence,there is a need to assess the susceptibility of these welds to HAC and ensure that there is no risk of HAC during fabrication of naval structures using this steel and consumables[4].

    Earlier studies[5]have shown that the conditions for HAC to occur in steel welds are:presence of diffusible hydrogen(HD), residual stress and susceptible microstructure in the weld and temperature in the range of ambient to 200°C.In this regard, martensiticmicrostructurewithhighhardnessismostsusceptible and ferritic microstructure with low hardness is least susceptible. Hence,duringwelding,effortsaremadetoreduceriskofHACby avoiding development of a susceptible microstructure and minimizing the hydrogen levels in welding.The probability of havingasusceptiblemicrostructureintheHAZorweldisassessed fromthecompositionofthebasemetalandweldmetal,heatinput and preheating(which will reduce the cooling rate of the weld) chosen for welding[6].In order to reduce hydrogen level,low hydrogen welding consumables,proper baking of the consumables to remove moisture content in the consumables and appropriate preheating or preheating+post heating conditionsthat would provide more time for hydrogen to diffuse out at high temperature are chosen.For HSLA steels like DMR-249A,the hardenability is very low and the as-welded microstructure is ferritic and hence susceptibility to HAC is expected to be low. However,susceptibility of a weld to HAC can be quantified from implanttestintermsoflowercriticalstress(LCS),thestressbelow whichthewelddoesnotfractureduringthetest,andinthepresent study this is attempted for welds of DMR-249A steel made with indigenously developed consumables.

    In order to achieve two different levels of hydrogen in the weld metals,welds for implant tests were made both with baked electrodes and unbaked electrodes.Baking brings down the moisture content in the flux coating which in turn reduces the diffusible hydrogen content in the welds.Hence,during fabrication using low hydrogen welding consumables,they are baked prior to use as per the instruction provided by manufactures.In the present study,implant tests were conducted using electrodes with and without baking to produce welds with different levels of diffusible hydrogen during implant testing.Diffusible hydrogen levels in electrodes were measured using thermal conductivity based gas chromatography.

    2.Experimental

    DMR-249A is a low carbon(C:0.09,Mn:1.14,Si:0.18, Ni:0.62,Al:0.026,Nb:0.039,V:0.02,Ti:0.02,S:0.006,P:0.14, N:56 ppm)HSLA steel with minimum yield strength and tensile strength of 390 MPa and 510 Mpa,respectively.AWS E8018 C1 is a basic coated low hydrogen electrode.Nominal chemical composition of the electrode(Ys:483 MPa,UTS: 552 MPa)is given in Table 1.

    2.1.Measurement of diffusible hydrogen content in the weld

    For diffusible hydrogen measurement,DMR-249A steel samplesarefabricatedasperISO3690specification.Thespecimen of size 30 mm×15 mm×10 mm is fixed in a copper jig with run-on and run-off pieces each of size 40 mm×15 mm×10 mm. Beadonplateweldingwascarriedoutwith3.15 mmdiametergrade SFA5.5AWSE8018C1electrode.Weldingparametersusedforthe weldingare:current–110A,voltage–23V,weldingtime–~30 s, weldinglength–~70 mm.Approximateheatinputcorresponding to the welding parameters is~1100 J/mm.Diffusible hydrogen measurementswerecarriedoutforthreedifferentconditionsofthe electrodes:(1)baking the electrode at 450°C for 4 hr and maintaining the electrode temperature at 150°C after baking prior to welding;(2)baking the electrode at 150°C for 4 hr prior to welding;and(3)without any baking.It is to be noted here that the normalpracticeofweldingistobaketheelectrodepriortowelding, which gives a minimum level of diffusible hydrogen.However,in the present study diffusible hydrogen in the electrodes in the as-receivedcondition(nobaking)aswellasintheelectrodesbaked at lower temperature was also measured.The objective was to prepare implant test specimens with different levels of diffusible hydrogen in the welds using these electrodes.Immediately after completion of the welding,the specimens for diffusible hydrogen measurement were immersed in ice cold water for 5 s and kept inside liquid nitrogen to cool to subzero temperature until they are taken out for hydrogen extraction and measurement.

    Fig.1.Schematic diagram of implant test specimen.

    The HE_GCTCD set up used for diffusible hydrogen measurement consists of a diffusible hydrogen collection chamber,a heater to heat the chamber and a gas chromatograph (GC).The detail of HE_GCTCD set up and diffusible hydrogen measurement technique is provided elsewhere[7].The specimen iskeptinsidethechamberat400°Cfor30minutesforextraction ofdiffusiblehydrogenfromthetestspecimen.Hydrogencollected inthechamberistransportedtoaGCwithathermalconductivity detectorusingArascarriergasandthesignalisrecorded.Priorto measurement,GCiscalibratedusingknownvolumesofhydrogen injected into the GC and from this,the volume of hydrogen evolved from the weld specimen and collected in the chamber is estimated.Usingtheweightofthedepositedmetalintheweld,the volumeofdiffusiblehydrogeniscalculatedinmillilitersper100g of deposited weld metal.For each condition,three tests were performed and average of the data is reported.

    2.2.Implant test

    Fig.1 shows the schematic diagram of implant specimen and base plate,prepared as per Doc.IIW-802 guidelines[8].The implant testing machine is a computer controlled and mechanically operated machine along with a load-cell attached to it to display the load and time duration during the testing[8].The specimen assembly consists of a base plate with a hole,into which implant specimen is inserted in such a way that the top surface of the implant specimen and base plate are at the same level.Single pass bead on plate welding was made on this specimen assembly using the test electrode and employing the same welding parameters used for making the specimens for diffusible hydrogen measurement in such a way that the weld bead passes over the implant specimen fusing its top surfacecompletely with the base plate.Two separate sets of test were conducted using the specimens prepared with baked(at 450°C for 4 hr)and unbaked electrodes.A thermocouple was attached to the base plate to monitor the temperature and loading was done when the assembly cools down to 100°C.A series of tests with first specimen loaded at 1000 kg were conducted.Subsequently,loading was increased to 2000 kg in steps of 200 kg and later on in steps of 100 kg until failure of the sample.Two tests were repeated for each loading condition.After implant test,selected samples were sectioned to observe for micro cracks.The samples were sliced,metallographically polished and etched with 2%nital solution to study under optical microscope.Microhardness measurements were performed on base metal,HAZ and weld metal at 500 g load.

    Table 1 Chemical composition(Wt%)of weld metal.

    Fig.2.Schematic diagram of(a)notch tensile test and(b)tensile test specimen.

    2.3.Notch tensile test and impact tests of simulated HAZ specimens

    Implant test specimens contain notch in the HAZ produced by the weld.Hence,in order to compare the LCS with notch tensile strengthoftheHAZ,notchtensiletestsoftheHAZwereconducted. For this purpose,HAZ was simulated on a plate of size 100 mm×150 mm×10 mm by heating up to 1080°C and then coolinginair,basedonHAZmicrostructureobservedfromimplant samples and available literature reference for this steel[9].Notch tensilesampleswerefabricated(Fig.2(a))fromthesimulatedHAZ and tested in tensile testing machine under 10-4/s strain rate.For comparisonpurpose,tensiletestingofthebasemetal(Fig.2(b))was also done at similar strain rate.Standard Charpy“V”notch impact testing samples were fabricated from the simulated HAZ material andimpacttestingwasdoneatroomtemperature.Fracturesurface ofthefailedsamplesaftertensileandCharpytestingwasobserved under scanning electron microscope(SEM).

    3.Results

    The HE_GCTCD data indicate that diffusible hydrogen(HD) content in the welding consumable,after baking at 450°C/4h, is 3.1 mL/100 g of weld metal.This is certainly a low value of diffusible hydrogen,and as per IIW and AWS classifications, this electrode comes under very low hydrogen category of electrode[10–12].Results of the HDmeasurement for the electrode without any baking is 9.6 mL/100 g of weld metal and the same for baking at 150°C is 8.3 mL/100 g of weld metal.Thus,by altering the baking conditions of the electrodes,one can get different levels of HDcontents for the same batch of electrodes. This enables carrying out implant tests using electrodes differing only in their HDcontent and determining LCS at these levels of HDcontents for the same consumables and base materials.

    As mentioned earlier,implant test was carried out for two sets of welding prepared with baked(450°C)and unbaked electrode. The tests were conducted in the range of 1000 kg(equivalent stress:205 MPa)to 2000 kg(410 MPa)load in steps of 200 kg and above 2000 kg;load was increased up to 2400 kg(490 MPa) in a step of 100 kg.For samples welded with baked electrode,no failureoccurredwithin24 h(Fig.3(a))uptoaloadingof2400 kg (490 MPa).No further test was carried out above 2400 kg (490 MPa)sinceitisabovetheyieldstrengthofthebasemetal[9]. To estimate the stress level at which specimen fracture,for one specimenloadwasincreaseduntilfractureandthisoccurredatthe basemetal(Fig.3(b))farawayfromtheHAZandthecorresponding fracture stress is 554 MPa(load=2700 kg),which is nearly equivalenttothetensilestrengthoftheweldjoint[9].AsLCScould not be determined for the properly baked electrode,implant tests were conducted for specimens prepared using electrodes without baking(HDlevels=9.6 mL/100 gofweldmetal).Thesespecimensalso did not fracture even after loading up to 2400 kg(490 MPa). Theimplantspecimenstestedatthehigheststresslevelsweresliced along the length,polished,etched and then examined for microcracks under optical microscope.No cracks were found as shown in Fig.4.Thus,results clearly confirm that the steel is not susceptible for HAC even at high levels of diffusible hydrogen.

    Fig.3.Implant sample tested at(a)2400 kg and(b)2700 kg loads.

    Fig.4.Micrograph of implant sample welded with(a)baked and(b)unbaked electrodes.

    The optical micrographs of DMR-249A steel base metal,weld metalandHAZareshownin Fig.5(a)-(c).Thebasemetalconsists offinegrainedequiaxedferriteandsomepercentageofpearliteasa banded structure(Fig.5(a)).Micrograph of weld metal shows fine bainitic structure along with acicular ferrite(Fig.5(b)).The HAZ microstructure consists of acicular ferrite with some polygonal ferrite(Fig.5(c)).No martensitic phase could be identified in the HAZorintheweldmetal.HardnessoftheHAZ(275VHN)isfound tobemarginallyhigherthanthebasemetal(235VHN).Weldmetal hardness(315VHN)is higher than that of HAZ(Fig.6(a)).

    Fig.5.Optical micrographs of(a)base metal,(b)weld metal and(c)HAZ.

    Fig.6.(a)Hardness profile of the weld joint and(b)stress–strain diagram for base metal and HAZ(notch-tensile specimen).

    Mechanical properties of the simulated HAZ are given in Table 2 and Fig.6(b).Since notch effect is experienced by the HAZ of the implant sample due to presence of the helical notch, the notch tensile strength of the simulated HAZ was determined and the value obtained for the same is 660 MPa,which is higher than the tensile strength of the base metal(575 MPa),revealing the strengthening effect of the notch.Toughness of the HAZ simulated structure is appreciably high(170J),although much lesser than base metal(350J)[13].Fractographs(Fig.7(a)and (b))also show ductile cup-cone fracture for tensile tested samples of both base metal and HAZ.Dimple size in case of base metal is much smaller as compared to HAZ,indicating high ductilityof thematerial.Fibrous ductile fracture(Fig.7(c)) is also noted for the impact tested specimen of simulated HAZ.

    4.Discussion

    In the present investigation,the results indicate that HSLA steel of grade DMR-249A is not susceptible to HAC irrespective of HDcontent of the welding consumable.The reason for the same is investigated in the following section.

    It is clear from the results presented above that without baking, HDcontentinthefluxoftheelectrodeisquitehigh,andbybakingat 150°Conlythemoistureabsorbedbythefluxcoatingisdrivenoff, whereas by baking at a temperature recommended by the manufacturer(450°C),chemically bonded water in some of the flux constituents is also removed.During arc welding processes, hydrogen gets introduced into the weld from the moisture of the atmosphereaswellasflux,andfromhydrogenousmaterialssuchas oil,grease,paint,etc.[14].Themoisturecanberemovedbydrying at moderately higher temperature whereas elevated temperature (above400°C)isrequiredtodrivethechemicallyassociatedwater of the flux[14].

    It can be further seen from the results that LCS could not be determined for weldments produced from either properly baked or unbaked electrode by implant tests as the LCS values areabove the yield strength of the material in both the conditions. It can be assumed that fully ferritic microstructure of the HAZ, similar to base metal,and predominantly ferritic structure of the weld metal are the major reasons for good resistance of the weld joint to HAC.It has also been seen for other grades of HSLA steel that ferritic microstructures are resistant to HAC irrespective of HDcontent of the weld[15].Another factor contributing to HAC resistance could be the presence of carbides,especially TiC in the weld metal,which are known to be strong traps for hydrogen[16].Though Rishi et al.[13]have characterized in detail the inclusion content of SMAW weld metal of DMR-249A steel with similar electrode,detailed study on effectiveness of various precipitates and inclusion as hydrogen traps has not been attempted.Such a study may reveal more information about high resistance to HAC of these welds.

    Table 2 Mechanical test results of DMR-249A steel.

    The tendency of HAC is much higher in weldments with a stringent variation in hardness from base metal to weld or HAZ [8].However,in this case variation in hardness between HAZ (275 VHN)and base metal(235 VHN)is only marginal due to the presence of predominantly ferritic microstructure.Weld metal hardness(315 VHN)is slightly higher probably because of the presence of bainite in the weld metal.However,adverse effect of high diffusible hydrogen content is much nullified by the almost uniform hardness distribution across the weldment [7].Mechanical properties of the simulated HAZ also indicate that fine acicular ferritic structure of HAZ contributes to its good mechanical properties.From the notch tensile strength of the HAZ and fractographs of the same,it can be concluded that a ferritic microstructure of low hardness and high toughness is resistant to HAC,irrespective of the hydrogen level in the weld.

    In this context,susceptibility to HAC of DMR-249A can be compared to that of modified 9Cr-1Mo steel.For modified 9Cr-1Mo steel,the LCS is reported to be 185 MPa corresponding to HDcontent of 3.7 mL/100 g of weld metal,which is considerably lower than the yield strength of the material (1000 MPa)[8].With preheat to a temperature of 250°C before welding,HDcontent comes down to 1.8 mL/100 g of weld metal;however,LCS increases only to 267 Mpa,which is still much below the yield strength of the steel[8].In contrast to this,in spite of high hydrogen levels LCS could not be determined for DMR-249A grade of steel because of the good resistance of the steel to HAC.Results emphasize the point thatin the absence of a susceptible microstructure,high hydrogen content may not cause HAC[15].This comparison clearly indicates that even very low hydrogen level can cause HAC in a martensitic microstructure as in case of modified 9Cr-1Mo steel;but if it is a ferritic microstructure,even high hydrogen level does not cause HAC.

    Fig.7.Fractograph of(a)impact tested base material,(b)tensile tested base material and(c)notch tensile tested HAZ.

    5.Conclusions

    The following conclusions can be made from the present study:

    1)HSLA steel grade DMR-249A is not susceptible to HAC.

    2)Thefineacicularferritic/bainiticmicrostructureproducedin HAZ and weld can adequately resist HAC in this steel.

    3)In absence of a susceptible microstructure,HAC is unlikely to occur even if hydrogen levels in the welding consumables are high.

    [1]Show BK,Veerababu R,Balamuralikrishnan R,Malakondaiah G.Effect of vanadium and niobium modification on the microstructure and mechanical properties of a microalloyed HSLA steel.Mater Sci Eng A 2010;527:1595–604.

    [2]RodriguesPCM,PerelomaEV,SantosDB.MaterSciEng A 2000;283:136–43.

    [3]Yue X,Lippold JC.Evaluation of heat affected zone hydrogen induced cracking in navy steels.Welding Res Suppl 2013;92:20s–28s.

    [4]Devletian JH,Fichtelberg ND.Controlling hydrogen cracking in ship building.Welding J 2011;80:46s–52s.

    [5]Dickinsons DW,Ries GD.Implant testing of medium to high strength steel-a model for predicting delayed cracking susceptibility.Welding Res Suppl 1979;205s–211s.

    [6]Padhy GK,Komizo Y.Diffusible hydrogen in steel weldments-a status review.Trans JWRI 2013;42:39–62.

    [7]Padhy GK,Ramasubbu V,Albert SK,Murugesan N,Ramesh C.Hot extraction of diffusible hydrogen and its measurement using a hydrogen sensor.Welding World 2012;56:7–8.

    [8]Albert SK,Ramasubbu V,Sunder Raj SI,Bhaduri AK.Hydrogen assisted cracking susceptibility of modified 9Cr-1Mo steel and its weld metal. Welding World 2011;7–8.

    [9]Pamnani R,Vasudevan M,Jayakumar T,Vasantharaja P,Ganesh KC. Numerical simulation and experimental validation of arc welding of DMR-249A steel.Def Technol 2016;12:305–15.

    [10]ISO 2560:2009,Welding consumables-covered electrodes for manual arc welding og non-alloy and fine grain steels-Classification.

    [11]Specification for carbon steel electrodes for shielded metal arc welding, American National Standard,AWS A5.1/5.1M:2004,approved by American National Standards Institute;2003.

    [12]Specifications for low alloy steel electrodes for shielded metal arc welding,American National Standard,AWSA5.5/A5.5M:2006,approved by American National Standards Institute;2006.

    [13]Pamnani R,Jayakumar T,Vasudevan M,Sakthivel T.Investigation on the impact toughness of HSLA steel arc welded joints.J Manuf Process 2016;21:75–86.

    [14]Magudeeswaranan G,Balasubramaniana V,Madhusudhan Reddy G. Hydrogen induce cold cracking studies on armour grade high strength, quenched and tempered steel weldments.Int J Hydrogen Energy 2008;33:1897–908.

    [15]Madhusudhan Reddy G,Mohandas T,Sarma DS.Cold cracking studies on low alloy steel weldments:effect of filler metal composition.Sci Technol Welding Joining 2003;8:407–14.

    [16]Depover T,Monbaliu O,Wallaert E,Verbeken K.Effect ofTi,Mo and Cr based precipitates on the hydrogen trapping and embrittlement of Fe-C-X Q&T alloys.Int J Hydrogen Energy 2015;40:47.

    Received 30 August 2016;revised 21 September 2016;accepted 22 September 2016 Available online 7 October 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+914424780500.

    E-mail address:gopa_mjs@igcar.gov.in(G.CHAKRABORTY).

    http://dx.doi.org/10.1016/j.dt.2016.09.003

    2214-9147/?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of China Ordnance Society.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of China Ordnance Society.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    国产精品欧美亚洲77777| 国产视频一区二区在线看| 久久久久久久久免费视频了| 久久久久视频综合| 国产亚洲欧美98| 国产三级黄色录像| 曰老女人黄片| 久久久久久久久免费视频了| 国产激情久久老熟女| 高清av免费在线| 高清av免费在线| 熟女少妇亚洲综合色aaa.| 一个人免费在线观看的高清视频| 久久国产乱子伦精品免费另类| 一边摸一边抽搐一进一出视频| 丰满人妻熟妇乱又伦精品不卡| 国产97色在线日韩免费| 在线av久久热| 亚洲免费av在线视频| 十八禁人妻一区二区| 久久久久久久久久久久大奶| 亚洲精品自拍成人| 国产有黄有色有爽视频| 精品乱码久久久久久99久播| 国产精品久久久久久精品古装| 成年版毛片免费区| 激情在线观看视频在线高清 | 日韩欧美一区二区三区在线观看 | www.自偷自拍.com| 中文字幕高清在线视频| 9色porny在线观看| 亚洲色图综合在线观看| 亚洲第一欧美日韩一区二区三区| 丝袜人妻中文字幕| 大香蕉久久网| av视频免费观看在线观看| av中文乱码字幕在线| 建设人人有责人人尽责人人享有的| 香蕉久久夜色| xxx96com| 欧美黄色淫秽网站| 高清av免费在线| 免费看十八禁软件| 捣出白浆h1v1| 亚洲国产毛片av蜜桃av| 国产精品久久久久久精品古装| 无限看片的www在线观看| 在线播放国产精品三级| 亚洲成a人片在线一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精华国产精华精| 午夜免费成人在线视频| 黄网站色视频无遮挡免费观看| 欧美精品亚洲一区二区| 在线观看66精品国产| 亚洲欧美精品综合一区二区三区| 看片在线看免费视频| 国产高清国产精品国产三级| xxx96com| 啦啦啦在线免费观看视频4| 亚洲国产欧美网| 9色porny在线观看| 中文字幕人妻丝袜制服| 免费在线观看完整版高清| av在线播放免费不卡| 亚洲视频免费观看视频| 深夜精品福利| 亚洲av美国av| 一级黄色大片毛片| 韩国av一区二区三区四区| 人妻丰满熟妇av一区二区三区 | xxx96com| 午夜免费鲁丝| 精品少妇久久久久久888优播| aaaaa片日本免费| e午夜精品久久久久久久| 国产欧美日韩一区二区精品| 电影成人av| 十八禁人妻一区二区| 国产熟女午夜一区二区三区| 午夜老司机福利片| 99久久综合精品五月天人人| 波多野结衣一区麻豆| 日本黄色日本黄色录像| 欧美黄色片欧美黄色片| 国产亚洲欧美在线一区二区| 免费高清在线观看日韩| 99在线人妻在线中文字幕 | 啪啪无遮挡十八禁网站| 国产av精品麻豆| 亚洲av日韩精品久久久久久密| 欧美午夜高清在线| 久热这里只有精品99| 免费黄频网站在线观看国产| 1024香蕉在线观看| 日韩精品免费视频一区二区三区| 妹子高潮喷水视频| 精品福利观看| 亚洲av片天天在线观看| 我的亚洲天堂| 久久久久精品国产欧美久久久| 亚洲第一欧美日韩一区二区三区| 在线观看免费午夜福利视频| 桃红色精品国产亚洲av| 高清黄色对白视频在线免费看| 国产精品自产拍在线观看55亚洲 | 色婷婷av一区二区三区视频| 国产成人一区二区三区免费视频网站| 最近最新免费中文字幕在线| 国产精品久久久久久人妻精品电影| 国产黄色免费在线视频| 久久久国产精品麻豆| 亚洲,欧美精品.| 捣出白浆h1v1| 午夜福利在线免费观看网站| av网站免费在线观看视频| 午夜精品在线福利| 女人精品久久久久毛片| 亚洲人成伊人成综合网2020| 亚洲免费av在线视频| 久久ye,这里只有精品| 啦啦啦视频在线资源免费观看| 亚洲av成人一区二区三| √禁漫天堂资源中文www| 久久九九热精品免费| 在线观看免费日韩欧美大片| 久久性视频一级片| 人人妻人人澡人人看| 老司机午夜福利在线观看视频| 18禁黄网站禁片午夜丰满| 国产伦人伦偷精品视频| 香蕉丝袜av| 久久香蕉国产精品| 国产精品一区二区在线观看99| 一级,二级,三级黄色视频| 99久久精品国产亚洲精品| 国产日韩一区二区三区精品不卡| 韩国av一区二区三区四区| 咕卡用的链子| 久久精品亚洲熟妇少妇任你| 飞空精品影院首页| 久久香蕉精品热| 黄色成人免费大全| ponron亚洲| www日本在线高清视频| av免费在线观看网站| 欧美精品高潮呻吟av久久| 宅男免费午夜| 一a级毛片在线观看| 成人特级黄色片久久久久久久| 亚洲五月色婷婷综合| 热re99久久精品国产66热6| 丁香欧美五月| 18禁国产床啪视频网站| 欧美黑人欧美精品刺激| 99re6热这里在线精品视频| 亚洲av美国av| av有码第一页| 国产有黄有色有爽视频| 大型av网站在线播放| 午夜福利在线观看吧| 国产成人影院久久av| 欧美乱妇无乱码| 如日韩欧美国产精品一区二区三区| 午夜老司机福利片| 久久这里只有精品19| 黄色片一级片一级黄色片| 久99久视频精品免费| 无人区码免费观看不卡| bbb黄色大片| 日本撒尿小便嘘嘘汇集6| 国产麻豆69| 两人在一起打扑克的视频| 狂野欧美激情性xxxx| av网站在线播放免费| 色尼玛亚洲综合影院| 色综合欧美亚洲国产小说| 久久草成人影院| 黄色毛片三级朝国网站| 麻豆乱淫一区二区| 国产在线观看jvid| 国产淫语在线视频| 日韩精品免费视频一区二区三区| 美女高潮到喷水免费观看| 51午夜福利影视在线观看| 精品免费久久久久久久清纯 | av电影中文网址| 每晚都被弄得嗷嗷叫到高潮| 亚洲视频免费观看视频| 亚洲精品美女久久久久99蜜臀| 人人妻人人澡人人爽人人夜夜| 欧美在线一区亚洲| 一进一出抽搐动态| 一级毛片女人18水好多| 国产视频一区二区在线看| 侵犯人妻中文字幕一二三四区| 又黄又爽又免费观看的视频| 欧美乱色亚洲激情| 欧美日韩av久久| 成人国产一区最新在线观看| 国产不卡av网站在线观看| 亚洲av第一区精品v没综合| av福利片在线| 女警被强在线播放| 女警被强在线播放| 国产男女内射视频| 亚洲欧美日韩高清在线视频| 黑人操中国人逼视频| 一边摸一边做爽爽视频免费| 丁香欧美五月| 日韩视频一区二区在线观看| 69精品国产乱码久久久| 一级片'在线观看视频| 看片在线看免费视频| 一级黄色大片毛片| 少妇粗大呻吟视频| 欧美在线黄色| 黑丝袜美女国产一区| 久久精品91无色码中文字幕| 亚洲人成伊人成综合网2020| 丰满迷人的少妇在线观看| 欧美国产精品va在线观看不卡| 日韩制服丝袜自拍偷拍| 捣出白浆h1v1| 女性生殖器流出的白浆| 欧美激情高清一区二区三区| 国产黄色免费在线视频| 日本wwww免费看| 国产精品一区二区免费欧美| 亚洲欧美日韩另类电影网站| tube8黄色片| 日韩 欧美 亚洲 中文字幕| 91精品三级在线观看| 91av网站免费观看| 国产成人影院久久av| e午夜精品久久久久久久| 91大片在线观看| 中文字幕精品免费在线观看视频| 国产亚洲av高清不卡| 99久久人妻综合| 黄片小视频在线播放| 日韩欧美免费精品| 国产亚洲欧美98| 在线观看免费高清a一片| 又黄又爽又免费观看的视频| 麻豆乱淫一区二区| 亚洲伊人色综图| 欧美黑人精品巨大| 日韩三级视频一区二区三区| 香蕉丝袜av| 中文欧美无线码| 国产区一区二久久| av一本久久久久| 一区二区三区国产精品乱码| 国产精品久久久av美女十八| avwww免费| 黄色视频不卡| av网站免费在线观看视频| 精品一区二区三区四区五区乱码| 美女扒开内裤让男人捅视频| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| 91精品三级在线观看| 后天国语完整版免费观看| 看免费av毛片| 国产亚洲一区二区精品| 伊人久久大香线蕉亚洲五| 91麻豆精品激情在线观看国产 | 日韩欧美一区视频在线观看| 男女下面插进去视频免费观看| 久久久久久亚洲精品国产蜜桃av| 免费在线观看视频国产中文字幕亚洲| 18禁观看日本| 人妻 亚洲 视频| 日本a在线网址| 国产亚洲欧美精品永久| 久久久久国产精品人妻aⅴ院 | 91麻豆av在线| 欧美日韩瑟瑟在线播放| 国产野战对白在线观看| 日韩欧美三级三区| 岛国毛片在线播放| 狠狠狠狠99中文字幕| av福利片在线| 热re99久久国产66热| 三上悠亚av全集在线观看| 国产精品九九99| 日本vs欧美在线观看视频| 在线国产一区二区在线| 久热爱精品视频在线9| 国产99白浆流出| 他把我摸到了高潮在线观看| 国内毛片毛片毛片毛片毛片| 色婷婷av一区二区三区视频| 看片在线看免费视频| 久久久久久人人人人人| 国产亚洲欧美在线一区二区| 99香蕉大伊视频| 国产成人精品久久二区二区免费| 亚洲精品国产区一区二| 一a级毛片在线观看| 啪啪无遮挡十八禁网站| 色尼玛亚洲综合影院| 欧美人与性动交α欧美软件| 国产无遮挡羞羞视频在线观看| 亚洲国产看品久久| 日本a在线网址| 法律面前人人平等表现在哪些方面| av免费在线观看网站| 91成人精品电影| 深夜精品福利| 亚洲av第一区精品v没综合| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| av欧美777| 一边摸一边抽搐一进一小说 | 色老头精品视频在线观看| 精品人妻1区二区| 久久香蕉国产精品| 国产精品成人在线| 亚洲精品国产色婷婷电影| 亚洲色图av天堂| 国产精品久久久av美女十八| 亚洲人成77777在线视频| 69精品国产乱码久久久| 久久人人爽av亚洲精品天堂| 国产视频一区二区在线看| 欧美午夜高清在线| 欧美色视频一区免费| 午夜91福利影院| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 国产高清videossex| 麻豆成人av在线观看| 欧美激情 高清一区二区三区| 中亚洲国语对白在线视频| 老司机午夜福利在线观看视频| 亚洲午夜理论影院| 伊人久久大香线蕉亚洲五| 91精品三级在线观看| 欧美日韩成人在线一区二区| 国产精品欧美亚洲77777| 色婷婷久久久亚洲欧美| 国产日韩欧美亚洲二区| 国产三级黄色录像| 一级作爱视频免费观看| 亚洲欧美日韩高清在线视频| 麻豆乱淫一区二区| 精品国产美女av久久久久小说| 国产精品久久久久久人妻精品电影| 国产精品亚洲av一区麻豆| 91在线观看av| 人人妻,人人澡人人爽秒播| 亚洲精品国产精品久久久不卡| 波多野结衣一区麻豆| 午夜免费鲁丝| 不卡一级毛片| 中文字幕人妻丝袜一区二区| 日韩大码丰满熟妇| av天堂久久9| 久久国产精品影院| 高清视频免费观看一区二区| 亚洲一区二区三区欧美精品| 亚洲国产中文字幕在线视频| 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 国产精品亚洲av一区麻豆| 国产免费男女视频| 免费少妇av软件| 精品免费久久久久久久清纯 | 国产高清视频在线播放一区| 视频区欧美日本亚洲| 色综合欧美亚洲国产小说| 国产亚洲一区二区精品| 天天添夜夜摸| 国产精品欧美亚洲77777| 亚洲中文字幕日韩| 欧美黄色片欧美黄色片| 男人操女人黄网站| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| 精品免费久久久久久久清纯 | 天天影视国产精品| 天天操日日干夜夜撸| 国产片内射在线| 久热爱精品视频在线9| 日韩欧美一区二区三区在线观看 | 老司机午夜十八禁免费视频| 国产精品国产高清国产av | 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 极品教师在线免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 日韩人妻精品一区2区三区| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩另类电影网站| 一个人免费在线观看的高清视频| 淫妇啪啪啪对白视频| 亚洲第一av免费看| 午夜精品久久久久久毛片777| 欧美不卡视频在线免费观看 | 水蜜桃什么品种好| 少妇被粗大的猛进出69影院| 亚洲精品自拍成人| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲| 视频在线观看一区二区三区| 精品国产乱子伦一区二区三区| 悠悠久久av| 亚洲人成77777在线视频| av一本久久久久| 新久久久久国产一级毛片| 桃红色精品国产亚洲av| 欧美乱码精品一区二区三区| 国产欧美日韩一区二区三| 在线观看免费日韩欧美大片| av天堂久久9| 精品一区二区三区视频在线观看免费 | 亚洲精品乱久久久久久| 777久久人妻少妇嫩草av网站| 在线观看免费视频网站a站| 欧美成狂野欧美在线观看| 国精品久久久久久国模美| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 夜夜躁狠狠躁天天躁| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| av国产精品久久久久影院| 无遮挡黄片免费观看| 十八禁人妻一区二区| 一级毛片高清免费大全| 国产淫语在线视频| 波多野结衣一区麻豆| 亚洲一区二区三区不卡视频| 亚洲,欧美精品.| 大片电影免费在线观看免费| 一边摸一边做爽爽视频免费| 在线免费观看的www视频| 18禁黄网站禁片午夜丰满| 亚洲自偷自拍图片 自拍| 一进一出好大好爽视频| 女警被强在线播放| 757午夜福利合集在线观看| 亚洲第一青青草原| 国产麻豆69| 欧美不卡视频在线免费观看 | 精品午夜福利视频在线观看一区| 午夜两性在线视频| 亚洲av电影在线进入| a级毛片在线看网站| 国产精品欧美亚洲77777| 精品亚洲成国产av| 久久精品亚洲av国产电影网| 亚洲av成人一区二区三| 国产主播在线观看一区二区| 操出白浆在线播放| 水蜜桃什么品种好| 少妇裸体淫交视频免费看高清 | 国产xxxxx性猛交| 免费观看a级毛片全部| 免费日韩欧美在线观看| 亚洲中文av在线| 国产在线精品亚洲第一网站| 国产淫语在线视频| 国产单亲对白刺激| 大型黄色视频在线免费观看| 超色免费av| 老司机亚洲免费影院| 亚洲精品粉嫩美女一区| 午夜久久久在线观看| 天天躁夜夜躁狠狠躁躁| a级毛片在线看网站| 窝窝影院91人妻| 久久狼人影院| 色婷婷av一区二区三区视频| 一进一出抽搐gif免费好疼 | 成人黄色视频免费在线看| 老司机在亚洲福利影院| 亚洲人成77777在线视频| 亚洲欧美日韩高清在线视频| 另类亚洲欧美激情| 首页视频小说图片口味搜索| 精品国产亚洲在线| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 1024香蕉在线观看| 老司机午夜福利在线观看视频| 一进一出抽搐gif免费好疼 | 在线看a的网站| 韩国av一区二区三区四区| 19禁男女啪啪无遮挡网站| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 婷婷丁香在线五月| 18禁观看日本| a在线观看视频网站| 亚洲色图av天堂| 最近最新中文字幕大全免费视频| 如日韩欧美国产精品一区二区三区| 亚洲午夜理论影院| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 日韩成人在线观看一区二区三区| 黄色片一级片一级黄色片| 老汉色∧v一级毛片| 中文欧美无线码| 黑人巨大精品欧美一区二区mp4| cao死你这个sao货| 成人永久免费在线观看视频| 久久久久精品人妻al黑| 久久ye,这里只有精品| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 国产精品免费视频内射| 亚洲一码二码三码区别大吗| 国产成+人综合+亚洲专区| 五月开心婷婷网| 免费观看精品视频网站| a级片在线免费高清观看视频| 亚洲avbb在线观看| 久久精品国产a三级三级三级| 成年人黄色毛片网站| 国产精品1区2区在线观看. | 丝袜人妻中文字幕| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片高清免费大全| 99re6热这里在线精品视频| 亚洲精品国产色婷婷电影| 一a级毛片在线观看| 成人国语在线视频| 99国产极品粉嫩在线观看| 在线观看日韩欧美| 亚洲精品中文字幕在线视频| 亚洲国产欧美一区二区综合| 色婷婷久久久亚洲欧美| 免费观看人在逋| 亚洲专区字幕在线| 亚洲欧美一区二区三区黑人| av电影中文网址| 91成年电影在线观看| 一级毛片女人18水好多| 热99久久久久精品小说推荐| 婷婷丁香在线五月| 婷婷精品国产亚洲av在线 | 国产精品1区2区在线观看. | 亚洲欧美激情综合另类| 国产精品综合久久久久久久免费 | 夫妻午夜视频| 日韩 欧美 亚洲 中文字幕| 国产97色在线日韩免费| av线在线观看网站| 亚洲人成电影免费在线| 国产欧美日韩一区二区三区在线| 国产精品美女特级片免费视频播放器 | 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 91在线观看av| 国产男女超爽视频在线观看| 亚洲在线自拍视频| 99re6热这里在线精品视频| 国产成人免费无遮挡视频| 露出奶头的视频| 免费在线观看视频国产中文字幕亚洲| 高清黄色对白视频在线免费看| 欧美日韩瑟瑟在线播放| 国产精品久久久久久人妻精品电影| 一边摸一边抽搐一进一出视频| 欧美在线一区亚洲| 手机成人av网站| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 欧美在线一区亚洲| 一级a爱视频在线免费观看| 国产精品 国内视频| 欧美成人午夜精品| 欧美色视频一区免费| 国产欧美日韩一区二区三区在线| 国产欧美日韩综合在线一区二区| ponron亚洲| 国产欧美日韩综合在线一区二区| 午夜视频精品福利| 别揉我奶头~嗯~啊~动态视频| 国产一区二区三区视频了| 一区二区三区精品91| 建设人人有责人人尽责人人享有的| 丝袜人妻中文字幕| 国产亚洲一区二区精品| 麻豆国产av国片精品| 成人国产一区最新在线观看| 免费不卡黄色视频| 亚洲欧美色中文字幕在线| 亚洲avbb在线观看| 一进一出好大好爽视频| 久久热在线av| 亚洲久久久国产精品| 啦啦啦在线免费观看视频4| 久久精品人人爽人人爽视色| 欧美乱码精品一区二区三区| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影 | 欧美性长视频在线观看| 国产成人精品久久二区二区91| 在线观看66精品国产| 欧美乱妇无乱码| 亚洲全国av大片| 国产成人欧美在线观看 | av网站在线播放免费| 国产欧美日韩一区二区三| 9色porny在线观看| 国产午夜精品久久久久久| 王馨瑶露胸无遮挡在线观看|