• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion①

    2016-12-22 05:45:36HuZhentao胡振濤HuYumeiGuoZhenWuYewei
    High Technology Letters 2016年4期

    Hu Zhentao (胡振濤), Hu Yumei, Guo Zhen, Wu Yewei

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Automation, Northwestern Polytechnical University, Xi’an 710072, P.R.China)

    ?

    Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion①

    Hu Zhentao (胡振濤)②*, Hu Yumei**, Guo Zhen*, Wu Yewei*

    (*Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)(**College of Automation, Northwestern Polytechnical University, Xi’an 710072, P.R.China)

    The GM-PHD framework as recursion realization of PHD filter is extensively applied to multi-target tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First, a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second, the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore, to take the advantage of consistency fusion strategy, fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking.

    multi-target tracking, probability hypothesis density (PHD), cubature Kalman filter, consistency fusion

    0 Introduction

    Multi-target tracking techniques are always the hotspot research in target tracking field. The probability hypothesis density (PHD) filter as recursion that propagates the first-order statistical moment of random finite sets (RFS) of states, is an attractive approach to track unknown and time-varying targets in the presence of measurement uncertainty, clutter, noise, and detection uncertainty[1]. However, PHD filter contains multiple integrals with no closed forms in general. Due to its inherent computational hurdle, the application and popularization of PHD filter is limited. To solve this problem, some researches and work mainly focus on two categories. One of the effective implementations is sequential Monte Carlo PHD (SMC-PHD) filter[2,3]. In the non-linear and non-Gaussian system, the relationship between PHD filter and sequential Monte Carlo method is established through approximating PHD function by a group of random samples in state space, and leads the integral computation to be replaced by samples mean[4]. However, a large number of particles, needed to ensure filtering precision in the realization of SMC-PHD filter, lead to increase of computation cost, and extracting multi-target estimation is an additional cost. Moreover, the stochastic sampling mechanism often leads particle to degeneracy after a few iterations. The adverse effect caused by particle degeneracy is mitigated in a certain degree through re-sampling, but the re-sampling process results in the reduction of particle diversity. In addition, an estimated state is obtained through dividing the particle into different clusters in SMC-PHD filter, which leads to state estimation unreliable. The other one is Gaussian mixture PHD (GM-PHD) filter[5,6], for jointly estimating the time-varying number of targets and their states, closed-form recursions are given for propagating means, covariance, and weights of the constituent Gaussian component of posterior intensity, which meets three assumptions: ① Targets and sensor follow a linear and Gaussian model. ② The survival and detection probabilities are independent. ③ The intensities of birth and spawn RFSs are Gaussian mixture. In Ref.[7], Clark proved uniform convergence of the errors in GM-PHD filter. Aiming at the multi-detection from a same target, Tang derived a general multi-detection PHD update formulation, and established its recursion realization under the GM-PHD framework[8].

    However, with regard to the non-linear feature of multi-target system, assumption ① is extended to non-linear Gaussian model. Therefore, the non-linear filter such as extended Kalman filter (EKF) and unscented Kalman filter (UKF) are considered to unite the PHD filter under the framework of Gaussian mixture[9,10]. The implementation mechanism of EKF is to realize local linearization of state equation and observation equation. It only calculates the posterior mean and covariance accurately to the first order with all higher order moments truncated. If the nonlinearity of estimated system is very strong, usually EKF can not obtain good filtering result and even lead to the filtering divergence phenomenon[11,12]. While unscented Kalman filter (UKF)[13]and cubature Kalman filter (CKF)[14]are both typical implementation of deterministic sampling filter, UKF approaches nonlinear state posterior distribution by UT transformation strategy, and it has higher universality for non-linear system with Gaussian noise. But whether the parameters are selected reasonably or not in UKF, they may affect targets estimation precision directly. In addition, the problem that filtering variance is not positive definite may occur. However, in the implementation of CKF, a third-degree spherical-radial cubature rule is established to compute integrals numerically. The weights in CKF are positive to ensure that the filtering covariance is positive definite matrix, and it is verified that CKF is superior to UKF[15]. Therefore, CKF is adopted to realize PHD recursion under the framework of Gaussian mixture in this paper.

    The appropriate selection of filtering algorithm leads to the improvement of targets tracking precision. Measurement, obtained by sensor for providing latest information in the update step, is also an alternative vital factor to enhance estimation precision. The technique of information fusion based on multi-sensor measurement system[16,17]is a popular method to extend measurement range, improve information redundancy and credibility, through the synergy between sensors. Therefore, a consistency fusion strategy is proposed to process the multi-sensor measurement through constructing consistency matrix. On this basis, a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed.

    The rest of the paper is organized as follows. In Section 1, the background information on PHD filter is presented. Section 2 proposes a cubature Kalman probability hypothesis density (CK-PHD) filter for single-sensor multi-target tracking under Gaussian mixture framework. Then, in Section 3, a consistency fusion strategy is established for fusing multi-sensor measurement through constructing consistency matrix. Furthermore, a new cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion (MC-CK-PHD) is proposed by introducing the fused measurement during update step in Section 4. The proposed algorithms are illustrated in Section 5 through a simulation example. Finally, conclusions are summarized in Section 6.

    1 PHD filter

    An optical Bayesian filter using RFS or point process for multi-target tracking is very computationally challenging, especially when the target number is large. To reduce complexity, Mahler devises PHD filter as an approximation of an optimal multi-target Bayesian filter. And it propagates the first-order statistical moment of the posterior multi-target state, i.e., the posterior density is propagated in PHD filter. Let the posterior density equal to Ik-1|k-1(xk-1|Z1:k-1) at time k. The recursion steps of PHD filter are as follows:

    ? Prediction steps:

    Lk|k-1(xk|Z1:k-1)=γk(xk) + [∫pS,k(xk-1)fk|k-1(xk|xk-1) +∫βk|k-1(xk|xk-1)] ×Lk-1|k-1(xk-1|Z1:k-1)dxk-1

    (1)

    where γk(xk) is the intensity of target appearing at time k, pS,k(xk-1) is the target survival probability, fk|k-1(xk|xk-1) is the single target Markov transition density, and βk|k-1(xk|xk-1) is the intensity of spawning of target from existing ones.

    ? Update steps:

    (2)

    where ψ(zk|Z1:k-1)=∫pD,kf(zk|xk)Lk|k-1(xk|Z1:k-1), pD,k(xk-1) denotes the detection probability, f(zk|xk) is the single target likelihood function, λkand ck(zk) are the false alarm(clutter) intensity and false alarm spatial density, respectively.

    The expected number of targets is given by

    Nk|k=∫Lk|k(xk|Z1:k)dxk

    (3)

    The PHD filter completely avoids the combinatorial computation arising from the unknown association of measurements with appropriate targets. However, the closed-form solutions of recursion in PHD filter cannot be achieved in general which results in that it is difficult for PHD filter to realize engineering application. And numerical integration suffers from the “curse of dimensionality”[5]. In Ref.[3], it is shown that Gaussian mixture probability hypothesis density (GM-PHD) filter provides a closed-form solution for multi-target tracking without measurement-to-track data association.

    2 Cubature Kalman probability hypothesis density filter

    In this section, combining CKF with PHD under Gaussian mixture framework, a cubature Kalman probability hypothesis density (CK-PHD) filter is proposed for jointly estimating time-varying number and position of targets.

    (4)

    L=2n denotes the number of cubature points, and n denotes the dimension of estimated system state, ξjis the jth cubature point.

    The GM-PHD filter propagates the multi-target posterior density through Gaussian mixture components, providing a closed-form solution under the three assumptions. The mathematical express of the three assumptions is given[18]:

    fk|k-1(xk|xk-1)=N(xk; fk-1xk-1, Qk-1)

    (5)

    gk(zk|xk)=N(zk;hkxk,Rk)

    (6)

    pS,k(xk)=pS,k

    (7)

    pD,k(xk)=pD,k

    (8)

    (9)

    (10)

    where, J and ω are the number and the weight of Gaussian mixture components, respectively.

    ? Prediction steps:

    The predicted intensity for time k is also a Gaussian mixture and is given by

    Lk|k-1(xk|Z1:k-1)=LS,k|k-1(xk|Z1:k-1) +Lβ,k|k-1(xk|Z1:k-1)+γk(xk)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    (17)

    State one-step prediction and its error covariance of the existing targets

    (18)

    (19)

    State one-step prediction and its error covariance of the spawned targets

    (20)

    (21)

    ? Update steps:

    (22)

    (23)

    (24)

    (25)

    (26)

    (27)

    (28)

    (29)

    (30)

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

    3 Consistency fusion strategy

    In the situation of multi-sensor measurement system, redundant and complementary information is extracted and utilized as much as possible to reduce the dependence of measurement noise statistics information. In this paper, the consistency distance and consistency matrix is built to characterize the mutual support degree between multi-sensor measurements. On this basis, the consistency fusion strategy for multi-sensor measurement is established through constructing consistency matrix. The elements in the matrix denote the mutual support degree. The measurement weights are allocated legitimately to utilize measurement effectively in fusion process.

    Considering the matrix of mutual support degree between multi-sensor measurements, the graphical representation of confidence distance is in Fig.1, and the equation is defined as

    (37)

    Fig.1 Consistency distance

    (38)

    (39)

    (40)

    where the consistency matrix Ψkand weight coefficient vector αkare expressed

    (41)

    (42)

    The numerical characteristic of the elements in Ψkshows: all diagonal elements are equal to 1, so Ψkis a positive definite symmetric matrix. The other elements in this matrix are positive and not greater than 1. According to Perron-Frobenius theorem: there is a maximum modulus eigenvalue λk>0. Only when all elements in eigenvector corresponding to eigenvalue λkare positive, λkβk=Ψkβk. Let αk=βk, combined with Eq.(40), then

    (43)

    (44)

    (45)

    The fused measurement noise variance is

    (46)

    Combining the above analysis, the pseudo-code of consistency fusion is given as follows:

    Algorithm1:Consistencyfusiongiventhemulti?sensormeasurement{zik|zik=h(xk)+vik,i=1,2,…,N}calculatetheconfidencedistancefori=1,…,N forj=1,…,N Rijk=(zik-zjk)Τ(zik-zjk)/(Rvik+Rvjk) endendcalculatetheconsistencydistancefori=1,…,N forj=1,…,N Θijk=1-Rijk/max(max(Rijk)) endendfindthemaximumeigenvalueandcorrespondingeigenvectorofconsistencydistance[β,λ]=eig(Ψk)m=max(max(λ))calculatetheweightωikofzik,andnormalizationfori=1,…,N αik=abs(β(i,m))endαik=αik/∑Ni=1αikmeasurementfusionfori=1,…,N ^z′k=∑Ni=1αikzikend

    4 Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion

    A CK-PHD filter is extended to multi-sensor case. Assume that there are N sensors and that the measurement noises with the same covariance are irrelevant Gaussian white noise. Then consistency fusion strategy is designed to obtain fusion measurement. Based on the above work, a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. The key steps of MC-CK-PHD filter are given as follows:

    Algorithm2:CubatureKalmanprobabilityhypothesisdensi?tyfilterbasedonmulti?sensorconsistencyfusiongiven{ω(i)k-1,m(i)k-1,P(i)k-1}Jk-1i=1andthemeasurementsetZk.step1.predictionforbirthtargets i=0. forj=1,…,Jγ,k i:=i+1 ω(i)k|k-1=ω(j)γ|k,x(i)k|k-1=x(j)γ|k,P(i)k|k-1=P(j)γ|k. end forj=1,…,Jβ,k forl=1,…,Jk-1 i:=i+1 ω(i)k|k-1=ω(l)k-1ω(j)β,k ^x(i)k|k-1=f(j)β|k-1^x(l)β|k-1+v(j)β|k-1 P(i)k|k-1=Q(j)γ|k-1+f(j)β|k-1P(l)β|k-1f(j)β|k-1Τ end end forj=1,…,i setμ:=^x(j)k|k-10é?êêù?úú,C:=P(j)k|k?100Rké?êêù?úú usethethird?degreespherical?radialcubatureruletogenerateasetofcubaturepointswithmeanμ,covarianceC,andweightsdenotedby{y(l)k,μ(l)}Ll=1. z(l)k|k-1:=hk(x(l)k|k-1,ε(l)k),l=1,…,L. η(j)k|k-1=∑Ll=1μlz(l)k|k-1 P(j)zz,k=∑Ll=1μl(z(l)k|k-1-η(j)k|k-1)(z(l)k|k-1-η(j)k|k-1)Τ P(j)xz,k=∑Ll=1μl(z(l)k|k-1-^x(j)k|k-1)(z(l)k|k-1-η(j)k|k-1)Τ K(j)k=P(j)xz,k[P(j)zz,k]-1 P(j)k|k=P(j)k|k-1-K(j)k[P(j)xz,k]Τ endStep2.constructionofexistingtargetcomponents forj=1,…,i i:=i+1 ω(i)k|k-1=pS,kω(i)k-1|k-1 setμ:=^x(j)k|k-100é?êêêù?úúú,C:=P(j)k|k-1000Qk-1000Rké?êêêêù?úúúú usethethird?degreespherical?radialcubatureruletogenerateasetofcubaturepointswithmeanμ,covarianceC,andweightsdenotedby{y(l)k,μ(l)}Ll=1.

    5 Simulation results and analysis

    where, ω=0.025rad/s is the angular acceleration of targets, Τ=1 is the sampling period. pS,k=0.99, pD,k=0.98, U=5, Jmax=100, T_prun=10e-5.

    Table 1 The rest initial value of parameters in the algorithm

    Fig.2 Measurement and true trajectories

    (a) EK-PHD

    (b) UK-PHD

    (c) CK-PHD

    (d) MC-CK-PHD

    Fig.3 The target trajectories and their estimations of (a) EK-PHD, (b) UK-PHD, (c) CK-PHD and (d) MC-CK-PHD

    The proposed algorithm is compared with EK-PHD filter and UK-PHD filter presented in Ref.[5]. The results and analysis of simulation are given below.

    The measurement and the real trajectories of the targets are given in Fig.2. Note that square marks and circle marks denote the initial position and final position of targets, respectively.

    To verify the effectiveness of the proposed algorithm, Fig.3 gives the target trajectories and their estimations of (a) EK-PHD, (b) UK-PHD, (c) CK-PHD and (d) MC-CK-PHD. The figures illustrate that state estimation through MC-CK-PHD filter approximates real trajectories mostly.

    Fig.4 illustrates the comparison of the four algorithms estimation precisions of the number of targets. The plots demonstrate that both CK-PHD filter and MC-CK-PHD filter are superior to EK-PHD filter and UK-PHD filter for estimating the number of targets. Meanwhile, the MC-CK-PHD filter is more reliable than CK-PHD filter because consistency fusion strategy in MC-CK-PHD filter makes sure that fused measurement is more precise than single-sensor measurement does. For quantitative comparison, Table 2 gives the average estimation error of targets number through the four algorithms after 50 simulations. It is clear that the EK-PHD filter and UK-PHD filter have the average estimation error of 9.20 and 9.22 respectively, and the error of CK-PHD filter and MC-CK-PHD filter are 8.06 and 8.02, respectively. The results further suggest that the average estimation error of MC-CK-PHD filter is the lowest, namely, MC-CK-PHD filter outperforms others in targets number estimation.

    To verify the capability of proposed algorithm more clearly, Fig.5 gives the comparison of average OSPAs of EK-PHD filter, UK-PHD filter, CK-PHD filter and MC-CK-PHD filter after 50 Monte Carlo simulations. It shows that the average OSPA of CK-PHD filter is lower than EK-PHD’s and UK-PHD’s, and that the average OSPA of MC-CK-PHD filter is the smallest in all. Fig.5 also illustrates that both CK-PHD filter and MC-CK-PHD filter have the advantage of position estimation precision. Further, MC-CK-PHD filter is superior to CK-PHD filter. Table 3 gives the comparison of the total OSPAs of all step time.

    (a) EK-PHD

    (b) UK-PHD

    (c) CK-PHD

    (d) MC-CK-PHD

    Fig.4 Real number of targets and their estimation of (a) EK-PHD, (b) UK-PHD, (c) CK-PHD and (d) MC-CK-PHD

    Table 2 The comparison of average estimation error of the four algorithms for targets number

    Fig.5 The comparison of OSPAs

    AlgorithmsEK?PHDUK?PHDCK?PHDMC?CK?PHDOSPAsummation121.8744121.8126103.254171.4176

    6 Conclusions

    In this study, the multi-target tracking problem on estimation precision in linear is considered under PHD filter framework. Combined with the advantaged of CKF, CK-PHD filter is proposed based on single-sensor measurement system. And it is a generalized solution for estimating targets number and position. Furthermore, a consistency fusion strategy is established, and introduced into the CK-PHD filter. On this basis, the implementation denoted as MC-CK-PHD filter has been presented. Simulation results show that the CK-PHD filter and MC-CK-PHD filter outperform the published EK-PHD filter and UK-PHD filter in the scenario with time-varying number of multi-targets. Meanwhile, the MC-CK-PHD filter is superior to CK-PHD filter in targets number estimation and position estimation.

    [ 1] Mahler R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178

    [ 3] Ba-Ngu V, Sumeetpal S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4): 1224-1245

    [ 4] Baser E, Efe M. A novel auxiliary particle PHD filter. In: Proceedings of the 15th IEEE International Conference on Information Fusion, Singapore, 2012, 165-172

    [ 5] Ba-Ngu V, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104

    [ 6] Pasha S A, Ba-Ngu V, Hoang D T, et al. A Gaussian mixture PHD filter for jump Markov system models. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919-936

    [ 7] Clark D, Ba-Ngu V. Convergence analysis of the Gaussian mixture PHD filter. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212

    [ 8] Tang X, Chen X, McDonald M, et al. A multiple-detection probability hypothesis density filter. IEEE Transactions on Signal Processing, 2015, 63(8): 2007-2019

    [ 9] Melzi M, Ouldali A, Messaoudi Z. Multiple target tracking using the extended Kalman particle probability hypothesis density filter. In: Proceedings of the 18th European Signal Processing Conference, Aalborg, Denmark, 2010, 1821-1826

    [10] Kurian A P, Puthusserypady S. Performance analysis of nonliner predictive filer based on chaotic synchronization. IEEE Transactions on Circuits & Systems II: Express Briefs, 2006, 53(9): 886-890

    [11] Melzi M, Ouldali A, Messaoudi Z. The unscented Kalman particle PHD filter for joint multiple target tracking and classification. In: Proceedings of the 19th International Conference on Signal Processing, Barcelona, Spain, 2011, 1415-1419

    [12] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 2012, 60(2): 545-555

    [13] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3):401-422

    [14] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269

    [15] Wang H, Yu D. Jiang J. Comparison and error analysis of integral-free Kalman tracking filter algorithms. In: Proceedings of the 7th IEEE International Conference on Image and Signal Processing, Dalian, China, 2014, 783-787

    [16] Bar-Shalom Y, Li X R. Multitarget multisensor tracking: principles and techniques. IEEE Systems Magazine on Aerospace and Electronic, 1996, 16(4):93

    [17] Mahler R P S. Statistical Multisource Multitarget Information Fusion. USA: Artech House, 2007

    [18] Chakravorty R, Challa S. Multitarget tracking algorithm-joint IPDA and Gaussian mixture PHD filter. In: Proceedings of the 12th IEEE International Conference on Information Fusion, Seattle, USA, 2009, 316-323

    Hu Zhentao,born in 1979. He received his Ph.D degrees in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of college of computer and information engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    10.3772/j.issn.1006-6748.2016.04.006

    ① Supported by the National Natural Science Foundation of China (No. 61300214), the Science and Technology Innovation Team Support Plan of Education Department of Henan Province (No. 13IRTSTHN021), the Post-doctoral Science Foundation of China (No. 2014M551999), and the Outstanding Young Cultivation Foundation of Henan University (No. 0000A40366).

    ② To whom correspondence should be addressed. E-mail: hym_henu@163.com Received on Oct. 12, 2015

    国产一区二区亚洲精品在线观看| 九九爱精品视频在线观看| 日韩一区二区三区影片| 99久国产av精品国产电影| 亚洲人与动物交配视频| 免费黄网站久久成人精品| 联通29元200g的流量卡| 亚洲,欧美,日韩| 日韩欧美 国产精品| 2022亚洲国产成人精品| 亚洲av男天堂| 国产一区亚洲一区在线观看| 一级毛片久久久久久久久女| 好男人视频免费观看在线| 99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 非洲黑人性xxxx精品又粗又长| 男人的好看免费观看在线视频| 午夜福利视频1000在线观看| 18禁在线播放成人免费| av视频在线观看入口| 男女视频在线观看网站免费| 亚洲婷婷狠狠爱综合网| 免费搜索国产男女视频| 午夜福利在线观看吧| 国产成人影院久久av| 午夜爱爱视频在线播放| 联通29元200g的流量卡| 国产极品天堂在线| 久久久久久大精品| 国产日本99.免费观看| 免费一级毛片在线播放高清视频| 此物有八面人人有两片| 观看美女的网站| 欧美色欧美亚洲另类二区| 中文字幕av在线有码专区| 成人毛片60女人毛片免费| 久久久久久久久久黄片| 成人性生交大片免费视频hd| a级一级毛片免费在线观看| 免费观看在线日韩| 日韩三级伦理在线观看| 亚洲欧美中文字幕日韩二区| 亚洲成av人片在线播放无| 国产三级中文精品| 少妇裸体淫交视频免费看高清| 99热6这里只有精品| 人人妻人人看人人澡| 又粗又爽又猛毛片免费看| 亚洲精品粉嫩美女一区| 桃色一区二区三区在线观看| 欧美日本视频| av国产免费在线观看| 日本av手机在线免费观看| 干丝袜人妻中文字幕| 中国美白少妇内射xxxbb| 国产精品久久久久久亚洲av鲁大| 中文字幕熟女人妻在线| 精品99又大又爽又粗少妇毛片| 在线免费观看的www视频| 日本免费a在线| 国产精品女同一区二区软件| 日本熟妇午夜| 国产成人午夜福利电影在线观看| 国产伦理片在线播放av一区 | 免费av观看视频| 黄色配什么色好看| 插逼视频在线观看| 日本五十路高清| 菩萨蛮人人尽说江南好唐韦庄 | 少妇被粗大猛烈的视频| 久久人人爽人人爽人人片va| 一级毛片久久久久久久久女| 直男gayav资源| 三级男女做爰猛烈吃奶摸视频| 久久精品国产清高在天天线| 少妇人妻精品综合一区二区 | 五月玫瑰六月丁香| 国产真实乱freesex| 日韩一区二区视频免费看| 91午夜精品亚洲一区二区三区| 国产精品爽爽va在线观看网站| 麻豆乱淫一区二区| 国产成人freesex在线| 欧美bdsm另类| 久久久久九九精品影院| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 亚洲av第一区精品v没综合| 中文字幕制服av| 国语自产精品视频在线第100页| 国产精品av视频在线免费观看| 美女内射精品一级片tv| 亚洲人成网站高清观看| 此物有八面人人有两片| 免费人成视频x8x8入口观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美 国产精品| a级毛片a级免费在线| 欧美色欧美亚洲另类二区| 国产精品99久久久久久久久| www.色视频.com| 一本久久中文字幕| 日韩一区二区视频免费看| 2022亚洲国产成人精品| 六月丁香七月| 精品久久久久久久人妻蜜臀av| 人人妻人人澡欧美一区二区| 亚洲婷婷狠狠爱综合网| 99久久精品一区二区三区| 久久久午夜欧美精品| 少妇裸体淫交视频免费看高清| 欧美极品一区二区三区四区| 成年女人看的毛片在线观看| 成人漫画全彩无遮挡| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 国产亚洲精品久久久com| 精品国内亚洲2022精品成人| 美女大奶头视频| 亚洲国产精品成人综合色| 直男gayav资源| 国内精品美女久久久久久| 色哟哟·www| 国产亚洲欧美98| 国内精品一区二区在线观看| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 看十八女毛片水多多多| 日韩精品青青久久久久久| 久久国产乱子免费精品| 99精品在免费线老司机午夜| 一级毛片aaaaaa免费看小| 老熟妇乱子伦视频在线观看| 亚洲精品乱码久久久久久按摩| 爱豆传媒免费全集在线观看| 欧美zozozo另类| 青春草国产在线视频 | 亚洲av二区三区四区| 亚洲国产精品sss在线观看| 一级毛片电影观看 | 午夜亚洲福利在线播放| 国产精品一区www在线观看| 一本精品99久久精品77| 国语自产精品视频在线第100页| 欧美日韩精品成人综合77777| 丰满乱子伦码专区| 久久久国产成人精品二区| 国语自产精品视频在线第100页| 亚洲国产欧美在线一区| 如何舔出高潮| 中文字幕av成人在线电影| 欧美性感艳星| 国产在线精品亚洲第一网站| 少妇人妻一区二区三区视频| 1024手机看黄色片| 久久久久国产网址| 精品久久国产蜜桃| 高清毛片免费看| 色哟哟哟哟哟哟| 一级毛片久久久久久久久女| 国产探花在线观看一区二区| 精品国产三级普通话版| 精品欧美国产一区二区三| 日日摸夜夜添夜夜添av毛片| 国产高清激情床上av| 久久久色成人| 黄色一级大片看看| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 22中文网久久字幕| 美女内射精品一级片tv| 国产精品人妻久久久久久| 国产一区二区在线观看日韩| 精品人妻熟女av久视频| 变态另类成人亚洲欧美熟女| 亚洲欧洲日产国产| 又爽又黄a免费视频| 日韩av不卡免费在线播放| 99国产精品一区二区蜜桃av| 国产午夜精品一二区理论片| 国产私拍福利视频在线观看| 久久草成人影院| 精品熟女少妇av免费看| 亚洲av熟女| 亚洲在线观看片| av在线观看视频网站免费| 六月丁香七月| 在线国产一区二区在线| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 欧美3d第一页| 欧美日韩综合久久久久久| 亚洲av.av天堂| 久久久久久大精品| 亚洲激情五月婷婷啪啪| 精品一区二区免费观看| а√天堂www在线а√下载| 女人被狂操c到高潮| 97超碰精品成人国产| 男的添女的下面高潮视频| 又粗又硬又长又爽又黄的视频 | 蜜桃亚洲精品一区二区三区| 国产伦在线观看视频一区| 国内少妇人妻偷人精品xxx网站| АⅤ资源中文在线天堂| 男人和女人高潮做爰伦理| 国产精品麻豆人妻色哟哟久久 | 亚洲不卡免费看| 黄色日韩在线| 床上黄色一级片| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 欧美色视频一区免费| 国产免费男女视频| 色综合站精品国产| 男女那种视频在线观看| 最新中文字幕久久久久| a级毛色黄片| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| 99热这里只有是精品50| 99久久精品热视频| 晚上一个人看的免费电影| 99久久久亚洲精品蜜臀av| 一区二区三区四区激情视频 | 校园人妻丝袜中文字幕| 看黄色毛片网站| 免费电影在线观看免费观看| 男人狂女人下面高潮的视频| 亚洲激情五月婷婷啪啪| 亚洲国产色片| 高清午夜精品一区二区三区 | 日本-黄色视频高清免费观看| 深爱激情五月婷婷| 看黄色毛片网站| av免费在线看不卡| 九九爱精品视频在线观看| 欧美又色又爽又黄视频| 久99久视频精品免费| 国产精品一区二区在线观看99 | 哪个播放器可以免费观看大片| 亚洲最大成人手机在线| .国产精品久久| 深爱激情五月婷婷| av专区在线播放| 99热网站在线观看| 99久国产av精品| 天天躁夜夜躁狠狠久久av| 能在线免费看毛片的网站| 国产免费男女视频| 听说在线观看完整版免费高清| 久久久a久久爽久久v久久| 18禁黄网站禁片免费观看直播| 能在线免费观看的黄片| 亚洲成人av在线免费| 一级二级三级毛片免费看| 免费观看精品视频网站| 国产成年人精品一区二区| 老司机福利观看| 日韩av不卡免费在线播放| 午夜免费激情av| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 亚洲在线观看片| 日韩精品有码人妻一区| 晚上一个人看的免费电影| 此物有八面人人有两片| 亚洲成人久久爱视频| 熟女电影av网| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 成年女人看的毛片在线观看| 午夜福利在线观看吧| 内射极品少妇av片p| 久久久久久国产a免费观看| 老女人水多毛片| 五月伊人婷婷丁香| 国产精品伦人一区二区| 人人妻人人澡欧美一区二区| 少妇熟女欧美另类| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 国产免费男女视频| 免费观看人在逋| 成人一区二区视频在线观看| 亚洲综合色惰| 国内久久婷婷六月综合欲色啪| 深夜a级毛片| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 亚洲人与动物交配视频| 久久热精品热| 亚洲国产精品成人久久小说 | 99热全是精品| 神马国产精品三级电影在线观看| 乱系列少妇在线播放| av天堂中文字幕网| 中国美女看黄片| 九草在线视频观看| 久久综合国产亚洲精品| 国产成人一区二区在线| 美女xxoo啪啪120秒动态图| 亚洲av中文字字幕乱码综合| 中文精品一卡2卡3卡4更新| 午夜久久久久精精品| 在线观看一区二区三区| 亚洲av不卡在线观看| 蜜臀久久99精品久久宅男| 亚洲欧美日韩高清专用| 12—13女人毛片做爰片一| 亚洲欧美清纯卡通| 精品不卡国产一区二区三区| 能在线免费看毛片的网站| 伦理电影大哥的女人| 日本免费a在线| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 99精品在免费线老司机午夜| 精品久久国产蜜桃| 国产在线男女| 九色成人免费人妻av| 又黄又爽又刺激的免费视频.| 国产高清激情床上av| 特大巨黑吊av在线直播| av免费观看日本| 国产视频内射| 黄片无遮挡物在线观看| 成人鲁丝片一二三区免费| 久久欧美精品欧美久久欧美| a级毛色黄片| 国产三级中文精品| 麻豆精品久久久久久蜜桃| 亚洲激情五月婷婷啪啪| 日本撒尿小便嘘嘘汇集6| 又粗又爽又猛毛片免费看| av女优亚洲男人天堂| 国产极品精品免费视频能看的| 久久午夜福利片| 欧美不卡视频在线免费观看| 夜夜爽天天搞| 99视频精品全部免费 在线| 18禁在线无遮挡免费观看视频| 白带黄色成豆腐渣| av卡一久久| 网址你懂的国产日韩在线| 99国产精品一区二区蜜桃av| 黄色日韩在线| 国产成人影院久久av| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 国产一级毛片七仙女欲春2| 欧美性猛交黑人性爽| 欧美成人免费av一区二区三区| av在线蜜桃| 最近视频中文字幕2019在线8| 国产人妻一区二区三区在| av在线亚洲专区| 久久精品国产清高在天天线| 国产亚洲欧美98| 亚洲第一区二区三区不卡| 观看美女的网站| 中文字幕久久专区| eeuss影院久久| 国产精品久久久久久精品电影小说 | av卡一久久| 免费av观看视频| 丰满人妻一区二区三区视频av| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| av在线播放精品| 中文字幕久久专区| 少妇被粗大猛烈的视频| 在现免费观看毛片| 久久鲁丝午夜福利片| 最新中文字幕久久久久| 久久精品国产清高在天天线| 国产精品久久久久久久久免| 久久久午夜欧美精品| 51国产日韩欧美| 精品不卡国产一区二区三区| 18禁在线播放成人免费| 亚洲丝袜综合中文字幕| 黑人高潮一二区| 精品人妻一区二区三区麻豆| 久久欧美精品欧美久久欧美| 久久久色成人| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av| 亚洲成av人片在线播放无| 国产精品,欧美在线| 91精品国产九色| 亚洲精品日韩在线中文字幕 | 中国美白少妇内射xxxbb| 亚洲av免费在线观看| 色尼玛亚洲综合影院| 久久99精品国语久久久| 毛片女人毛片| 岛国毛片在线播放| 欧美性猛交╳xxx乱大交人| 日韩一区二区视频免费看| av免费在线看不卡| 桃色一区二区三区在线观看| 在线观看66精品国产| 卡戴珊不雅视频在线播放| 国产探花极品一区二区| 欧美一区二区国产精品久久精品| 国产精品野战在线观看| 99在线人妻在线中文字幕| 丝袜喷水一区| av在线观看视频网站免费| 非洲黑人性xxxx精品又粗又长| 国产乱人视频| 毛片一级片免费看久久久久| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 美女 人体艺术 gogo| 亚洲成人久久性| 亚洲最大成人手机在线| 国产精品久久久久久久电影| 天天躁日日操中文字幕| 国产免费男女视频| 舔av片在线| 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看 | 日本爱情动作片www.在线观看| 91精品一卡2卡3卡4卡| 亚洲国产欧美人成| 欧美潮喷喷水| 亚洲综合色惰| 亚洲av不卡在线观看| 亚洲欧美日韩无卡精品| 成人性生交大片免费视频hd| 精品熟女少妇av免费看| 国模一区二区三区四区视频| 国内精品一区二区在线观看| 国产黄色小视频在线观看| 亚洲无线观看免费| 亚洲无线在线观看| 免费一级毛片在线播放高清视频| 久久人人爽人人爽人人片va| 亚洲国产精品国产精品| 国产一区二区在线观看日韩| 午夜精品在线福利| 欧美日韩国产亚洲二区| 国产伦精品一区二区三区视频9| 久久午夜亚洲精品久久| 免费看光身美女| 亚洲精品色激情综合| 天堂网av新在线| 99热网站在线观看| or卡值多少钱| 特大巨黑吊av在线直播| 国产伦一二天堂av在线观看| 最近视频中文字幕2019在线8| 在线播放无遮挡| 3wmmmm亚洲av在线观看| 亚洲七黄色美女视频| 精品日产1卡2卡| 婷婷亚洲欧美| 成人国产麻豆网| 一个人观看的视频www高清免费观看| 性欧美人与动物交配| 国产午夜精品论理片| 免费看a级黄色片| av在线天堂中文字幕| 欧美丝袜亚洲另类| 97超碰精品成人国产| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 99热6这里只有精品| 亚洲欧美成人精品一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲无线在线观看| 人妻系列 视频| 麻豆成人av视频| 亚洲精品日韩av片在线观看| 一个人免费在线观看电影| 男人狂女人下面高潮的视频| 一个人看视频在线观看www免费| 91av网一区二区| 亚洲国产精品成人综合色| 久久精品国产亚洲av天美| 在线a可以看的网站| 日韩欧美三级三区| 国产片特级美女逼逼视频| 国产精品野战在线观看| 久久欧美精品欧美久久欧美| 黄色视频,在线免费观看| 中文字幕精品亚洲无线码一区| av.在线天堂| av卡一久久| 老女人水多毛片| 国产高潮美女av| 丰满乱子伦码专区| 美女高潮的动态| 婷婷亚洲欧美| 91麻豆精品激情在线观看国产| 毛片女人毛片| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 日日干狠狠操夜夜爽| 久久久久久久久久久丰满| 天堂中文最新版在线下载 | 久久久a久久爽久久v久久| 国产女主播在线喷水免费视频网站 | 国产精品免费一区二区三区在线| 午夜福利视频1000在线观看| 国产av麻豆久久久久久久| 国产精品福利在线免费观看| 成人午夜高清在线视频| 乱码一卡2卡4卡精品| 成人毛片a级毛片在线播放| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办| 国产老妇女一区| 亚洲欧洲日产国产| 亚洲精品456在线播放app| 夫妻性生交免费视频一级片| 天堂√8在线中文| 久久精品久久久久久久性| 婷婷精品国产亚洲av| 国产成年人精品一区二区| 国产中年淑女户外野战色| 久久久久国产网址| 爱豆传媒免费全集在线观看| 久久人人爽人人片av| 伦理电影大哥的女人| 亚洲熟妇中文字幕五十中出| 色视频www国产| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 晚上一个人看的免费电影| 欧美日韩一区二区视频在线观看视频在线 | 一个人观看的视频www高清免费观看| 亚洲人成网站高清观看| 国产三级在线视频| 99riav亚洲国产免费| 亚洲精华国产精华液的使用体验 | 成人性生交大片免费视频hd| 亚洲欧美日韩东京热| 亚洲18禁久久av| 国产精品伦人一区二区| 午夜福利在线观看免费完整高清在 | 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 男人舔奶头视频| 一区二区三区免费毛片| 国产成人午夜福利电影在线观看| 99久久精品热视频| 久久久久性生活片| 全区人妻精品视频| 国产精品女同一区二区软件| 老女人水多毛片| 国产一区二区三区av在线 | 天天一区二区日本电影三级| 亚洲精品色激情综合| 如何舔出高潮| 久久热精品热| 亚洲va在线va天堂va国产| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 亚洲精品456在线播放app| 两个人的视频大全免费| 99久久无色码亚洲精品果冻| 国产成人午夜福利电影在线观看| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 1000部很黄的大片| 美女内射精品一级片tv| 色5月婷婷丁香| 国产av不卡久久| 国内久久婷婷六月综合欲色啪| 国产亚洲5aaaaa淫片| 亚洲欧美日韩高清专用| 一个人看的www免费观看视频| 中文字幕熟女人妻在线| 欧美一级a爱片免费观看看| 欧美bdsm另类| 国产亚洲欧美98| ponron亚洲| 日本一二三区视频观看| 国产精品.久久久| 久久久精品欧美日韩精品| 天堂网av新在线| 日韩欧美一区二区三区在线观看| 99热这里只有是精品在线观看| 国产成人精品久久久久久| 18禁在线无遮挡免费观看视频| 欧美激情国产日韩精品一区| 亚洲国产欧美人成| 午夜精品一区二区三区免费看| 久久精品国产亚洲av香蕉五月| 干丝袜人妻中文字幕| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| 波野结衣二区三区在线| 日本爱情动作片www.在线观看| 97超碰精品成人国产| 男女边吃奶边做爰视频| 精品久久久噜噜| 国产私拍福利视频在线观看| 内地一区二区视频在线| av国产免费在线观看| 欧美丝袜亚洲另类| 欧美+亚洲+日韩+国产| 国产精品久久久久久精品电影小说 | 亚洲电影在线观看av| 中文字幕精品亚洲无线码一区| 日韩中字成人|