• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Products of multiplication,composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces on the unit ball

    2016-12-21 09:23:48ZhangChao
    關(guān)鍵詞:張超乘積國家自然科學(xué)基金

    Zhang Chao

    (Department of Mathematics,Guangdong University of Education,Guangzhou 510310,China)

    Products of multiplication,composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces on the unit ball

    Zhang Chao

    (Department of Mathematics,Guangdong University of Education,Guangzhou 510310,China)

    The paper defines differentiation operator on H(B)by radial derivative,then it studies the boundedness and compactness of products of multiplication,composition and differentiation between weighted Bergman-Nevanlinna and Blochtype spaces on the unit ball.

    composition operator,multiplication operator,differentiation operator,Bergman-Nevanlinna space,Bloch-type space

    1 Introduction

    Let D be the open unit disk in the complex plane.Let B={z∈Cn:|z|<1}be the unit ball of Cn,and S=?B its boundary.We will denote by dv the normalized Lebesgue measure on B.

    2 MψCφR and RMψCφ

    The following criterion for compactness is a useful tool to us and it follows from standard arguments,for example,to those outlined in Proposition 3.11 of[3].

    3 CφRMψand RCφMψ

    [1]Sharma A K.Products of multiplication,composition and differention between weighted Bergman-Nevanlinna and Bloch-tyoe spacers[J].Turk.J.Math.,2011,35(2):275-291.

    [2]Zhu Kehe.Spaces of Holomorphic Functions in the Unit Ball[M].New York:Springer-Verlag,2004.

    [3]Cowen C C,MacCluer B D.Composition Operators on Spaces of Analytic Functions[M].Boca Raton:CRC Press,1995.

    [4]Shapiro J H.Composition Operators and Classical Function Theory[M].New York:Springer-Verlag,1993.

    [5]Hibschweiler R A,Portnoy N.Composition followed by differentiation between Bergman and Hardy spaces[J]. Rock Mountain Journal of Mathematics,2005,35(3):843-855.

    [6]Ohno S.Products of composition and differentiation between Hardy spaces[J].Bull.Austral.Math.Soc.,2006,73:235-243.

    [7]Sharma A K,Sharma S D,Kumar S.Weighted composition followed by differentiation betwwen Bergman spaces[J].International Mathematical Forum.,2007,2(33):1647-1656.

    [8]Kumar S,Singh K J.Weighted composition operators on weighted Bergman spaces[J].Extracta Mathematicae,2007,22(3):245-256.

    單位球上加權(quán)Bergman-Nevanlinna空間到Bloch-型空間上乘法,復(fù)合,微分算子的乘積

    張超

    (廣東第二師范學(xué)院數(shù)學(xué)系,廣東 廣州 510310)

    文章用徑向?qū)?shù)定義了H(B)空間上的微分算子,從而研究了單位球上加權(quán)Bergman-Nevanlinna空間到Bloch-型空間上乘法,復(fù)合,微分算子的乘積,給出了這類乘積有界和緊的充要條件.

    符合算子;乘法算子;微分算子;Bergman-Nevanlinna空間;Bloch-type空間

    O177

    2015-12-21.

    國家自然科學(xué)基金(11501136);廣東第二師范學(xué)院博士基金(2014ARF04).

    張超(1977-),博士,講師,研究方向:泛函分析.

    A Article ID:1008-5513(2016)03-0271-17

    10.3969/j.issn.1008-5513.2016.03.006

    2010 MSC:47B33,30C35,46E35

    猜你喜歡
    張超乘積國家自然科學(xué)基金
    常見基金項(xiàng)目的英文名稱(一)
    張超個(gè)人簡介
    散文百家(2021年11期)2021-11-12 03:06:38
    My New Invention
    How to Protect Us from Infectious Diseases
    張超個(gè)人簡介
    散文百家(2021年4期)2021-04-30 03:15:20
    乘積最大
    Dirichlet級數(shù)及其Dirichlet-Hadamard乘積的增長性
    我校喜獲五項(xiàng)2018年度國家自然科學(xué)基金項(xiàng)目立項(xiàng)
    2017 年新項(xiàng)目
    國家自然科學(xué)基金項(xiàng)目簡介
    平湖市| 平乐县| 本溪| 青阳县| 利川市| 林州市| 苍梧县| 嘉善县| 蕉岭县| 嘉义县| 许昌市| 柘荣县| 沐川县| 桂林市| 双城市| 逊克县| 西昌市| 乌兰察布市| 永兴县| 漳浦县| 苏州市| 家居| 桦甸市| 贡嘎县| 米泉市| 青岛市| 四川省| 陇西县| 库伦旗| 高邮市| 上蔡县| 东阳市| 杂多县| 江华| 灯塔市| 额济纳旗| 亳州市| 宁德市| 巴东县| 乌鲁木齐县| 阳曲县|