陳先偉,申 靖
(1. 湖南科技大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 湘潭 411201;2. 湖南工業(yè)大學(xué) 財(cái)經(jīng)學(xué)院,湖南 株洲 412007)
離散型Lotka-Volterra捕食-被捕食系統(tǒng)的Marotto混沌
陳先偉1,申 靖2
(1. 湖南科技大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 湘潭 411201;2. 湖南工業(yè)大學(xué) 財(cái)經(jīng)學(xué)院,湖南 株洲 412007)
研究了離散型捕食-被捕食Lotka-Volterra系統(tǒng)的Marotto意義下的混沌。通過理論分析給出了系統(tǒng)存在Marotto意義下的混沌的條件,并利用分支圖、最大Lyapunov指數(shù)(ML)、分形維(FD)、相圖進(jìn)行了數(shù)值模擬,驗(yàn)證了理論分析的正確性,同時(shí)展示了此系統(tǒng)的復(fù)雜動(dòng)力學(xué)行為。結(jié)合已有的結(jié)論,有利于學(xué)者們更完整地了解此類系統(tǒng)的動(dòng)力學(xué)行為。
捕食與被捕食系統(tǒng);Marotto混沌;最大Lyapunov指數(shù)(ML);分形維(FD)
經(jīng)典的捕食-被捕食Lotka-Volterra系統(tǒng)[1-2]為
式中:X, Y分別為被捕食者與捕食者的密度;
r0為內(nèi)在增長率;
k為人口承載能力;
b0為捕食函數(shù),表示每個(gè)捕食者在單位時(shí)間、單位面積所消耗被捕食者的數(shù)量;
d0為捕食者的死亡率;
c為被捕食者轉(zhuǎn)化為捕食者的轉(zhuǎn)化率;
cXY為捕食者數(shù)量函數(shù)。
當(dāng)Y=0時(shí),不含捕食者的系統(tǒng)(1)被學(xué)者們廣泛研究,并得到了一些有趣的結(jié)論[1-3]。例如當(dāng)參數(shù)r0和k在其允許范圍內(nèi)取值,若時(shí),系統(tǒng)(1)的所有非負(fù)解(常數(shù)解除外)收斂于常數(shù)解X≡k,即X(t)值隨著時(shí)間發(fā)展趨向于極限k。當(dāng)Y≠0時(shí),關(guān)于捕食-被捕食Lotka-Volterra模型(1)的研究也較多,學(xué)者們主要集中研究了該系統(tǒng)的不動(dòng)點(diǎn)的穩(wěn)定性、周期性和一些隨機(jī)行為[1,4-10]。
將歐拉方法[11-13]應(yīng)用于系統(tǒng)(2),可得
式中 為步長。
關(guān)于系統(tǒng)(3)的不動(dòng)點(diǎn)及其分支已有研究,并得到了系統(tǒng)(3)在空間上產(chǎn)生flip-分支和Hopf-分支的條件[14]。
雖然關(guān)于系統(tǒng)(3)的混沌研究較少,但生態(tài)系統(tǒng)中混沌現(xiàn)象是一個(gè)值得研究的問題。
下面對系統(tǒng)(3)存在Marotto意義下的混沌[15-16]進(jìn)行討論,系統(tǒng)(3)的不動(dòng)點(diǎn)的穩(wěn)定性見引理1。
結(jié)合例1,通過分支圖、最大Lyapunov指數(shù)(maximum lyapunov exponents,ML)[17]、分形維(fractal dimensions,F(xiàn)D)和相圖來驗(yàn)證以上理論的正確性。
由Lyapunov指數(shù)定義的分形維[17-18]如下
圖1 映射(3)的數(shù)值模擬圖。Fig. 1 Numerical simulation diagram of mapping (3)
通過對系統(tǒng)(3)的混沌分析,根據(jù)Marotto意義下的混沌定義,得到了Marotto意義下的混沌存在條件。利用分支圖、最大Lyapunov指數(shù)、分形維和相圖驗(yàn)證了理論的正確性。揭示了生態(tài)系統(tǒng)中,捕食者與被捕食者數(shù)量發(fā)生巨變后又迅速回到平穩(wěn)位置的復(fù)雜生態(tài)現(xiàn)象。分析結(jié)果對數(shù)學(xué)和生態(tài)學(xué)都很有意義,再結(jié)合前人得到的結(jié)論,可以更完整地理解捕食-被捕食系統(tǒng)。
[1]BRAUER F,CASTILLO-CHAVEZ C. Mathematical Models in Population Biology and Epidemiology[M]. New York:Springer Verlag,2001:105-112.
[2]FRODA S,NKURUNZIZA S. Prediction of Predator-Prey Populations Modelled Byperturbed ODEs[J]. Journal of Mathematical Biology,2007,54(3) :407-451.
[3]MURRAY J D. Mathematical Biology[M]. 2nd ed. Berlin:Springer Verlag,1993:85-112.
[4]ROSENZWEIG M L,MACARTHUR R H. Graphical Representation and Stability Conditions of Predator-Prey Interactions[J]. The American Naturalist,1963,97(895) :209-223.
[5]HOSSIAN ERJAEE G,DANNAN F M. Stability Analysis of Periodic Solutions to the Nonstandard Discretized Model of the Lotka-Volterra Predator-Prey System[J]. International Journal of Bifurcation and Chaos,2004,14(12):4301-4308.
[6]FREEDMAN H I. Deterministic Mathematical Models in Population Ecology[J]. Biometric,1980,22(7):219-236.
[7]HUANG Y,JIANG X M,ZOU X F. Dynamics in Numerics:On a Discrete Predator-Prey Model[J]. Differential Equations and Dynamical Systems,2008,16 (1/2) :163-182.
[8]LIU B,ZHANG Y J,CHEN L S. Dynamic Complexities in a Lotka-Volterra Predator-Prey Model Concerning Impulsive Control Strategy[J]. International Journal of Bifurcation and Chaos,2005,15(2) :517-531.
[9]TANG S Y,CHEN L S. The Periodic Predator-Prey Lotka-Volterra Model with Impulsive Effect[J]. Journal of Mechanics in Medicine and Biology,2002,2(3/4) :267-296.
[10]WANG W D,LU Z Y. Global Stability of Discrete Models of Lotka-Volterra Type[J]. Nonlinear Analysis Theory Methods and Applications,1999,35(8) :1019-1030.
[11]JING Z J,Chang Y,Guo B L. Bifurcation and Chaos in Discrete FitzHugh-Nagumo System[J]. Chaos, Solitons and Fractals,2004,21(3) :701-720.
[12]JING Z J,YANG J P. Bifurcation and Chaos in Discrete-Time Predator-Prey System[J]. Chaos, Solitons and Fractals,2006,27(1) :259-277.
[13]JING Z J,JIA Z Y,WANG R Q. Chaos Behavior in the Discrete BVP Oscillator[J]. Bifurcation and Chaos,2002,12(3) :619-627.
[14]LIU X L,XIAO D M. Complex Dynamic Behaviors of a Discrete-Time Predator-Prey System[J]. Chaos, Solitons and Fractals,2007,32(1) :80-94.
[15]MAROTTO F R. Snap-Back Repellers Imply Chaos in Rn [J]. Journal of Mathematical Analysis and Applications,1978,63(1) :199-223.
[16]MAROTTO F R. On Redefining a Snap-Back Repeller[J]. Chaos, Solitons and Fractals,2005,25(1) :25-28.
[17]CARTWRIGHT J H E. Nonlinear Stiffness, Lyapunov Exponents, and Attractor Dimension[J]. Physics Letters A,2000,264(4) :298-302.
[18]KAPLAN J L,YORKE J A. A Regime Observed in a Fluid Flow Model of Lorenz[J]. Communications in Mathematical Physics,1979,67(2) :93-108.
(責(zé)任編輯:鄧光輝)
Marotto Chaos in a Discrete Lotka-Volterra Predator-Prey System
CHEN Xianwei1, SHEN Jing2
(1. School of Mathematics and Computational Science,Hunan University of Science and Technology,Xiangtan Hunan 411201,China;2. School of Finance and Economics,Hunan University of Technology,Zhuzhou Hunan 412007,China)
Marotto chaos in a discrete Lotka-Volterra predator-prey system has been investigated in this paper. A theoretical analysis has been made of the conditions under which Marotto chaos exists with numerical simulations conducted on the bifurcation diagrams, maximum Lyapunov exponents (ML), fractal dimensions (FD), and phase portraits, thus verifying the validity of the theoretical analysis, and displaying the complex dynamical behaviors of this system as well. Combined with the existing conclusions, a more complete understanding of the dynamical behaviors of this system will be obtained for subsequent researchers.
predator-prey system;Marotto chaos;maximum Lyapunov exponents (ML);fractal dimensions (FD)
O415.5
A
1673-9833(2016)05-0087-05
10.3969/j.issn.1673-9833.2016.05.017
2016-07-15
湖南省教育廳高??蒲谢鹳Y助項(xiàng)目(15C0537)
陳先偉(1978-),男,湖南瀏陽人,湖南科技大學(xué)副教授,主要研究方向?yàn)槲⒎址匠虅?dòng)力系統(tǒng)的分支與混沌,E-mail :chenxianwei11@aliyun.com
申 靖(1982-),女,湖南懷化人,湖南工業(yè)大學(xué)講師,主要研究方向?yàn)榻?jīng)濟(jì)數(shù)學(xué),Email:shenjing41@aliyun.com