蘆 佳,王輝虎,2,董一帆,常 鷹,馬新國,董仕節(jié),2
(1 湖北工業(yè)大學(xué) 機(jī)械工程學(xué)院,武漢 430068;2 湖北工業(yè)大學(xué)綠色輕工材料湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430068;3 湖北工業(yè)大學(xué)材料學(xué)院,武漢 430068;4 湖北工業(yè)大學(xué) 理學(xué)院,武漢 430068)
?
RGO/ZnO納米棒復(fù)合材料的合成及光催化性能
蘆 佳1,王輝虎1,2,董一帆1,常 鷹3,馬新國4,董仕節(jié)1,2
(1 湖北工業(yè)大學(xué) 機(jī)械工程學(xué)院,武漢 430068;2 湖北工業(yè)大學(xué)綠色輕工材料湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430068;3 湖北工業(yè)大學(xué)材料學(xué)院,武漢 430068;4 湖北工業(yè)大學(xué) 理學(xué)院,武漢 430068)
采用水熱合成法制備ZnO納米棒及RGO/ZnO納米棒復(fù)合材料。研究不同含量的RGO對(duì)RGO/ZnO納米棒復(fù)合材料光催化活性的影響。采用X射線衍射儀(XRD)、場發(fā)射電子顯微鏡(FESEM)、光電子能譜儀(XPS)及漫反射紫外-可見吸收光譜(UV-Vis)檢測手段對(duì)RGO/ZnO進(jìn)行表征。結(jié)果顯示:RGO與ZnO納米棒成功復(fù)合。加入GO的含量不同,獲得的RGO/ZnO樣品在可見光區(qū)域的吸光度值不同。以甲基橙作為模擬污染物的光催化結(jié)果表明,RGO/ZnO復(fù)合材料具有高的紫外-可見光光降解效率,加入GO與ZnO的質(zhì)量比為3%時(shí),樣品紫外-可見光光催化性能最佳,120min內(nèi)甲基橙基本可以完全降解;且在波長大于400nm可見光照射下,RGO/ZnO具有一定的可見光活性,180min內(nèi)其降解甲基橙效率最大可達(dá)26.2%。同時(shí),RGO/ZnO具有較好的光穩(wěn)定性。
還原石墨烯;ZnO;光催化;甲基橙
近年來,利用納米半導(dǎo)體對(duì)有機(jī)污染物進(jìn)行凈化已引起廣泛關(guān)注。ZnO具有價(jià)格低廉、無毒、生產(chǎn)工藝簡單及性能穩(wěn)定等優(yōu)點(diǎn)[1,2],但是,ZnO作為光催化劑在實(shí)際應(yīng)用中還存在一些問題。一方面,光生載流子的快速復(fù)合導(dǎo)致ZnO具有較低的量子效率和較差的光催化效率[3,4];另一方面,ZnO在室溫下禁帶寬度為3.37eV[5,6],較大的禁帶寬度限制其只能在紫外光作用下被激發(fā)。因此,人們采用了不同的方法來提高ZnO光催化活性及其吸收光波長,如貴金屬修飾[7,8]、金屬化合物沉積[9,10]等。但這些改性方法工藝復(fù)雜、制備條件苛刻、成本高。此后碳納米管、石墨烯等碳系材料相繼出現(xiàn),由于它們的特殊性能被逐漸引入到光催化體系中并受到了廣泛重視。石墨烯是由sp2-鍵片層碳原子組成的二維晶格材料,具有較高導(dǎo)電性、高載流子遷移率(2×105cm2·V-1·s-1)、大比表面積(2600m2·g-1)[11,12]。目前,石墨烯表面沉積金屬或與金屬氧化物復(fù)合所獲得的復(fù)合材料被證明具有優(yōu)異的光催化性能[13,14]。但是石墨烯的不溶性與難加工性使得其實(shí)際使用受到極大限制。
還原石墨烯(Reduced Graphene Oxide,RGO)是先氧化石墨烯得到氧化石墨烯(Graphene Oxide,GO),之后還原去除GO表面含氧官能團(tuán)獲得的產(chǎn)物,其層間距遠(yuǎn)大于石墨烯。通常采用的還原方法有化學(xué)法[15]、電化學(xué)法[16]和熱還原法[17]等。RGO與石墨烯特性相似,將其引入到光催化體系中形成的還原石墨烯基復(fù)合材料同樣具有優(yōu)異的光催化特性。Liu等[6]在非水介質(zhì)中采用微波輔助將分散的納米ZnO顆粒沉積在RGO片上,發(fā)現(xiàn)RGO的復(fù)合不但能增加ZnO的比表面積,而且能促進(jìn)光生電子的傳輸轉(zhuǎn)移。Liu等[18]采用紫外線輔助催化法合成RGO/ZnO粉末。研究發(fā)現(xiàn),RGO/ZnO紫外光降解Cr(VI)效率比純ZnO高30%。Zhang等[19]通過機(jī)械混合RGO粉末與ZnO納米顆粒,發(fā)現(xiàn)混合物在紫外光照射下降解亞甲基藍(lán)的效果顯著。Pant等[4]采用花狀ZnO和Ag納米顆粒復(fù)合RGO片,同樣發(fā)現(xiàn)獲得的復(fù)合材料表現(xiàn)出優(yōu)良的紫外光光催化性能。Dong等[20]將氧化鋅納米團(tuán)簇嵌入RGO納米片,發(fā)現(xiàn)復(fù)合后的RGO/ZnO具有可見光活性,且降解甲硝噠唑效率比純ZnO高32.4%。
與傳統(tǒng)的ZnO粉末相比,ZnO納米棒具有較高的光捕獲率、較大的比表面積及較快的光生電子轉(zhuǎn)移速率[21]。但很少有人采用ZnO納米棒復(fù)合RGO片來制備RGO/ZnO納米棒復(fù)合材料,并研究其光催化性能[5]。本工作在水熱法制備ZnO納米棒的基礎(chǔ)上,通過同時(shí)加入GO粉末,利用水熱過程中GO粉末的還原,一步合成RGO/ZnO納米棒復(fù)合材料。利用X射線衍射儀、場發(fā)射電子顯微鏡、光電子能譜儀及漫反射紫外-可見吸收光譜等研究了RGO/ZnO納米棒復(fù)合材料的微觀特性,并將甲基橙(Methyl Orange,MO)作為模擬污染物,研究了RGO含量對(duì)RGO/ZnO納米棒復(fù)合材料的光催化性能及光穩(wěn)定性的影響規(guī)律,分析了其光催化機(jī)制。
實(shí)驗(yàn)中所用原料均為分析純。GO采用Hummer法[22]制得。在反應(yīng)器中倒入一定量的濃硫酸,加入2g石墨粉、1g硝酸鈉和6g高錳酸鉀攪拌,控制反應(yīng)溫度低于20℃。反應(yīng)一段時(shí)間后升溫至35℃,繼續(xù)攪拌2h。然后緩慢加入少量的去離子水,98℃攪拌15min后,加入適量雙氧水還原殘留的氧化劑使溶液變?yōu)榱咙S色,趁熱過濾,采用5~8mL的鹽酸溶液及去離子水洗滌,直到濾液中無硫酸根被檢測到為止。最后將樣品置于真空干燥箱中充分干燥得到GO粉末。
RGO/ZnO采用一步水熱法制備。將0.58g乙酸鋅和0.53g氫氧化鈉與一定量的GO混合,加入80mL無水乙醇,25℃下攪拌30min。將獲得的混合溶液轉(zhuǎn)移至反應(yīng)釜內(nèi),密封加熱到160℃,保溫24h后自然冷卻至室溫,取出進(jìn)行抽濾、洗滌。重復(fù)上述步驟3~5次后于60℃干燥12h,研磨得到RGO/ZnO樣品。根據(jù)加入的GO量不同,將GO與ZnO質(zhì)量比為1%,3%,5%,7%的樣品分別記為1%RGO/ZnO,3%RGO/ZnO,5%RGO/ZnO,7%RGO/ZnO。
配置20mg/L的甲基橙(MO)溶液,加入50mg的RGO/ZnO粉末,振蕩、攪拌獲得均勻混合溶液。以300W氙燈為光源,對(duì)其光照120min??梢姽夤獯呋钚詼y試時(shí),采用400nm濾光片濾去紫外光。反應(yīng)過程中每15min取一次試樣,離心取上層MO清液,采用紫外分光光度計(jì)測試,在464nm處取得吸光度值,計(jì)算其濃度。
光穩(wěn)定性研究選用3%RGO/ZnO樣品進(jìn)行測試,采用上述方法,經(jīng)過紫外-可見光照射120min,之后將反應(yīng)產(chǎn)物洗滌抽濾,然后放入干燥箱內(nèi)干燥。循環(huán)5次后,根據(jù)MO降解效率的變化分析RGO/ZnO光穩(wěn)定特性。
采用X射線粉末衍射儀(X’pert Pro MPD)分析樣品晶相組成,掃描范圍為10°~80°,掃描速率為2(°)/min;通過掃描電子顯微鏡(Quanta 450)觀察分析樣品表面形貌,加速電壓為10kV;采用X射線光電子能譜儀(VG Multilab 2000)分析樣品表面組成,XPS譜線峰位均以吸附的碳?xì)浠衔锏腃ls(Eb= 284.6eV)譜為參照;通過紫外可見分光光度計(jì)(U-3900)對(duì)樣品進(jìn)行紫外漫反射光譜分析,以BaSO4作參照,掃描范圍為200~700nm。
2.1 XRD分析
圖1為RGO,ZnO和RGO/ZnO樣品的XRD譜圖。由圖1可知,RGO樣品XRD譜的衍射峰位于23.6°和42.6°,表明水熱反應(yīng)過程中GO在高溫高壓下成功還原成RGO,這與其他文獻(xiàn)結(jié)果一致[23,24]。在ZnO及RGO/ZnO樣品的XRD譜中,位于31.8°, 34.4°, 36.3°, 47.5°, 56.6°, 66.4°, 68.0°和69.9°的衍射峰對(duì)應(yīng)于纖鋅礦結(jié)構(gòu)ZnO[25,26]。RGO/ZnO樣品的衍射峰與純ZnO一致,未出現(xiàn)明顯的RGO衍射峰,這可能是因?yàn)镽GO/ZnO粉末中的RGO含量極少,不易被檢測出的緣故。
圖1 RGO,ZnO和RGO/ZnO樣品的XRD譜圖Fig.1 XRD patterns of RGO,ZnO and RGO/ZnO samples
2.2 FESEM分析
圖2為1%RGO/ZnO, 3%RGO/ZnO, 5%RGO/ZnO, 7%RGO/ZnO的FESEM照片??梢钥闯? 產(chǎn)物中RGO以分散的片狀形式存在。經(jīng)過水熱反應(yīng)后, 在片狀RGO表面均可形成ZnO納米棒且分布均勻,這可能是由于RGO片層表面具有多種極性含氧官能團(tuán),極性含氧基團(tuán)使得Zn2+離子以氫鍵和靜電吸附的方式結(jié)合在這些活性點(diǎn)上進(jìn)一步水解,同時(shí)生成的ZnO能夠有效阻止RGO片層間的相互作用[27]。GO加入量的增加,一方面,使RGO片層數(shù)量增加,片層表面生成的ZnO納米棒也更加分散;另一方面,使負(fù)載ZnO的活性位點(diǎn)增多,RGO片層表面吸附的ZnO納米棒也隨之增多,促使RGO/ZnO復(fù)合材料片層尺寸有所增大。
圖2 RGO/ZnO樣品的FESEM圖 (a)1%RGO/ZnO;(b)3%RGO/ZnO;(c)5%RGO/ZnO;(d)7%RGO/ZnOFig.2 FESEM images of RGO/ZnO samples (a)1%RGO/ZnO;(b)3%RGO/ZnO;(c)5%RGO/ZnO;(d)7%RGO/ZnO
2.3 XPS分析
通過XPS檢測可以進(jìn)一步分析RGO/ZnO樣品的表面元素組成。圖3為3%RGO/ZnO的C1s,O1s和Zn2p的XPS譜圖。由圖3(a)可以看出,C1s譜具有3個(gè)峰,分別位于284.6,286.3eV與288.5eV,對(duì)應(yīng)C-C,C-O,C=O鍵[28,29]。圖3(b)中O1s譜的兩個(gè)峰分別位于531.2,532.9eV,前者為ZnO中的晶格氧,后者為RGO/ZnO中C-OH/C-O-C鍵的氧[26]。圖3(c)中Zn2p的峰位于1021.8eV,表明Zn以Zn+的形式存在[28,30]。
圖3 3%RGO/ZnO樣品的C1s(a),O1s(b)和Zn2p(c) XPS譜圖Fig.3 C1s(a),O1s(b) and Zn2p(c) XPS spectra of 3%RGO/ZnO sample
2.4 UV-Vis檢測
圖4為RGO,ZnO和RGO/ZnO樣品的漫反射紫外-可見吸收光譜圖,吸光曲線邊緣在紫外光區(qū)域。由圖4顯示,純RGO樣品吸收光譜在260nm處有最大吸收峰。純ZnO樣品呈白色,加入RGO后顏色發(fā)生改變。隨著RGO含量的不斷增加,RGO/ZnO顏色從白色逐漸變成黑色,由于物質(zhì)的顏色越深,吸光度值越大,因此RGO/ZnO樣品在可見光區(qū)域內(nèi)的吸光度值隨GO含量的增加而增加,此結(jié)果與其他文獻(xiàn)一致[1,31]。
圖4 RGO,ZnO和RGO/ZnO樣品的UV-Vis譜圖Fig.4 UV-Vis spectra of RGO,ZnO and RGO/ZnO samples
2.5 光催化性能
圖5為ZnO和RGO/ZnO樣品在紫外-可見光照射下降解MO效率曲線。由圖5可知, RGO/ZnO都具有優(yōu)異的光催化活性。相比與純ZnO,RGO/ZnO降解MO效率明顯提高。同時(shí),GO的加入量對(duì)RGO/ZnO納米棒復(fù)合材料的光催化活性具有很大影響。3%RGO/ZnO樣品的MO降解效率最高,在120min內(nèi)達(dá)到97.5%。但隨著GO加入量的繼續(xù)增加,MO降解率開始下降。這可能是因?yàn)镽GO自身能吸收紫外光,隨著加入的GO量不斷增多并超過3%時(shí),ZnO與RGO之間存在著光捕獲競爭關(guān)系,減少了ZnO納米棒的光吸收。除此之外,過量的RGO可能會(huì)充當(dāng)光生電荷的復(fù)合載體,抑制光生電子與空穴的分離,最終降低RGO/ZnO的光催化活性[18,32]。
圖5 ZnO和RGO/ZnO樣品紫外-可見光降解MO曲線Fig.5 Degradation curves of MO for ZnO and RGO/ZnO samples under UV-Vis
圖6為ZnO和RGO/ZnO樣品在可見光照射下降解MO曲線??梢钥闯?,純ZnO沒有可見光催化活性,但復(fù)合了RGO后,可見光下對(duì)MO具有降解效果。根據(jù)加入的GO量不同,RGO/ZnO光催化降解MO效率為:3%RGO/ZnO >5%RGO/ZnO > 1%RGO/ZnO > 7%RGO/ZnO。3%RGO/ZnO樣品的可見光光催化性能最佳,180min內(nèi)甲基橙降解效率達(dá)26.2%。
圖6 ZnO和RGO/ZnO樣品可見光降解MO曲線Fig.6 Degradation curves of MO for ZnO and RGO/ZnO samples under visible irradiation
圖7為3%RGO/ZnO紫外-可見光照射下循環(huán)降解MO的柱狀圖??芍?jīng)過5次循環(huán)使用后,3%RGO/ZnO降解MO效率基本保持不變。實(shí)驗(yàn)結(jié)果表明RGO/ZnO復(fù)合材料光穩(wěn)定性較好。
圖7 3%RGO/ZnO樣品5次循環(huán)降解MO圖Fig.7 Degradation of MO for 3%RGO/ZnO sample for five cycles
(1)采用一步水熱法,以ZnO納米棒為載體成功制備了RGO/ZnO納米復(fù)合材料。隨著復(fù)合材料中RGO含量的增加,RGO/ZnO納米復(fù)合材料中層片狀物質(zhì)尺寸增大,同時(shí)其在可見光區(qū)域的吸光度值增加。
(2)光催化降解甲基橙的實(shí)驗(yàn)結(jié)果表明,3%RGO/ZnO樣品在紫外-可見光照射下光催化活性最佳,其在120min內(nèi)降解甲基橙的效率是純ZnO的2.5倍;在波長大于400nm的可見光照射下,該樣品在180min內(nèi)降解甲基橙的效率達(dá)到26.2%,表明RGO/ZnO納米復(fù)合材料具有一定的可見光活性。
(3)5次循環(huán)光降解甲基橙實(shí)驗(yàn)結(jié)果表明,3%RGO/ZnO復(fù)合材料具有較好的光穩(wěn)定性。
[1] SAFA S,SARRAF-MAMOORY R,AZIMIRAD R.Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film[J].Physica E:Low-dimensional Systems and Nanostruc-tures,2014,57:155-160.
[2] KUMAR K,CHITKARA M,SANDHU S I,et al.Photocatalytic,optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route[J].Journal of Alloys and Compounds,2014,588:681-689.
[3] LI D,HUANG J F,CAO L Y,et al.Microwave hydrothermal synthesis of Sr2+doped ZnO crystallites with enhanced photocatalytic properties[J].Ceramics International,2014,40(2):2647-2653.
[4] PANT H R,PANT B,KIM H J,et al.A green and facile one-pot synthesis of Ag-ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants[J].Ceramics International,2013,39(3):5083-5091.
[5] HUANG K,LI Y H,LIN S,et al.A facile route to reduced graphene oxide-zinc oxide nanorod composites with enhanced photocatalytic activity[J].Powder Technology,2014,257(5):113-119.
[6] LIU Y,HU Y,ZHOU M,et al.Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light[J].Applied Catalysis B:Environmental,2012,125(33):425-431.
[7] LAI Y,MENG M,YU Y,et al.One-step synthesis,characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation[J].Applied Catalysis B:Environmental,2010,100(3-4):491-501.
[8] LI P,WEI Z,WU T,et al.Au-ZnO hybrid nanopyramids and their photocatalytic properties[J].Journal of the American Chemical Society,2011,133(15):5660-5663.
[9] KUNDU P,DESHPANDE P A,MADRAS G,et al.Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation[J].Journal of Materials Chemistry,2011,21(12):4209-4216.
[10] SHI L,LIANG L,MA J,et al.Improved photocatalytic performance over AgBr/ZnO under visible light[J].Superlattices and Microstructures,2013,62:128-139.
[11] ZHOU Q,ZHONG Y H,CHEN X,et al.Mesoporous anatase TiO2/reduced graphene oxide nanocomposites:a simple template-free synthesis and their high photocatalytic performance[J].Materials Research Bulletin,2014,51(2):244-250.
[12] WANG X W,ZHOU L,LI F.ZnO disks loaded with reduced graphene oxide for the photodegradation of methylene blue[J].New Carbon Materials,2013,28(6):408-413.
[13] HUANG Q,TIAN S,ZENG D,et al.Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond[J].ACS Catalysis,2013,3(7):1477-1485.
[14] ZENG B,CHEN X,LUO Y,et al.Graphene spheres loaded urchin-like CuxO (x=1 or 2) for use as a high performance photocatalyst [J].Ceramics International,2014,40(3):5055-5059.
[15] KAVERI S,THIRUGNANAM L,DUTTAB M,et al.Thiourea assisted one-pot easy synthesis of CdS/rGO composite by the wet chemical method:structural,optical,and photocatalytic properties[J].Ceramics International,2013,39(8):9207-9214.
[16] LI X,XU X,XIA F,et al.Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2precursor[J].Electrochimica Acta,2014,130(4):305-313.
[17] NAGARAJU G,EBELING G,GONCALVES R V,et al.Controlled growth of TiO2and TiO2-RGO composite nanoparticles inionic liquids for enhanced photocatalytic H2generation[J].Journal of Molecular Catalysis A:Chemical,2013,378(11):213-220.
[18] LIU X,PAN L,ZHAO Q,et al.UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI)[J].Biochemical Engineering Journal,2012,183(4):238-243.
[19] ZHANG L,DU L,CAI X,et al.Role of graphene in great enhancement of photocatalytic activity of ZnO nanoparticle-graphene hybrids[J].Physica E:Low-dimensional Systems and Nanostructures,2013,47(5):279-284.
[20] DONG S,LI Y,SUN J,et al.Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole [J].Materials Chemistry and Physics,2014,145(3):357-365.
[21] 薄小慶,劉唱白,何越,等.多孔納米棒氧化鋅的制備及其氣敏特性[J].材料工程,2014,(8):86-89.
BO X Q,LIU C B,HE Y,et al.Fabrication and gas sensing properties of porous ZnO nanorods[J].Journal of Materials Engineering,2014,(8):86-89.
[22] HUMMERS W S Jr,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339.
[23] RUAN C,ZHANG L,QIN Y,et al.Synthesis of porphyrin sensitized TiO2/graphene and its photocatalytic property under visible light[J].Materials Letters,2015,141:362-365.
[24] HU J,LI H,WU Q,et al.Synthesis of TiO2nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances[J].Chemical Engineering Journal,2015,263:144-150.
[25] SUN H,LIU S,LIU S,et al.A comparative study of reduced graphene oxide modified TiO2,ZnO and Ta2O5in visible light photocatalytic/photochemical oxidation of methylene blue[J].Applied Catalysis B:Environmental,2014,146(3):162-168.
[26] LIU I T,HON M H,TEOH L G,et al.The preparation,characterization and photocatalytic activity of radical-shaped CeO2/ZnO microstructures[J].Ceramics International,2014,40(3):4019-4024.
[27] 龍梅,叢野,李軒科,等.部分還原氧化石墨烯/二氧化鈦復(fù)合材料的水熱合成及其光催化活性[J].物理化學(xué)學(xué)報(bào),2013,29(6):1344-1350.
LONG M,CONG Y,LI X K,et al.Hydrothermal synthesis and photocatalytic activity of partially reduced graphene oxide/TiO2composite[J].Acta Physico-Chimica Sinica,2013,29(6):1344-1350.
[28] FENG Y,FENG N N,WEI Y Z,et al.An in situ gelatin-assisted hydrothermal synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light[J].RSC Advances,2014,4(16):7933-7943.
[29] LIU X,DU H,SUN X W,et al.High-performance photoresponse of carbon-doped ZnO/reduced graphene oxide hybrid nanocomposites under UV and visible illumination[J].RSC Advances,2014,4(10):5136-5140.
[30] LI Y,ZHANG B P,ZHAO J X.Enhanced photocatalytic performance of Au-Ag alloy modified ZnO nanocomposite films[J].Journal of Alloys and Compounds,2014,586:663-668.
[31] WANG P,WANG J,WANG X,et al.One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J].Applied Catalysis B:Environmental,2013,132-133(12):452-459.
[32] YANG N L,ZHAI J,WANG D,et al.Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J].ACS Nano,2010,4(2):887-894.
[33] ZHANG Y,ZHANG N,TANG Z R,et al.Graphene transforms wide band gap ZnS to a visible light photocatalyst:the new role of graphene as a macromolecular photosensitizer[J].ACS Nano,2012,6(11):9777-9789.
Synthesis and Photocatalytic Performance of RGO/ZnO Nanorod Composites
LU Jia1,WANG Hui-hu1,2,DONG Yi-fan1,CHANG Ying3,MA Xin-guo4,DONG Shi-jie1,2
(1 School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China;2 Hubei Provincial Key Laboratory of Green Materials for Light Industry,Hubei University of Technology,Wuhan 430068,China;3 School of Materials Science and Technology,Hubei University of Technology,Wuhan 430068,China;4 School of Science,Hubei University of Technology,Wuhan 430068,China)
ZnO nanorods and RGO/ZnO nanorods composites were prepared by hydrothermal method. The influence of RGO content on the photocatalytic activity of RGO/ZnO nanorods composites was studied. ZnO nanorods and RGO/ZnO nanocomposites were characterized by X-ray diffraction (XRD), field emission electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-visible absorption spectroscopy techniques. The results show that RGO/ZnO samples are synthesized successfully. With different additions of GO, the RGO/ZnO samples obtained exhibit different absorption characteristics in visible light region. The photocatalytic results of using methyl orange (MO) as the simulated pollutant show that RGO/ZnO nanorods composites exhibit high degradation efficiency under UV-Vis light illumination. The highest photocatalytic performance is obtained for RGO/ZnO composites when the mass ratio of RGO to ZnO is 3%. MO is almost completely degraded in 120min. RGO/ZnO also shows the visible-light-driven photocatalytic activity under visible light illumination (λ>400nm), and the maximum MO degradation efficiency in 180min can reach 26.2%, meanwhile, RGO/ZnO samples exhibit good photostability.
reduced graphene oxide;ZnO;photocatalysis;methyl orange
10.11868/j.issn.1001-4381.2016.12.008
O643
A
1001-4381(2016)12-0048-06
國家自然科學(xué)基金資助項(xiàng)目(51202064,51472081);湖北省自然科學(xué)基金資助項(xiàng)目(2013CFA085);武漢市青年晨光科技計(jì)劃資助項(xiàng)目(2013070104010016)
2015-01-09;
2016-04-27
王輝虎(1978-),男,副教授,博士,研究方向?yàn)榧{米材料制備與性能,聯(lián)系地址:湖北省武漢市洪山區(qū)南湖李紙路一村1號(hào)湖北工業(yè)大學(xué)機(jī)械工程學(xué)院(430068),E-mail:wanghuihu@126.com