李沖煒, 鄒 攀, 楊兆光,2, 李海普*
(1.中南大學 化學化工學院,湖南 長沙 410083;2.中南大學 深圳研究院,廣東 深圳 518057)
?
天然水體中兩種主要異嗅物質的來源及遷移轉化研究進展
李沖煒1, 鄒 攀1, 楊兆光1,2, 李海普1*
(1.中南大學 化學化工學院,湖南 長沙 410083;2.中南大學 深圳研究院,廣東 深圳 518057)
近年來,水中嗅味問題逐漸引起關注。研究發(fā)現(xiàn),天然水體中異嗅物質主要是微生物和藻類的揮發(fā)性次級代謝產物??偨Y了天然水體中常見的兩種異嗅物質土臭素(GSM) 和二甲基異莰醇(MIB)的來源及其在生物體內的合成途徑。介紹了異嗅物質通過吸附、揮發(fā)、光解、生物降解等一系列作用在飲用水水源中的遷移轉化以及其進入水體生物的途徑。
揮發(fā)性次級代謝產物;異嗅物質;二甲基異莰醇;土臭素;歸趨
異嗅是指人的感覺器官(鼻)所感知的異?;蛄钊擞憛挼臍馕?。湖泊、河流等水源中常見的異嗅物質主要是土霉味的土臭素(geosmin,GSM)和二甲基異莰醇(2-methylisoborneol,MIB)。此類物質在很低的濃度水平下即可令人感知到相關異嗅的存在(MIB為5~10 ng/L,GSM為1~10 ng/L)[1]。隨著生活水平的不斷提高,人們對飲用水、水產品質量的要求越來越高。據相關統(tǒng)計,異嗅已成為自來水消費者投訴比例最高的一類問題[2]。國外從20世紀50年代就開始對水體異嗅的研究,已成為當今世界水環(huán)境研究熱點之一。而我國在該方面的研究相對較晚,相關研究工作也較少,僅近幾年來關于太湖、黃浦江、武漢東湖、北京景觀湖泊等水體異嗅現(xiàn)象才有一些文獻報道[3-5]。隨著我國水體富營養(yǎng)化日益嚴重,飲用水的異嗅問題也日漸突出。如齊飛等[5]對北京9處典型景觀湖泊水體嗅味污染特征進行研究發(fā)現(xiàn),這9處水體中MIB和GSM平均濃度高達613.84和319.57 ng/L。研究異嗅物質的來源與遷移轉化可以更好地對異嗅物質進行控制和預測。
1.1 異嗅物質的主要來源及影響因素
早在1891年,Berthelot等發(fā)現(xiàn)土壤中引起土霉味的物質能夠從土壤中蒸餾出來并且可能是中性的,但是他們并不知道這些物質是怎樣產生的[6]。當微生物純培養(yǎng)技術出現(xiàn)時,人們將對于這種異嗅物質來源研究的目光投向了放線菌[7]。此后,大量的研究證明了放線菌確實能夠產生異嗅物質,但是對于異嗅物質的結構并沒有研究[8-9]。1963年,Gaines等[10]對鏈霉菌屬的代謝產物進行研究后提出假設,異嗅物質是一些小分子化合物的組合,如醋酸、乙醛、乙醇、異丁醇等。1965年,Gerber等[7]最早從鏈霉菌屬等放線菌中分離并提純出一種異嗅物質,將其命名為Geosmin,ge在希臘語中的意思是土地,而osmin的意思是味道。1969年,Medsker等[11]從放線菌培養(yǎng)物中分離出另一種常見的土霉味物質MIB。因而,人們對土霉味物質MIB和GSM來源的研究最初主要集中在放線菌上。
1967,Safferman等[12]在Symplocaniuscorum屬絲狀藍藻菌IU 617存儲培養(yǎng)的常規(guī)轉移中檢測到一種土霉味物質,其味道與之前文獻發(fā)現(xiàn)放線菌產生的嗅味相同。因此,藍藻菌也被認為是異嗅物質的來源之一,直到1976年Tabachek等[13]調查發(fā)現(xiàn)藍藻菌可能是比放線菌更頻繁的來源。后來,越來越多的文獻調查發(fā)現(xiàn)在能進行光合作用的水體環(huán)境中,藍藻是MIB和GSM的主要來源[14-16]。Izaguirre等[17]從1990年至1992年對美國金字塔湖進行連續(xù)三年的調查,發(fā)現(xiàn)約40種藍藻菌能夠產生MIB和GSM,主要包括浮游的項圈藻、束絲藻屬、假魚腥藻屬、水底席藻屬、顫藻屬和林氏藻屬等。目前,共發(fā)現(xiàn)有2 000余種藍藻菌能夠產生MIB和GSM[18]。
一些研究常常把微生物數(shù)目做為異嗅物質追蹤的辦法。如有研究發(fā)現(xiàn)淡水湖中GSM的季節(jié)性濃度和束絲藻屬的數(shù)目有著正相關的關系[19],而Jones等[20]在對澳大利亞的Hay Weir壩和Carcoar壩的研究中發(fā)現(xiàn),對于項圈藻也有著相似的結果。但是也有文獻報道,項圈藻的數(shù)目與異嗅物質的濃度相關性并不大[21]。除此之外,有文獻報道在同一水體中不同的水層中異嗅物質的濃度也存在極大的不同:在好氧的湖面溫水層(Oxic epilimnion)GSM的濃度為50 ng/L,而在缺氧的湖底靜水層(Anoxic hypolimnion)GSM的濃度則高達950 ng/L[22]。大量的研究發(fā)現(xiàn),在實驗室環(huán)境下MIB和GSM在放線菌及藍藻中的產率主要與光照強度、溫度、氧含量及離子強度等有關[23-29]。如Dionigi等[26]研究了溫度對鏈霉菌生長和產生GSM的影響,發(fā)現(xiàn)鏈霉菌在30~45 ℃時比在15~20 ℃時培養(yǎng)2 d產生的GSM量大。Saadoun等[25]對不同溫度和光照強度下項圈藻屬的培養(yǎng)發(fā)現(xiàn),在20 ℃、光強度為17 μE/m2/s時,GSM量/生物量達到了最大;而在一定溫度下,GSM量/葉綠素a量與光照強度呈正相關(r2=0.95),也就是說在一定的溫度下,增加光照強度會減少葉綠素a的合成而增加GSM的合成。但是沒有研究能夠獨立解釋在天然環(huán)境中異嗅物質的產率有如此巨大的不同??梢?,MIB和GSM的產生是一個很復雜的現(xiàn)象,受不同環(huán)境因素的影響,不能單純把微生物數(shù)目或其他某一因素當做影響異嗅物質濃度的唯一指標。
除受光照、溫度及離子強度等因素影響外,異嗅物質的產生還受許多其他因素的影響。1985年,Wood等[30]發(fā)現(xiàn)水庫中的微白黃鏈霉菌需在有沉淀物質或者植物殘骸等營養(yǎng)物質存在的條件下才能產生MIB。隨后,Sugiura等[31]發(fā)現(xiàn)沉淀藍藻和硅藻細胞也能為水底鏈霉菌產生揮發(fā)性有機物(VOCs)提供很好的底物。也有研究發(fā)現(xiàn)在放線菌的生長階段與非生長階段異嗅物質的產量也存在巨大的差異[32]。
1.2 異嗅物質的生物合成機制
1981年,Bentley等[33]對鏈霉菌屬進行放射性標記實驗,在培養(yǎng)過程中加入含有放射性醋酸鉛,在兩種物質中都檢測到了示蹤元素,由此認為存在異戊二烯的合成過程。后續(xù)在培養(yǎng)液中加入帶有示蹤元素甲基的蛋氨酸,在MIB中也發(fā)現(xiàn)了示蹤元素。最后得出結論:MIB是帶有甲基的單萜,GSM是失去了異丙基的倍半萜烯。
早期,在放線菌中的放射性實驗都未能成功地得出GSM的生物合成路徑,在藍藻菌中的研究也是如此。雖然Cane等研究證明法尼基焦磷酸是環(huán)狀倍半萜烯的直接前體[34],但是早前的實驗顯示在培養(yǎng)中加入法尼醇會抑制細菌和藍藻菌的生長[35-36]。因此,法尼焦磷酸不能用作合成路徑研究的工具。直到近十年,其他合成前體的使用,才使GSM在放線菌中合成的研究有了重大進展[37]。
Juttner等[37]綜合總結了大量的放射性標記實驗和基因實驗,對在微生物合成類異戊二烯(主要是GSM)途徑做出了以下總結(圖1):GSM的合成主要分為3個路徑,即2-甲基赤蘚糖醇-4-磷酸( 2-methylerythritol-4-phosphate,MEP) 路徑、甲羥戊酸( mevalonate,MVA) 路徑和L-亮氨酸路徑,MEP合成是最重要的一個路徑。Spitelle等[38]的實驗結果顯示:當給予被氘化的脫氧木酮糖([5,4-2H2]1-deoxy-D-xylulose)而非甲羥戊酸內酯([4,4,6,6,6-2H5]mevalolactone) 時,鏈霉菌可產生被氘化的GSM,也驗證了MEP路徑是主要的合成路徑。這個合成已經從基因學和酶催化的角度在高等植物體內得到很合理的解釋[39]。對于GSM在藍藻菌體內的合成,MEP合成路徑的基因密碼已經在集胞藻屬PCC6803體內被發(fā)現(xiàn)[40]。雖然這種藻類并沒有發(fā)現(xiàn)能夠產生GSM,但從側面說明在能夠產生GSM的藍藻中有著相同的類異戊二醇合成路徑。
雖然在許多細菌群中,MEP路徑是主要合成類異戊二醇的路徑,但是有研究發(fā)現(xiàn)在微生物體內同時存在MVA合成路徑[36]。有研究表明,在一些鏈霉菌的活躍生長階段主要是MEP路徑,而在靜止生長階段主要是MVA路徑[41-42]。粘細菌也是一種主要應用MVA路徑合成GSM的微生物,但是在這種微生物體內還存在一個以L-亮氨酸為開始的次要合成路徑[43]。
MIB的生物合成途徑直到2007年才被發(fā)現(xiàn)。Dickschat等[44]用示蹤前體蛋氨酸([methyl-13C]methionine)喂養(yǎng)不同株系的粘細菌——侵蝕侏囊菌(Nannocystisexedens),對培養(yǎng)液的GC/MS分析顯示,源自蛋氨酸的甲基被滲入到MIB中,其剩余的10個碳原子則由葉基焦磷酸(geranyl diphosphate,GPP,C10)衍生而來,即GPP甲基化形成新的生物合成中間體2-methyl-GPP,再經環(huán)化形成MIB。
圖1 MIB和GSM在鏈霉菌和粘細菌中產生的簡化合成圖
2.1 異嗅物質從微生物胞內到胞外的轉移
藍藻菌屬在生長階段合成的這兩種物質是儲存在細胞體內還是釋放出來取決于微生物的生長階段和環(huán)境因素,大多數(shù)的異嗅物質在藍藻菌死亡后通過生物降解釋放出來[45]。Juttner等[37]認為這種現(xiàn)象能夠發(fā)生,是因為異嗅物質本身相對于異嗅物質生產者的其他細胞成分來說,更不容易被水中的大部分細菌降解。
Durrer等[46]的研究發(fā)現(xiàn),當束絲藻(Aphanizomenongracile)被甲殼綱動物低額蚤(Simocephalus)或水蚤(Daphniamagna)擦傷后,細胞體內的GSM幾乎完全釋放出來[46]。因此,除了藍藻菌死亡后被降解釋放出異嗅物質外,一些水底食草類動物的食草活動也會使異嗅物質從藍藻體內大量地釋放出來。
2.2 異嗅物質在天然水體中的遷移轉化
有機污染物在水環(huán)境中一般通過生物降解作用、揮發(fā)作用、光解作用、吸附作用等過程進行遷移轉化[47]。對于MIB和GSM生物降解的研究最早始于1970年[48]。比較早期的一些文獻主要報道了能夠對MIB和GSM這兩種物質進行生物降解的微生物的分離和鑒定(表1)。
表1 能夠對MIB和GSM進行降解的微生物[49]
Table 1 Microorganisms implicated in the biodegradation of GSM and MIB
MIBGSM微生物參考文獻微生物參考文獻Pseudomonasspp.[50?52]Bacilluscereus[48,58]Pseudomonasaeruginosa[51]Bacillussubtilis[57?58]Pseudomonasputida[53]Arthrobacteratrocyaneus[59]Enterobacterspp.[52]Arthrobacterglobiformis[59]Candidaspp.[54]Rhodococcusmoris[59]Flavobacteriummultivorum[51] Chlorophenolicus strainN?1053[59] Flavobacteriumspp.[51]Bacillusspp.[55?56]Bacillussubtilis[57]
有文獻報道MIB和GSM能被自來水廠砂濾過程中的假單胞菌和鞘氨醇單胞菌降解[60-62]。Aoyama等[63]和Lupton等[64]發(fā)現(xiàn)假單胞菌與項圈藻屬是共存體。所以,生物降解作用可能是影響水中異嗅物質濃度的最重要的作用。
Trudgill[65]和Rittmann等[66]認為MIB和GSM能夠被降解是因為他們有著與醇和酮相似的結構。僅有東京某一科研機構對于MIB和GSM的代謝產物結構進行了研究。Tanaka等[52]利用氣相-質譜聯(lián)用(GC-MS)對MIB的脫水產物進行鑒定,結果顯示有兩種可能的脫水產物:2-甲基莰烯和2-甲基烯莰烷,認為MIB的代謝途徑可能與莰酮相似。對于GSM,Saito等分析鑒定有4種可能的代謝產物,其中兩種被鑒定為1,4a-二甲基-2,3,4,4a,5,6,7,8-八氫萘(1,4a-dimethyl-2,3,4,4a,5,6,7,8-octahydronaphthalene)和烯酮,這兩種物質同時也能用于GSM的化學合成。同時,他們認為GSM的代謝途徑可能與環(huán)己醇相似[67]。到目前為止,對這兩種物質的生物降解途徑都沒有明確的依據。
Westerhoff等[68]通過對美國Bartlett、Saguaro、Pleasant三大湖的研究發(fā)現(xiàn),MIB和GSM的生物降解符合偽零及動力學模型,其生物降解率在0.8~1.2 ng/(L·d)之間。然而,Rittmann等[65]卻認為MIB和GSM在自然水體中被當做二級底物使用是因為自然水體中天然有機物(NOM)的濃度遠遠高于這兩種物質的濃度,因此認為這兩種物質的在天然水體中的生物降解符合二級動力學模型。
MIB和GSM能夠發(fā)生光解,MIB和GSM在高強度紫外光照下的直接和催化光解有了大量的研究,這兩種物質在中壓10 000 J/m2紫外燈照射下能達到20%以上的去除率,當加入5 mg/L的H2O2時,去除率能達到40%以上;當紫外強度提高到101 000 J/m2并加入適當?shù)腍2O2或臭氧時,幾乎能夠全部去除MIB和GSM[72-74]。但沒有文獻對這兩種物質的陽光直射光解進行定量研究報道。李林等[75]將MIB溶液在冰浴條件下進行陽光直射3 h,并在暗室條件下做對照試驗,發(fā)現(xiàn)MIB的光解幾乎可以忽略。
利用粉末活性炭對MIB和GSM進行吸附是目前水廠比較常用的一種去除這兩種異嗅物質的方法。但是在常常發(fā)生異嗅物質污染的水體如水庫和湖泊中,水體比較澄清,吸附作用不太明顯[68]。此外,水體中存在的較高濃度天然有機物(NOM)對濃度較低的MIB和GSM產生競爭吸附,使得水體中的懸浮顆粒對MIB和GSM的吸附效率變低[76]。
2.3 異嗅化合物進入水產動物體內的途徑
水體中某些能夠引起異嗅的化學物質會進入水產動物體內,其主要途徑包括通過動物的鰓及皮膚吸收和通過攝食被水產動物肌肉吸收[77]。異嗅物質發(fā)生滲透主要通過水產動物的鰓還是通過攝食吸收取決于異嗅物質的辛烷/水分配系數(shù)(KOW)。當log KOW低于6時,主要通過鰓吸收,大于6時主要通過攝食吸收[78]。而MIB和GSM的log KOW分別為3.31和3.57,因此這兩種物質主要通過鰓吸收[79]。異嗅物質通過鰓吸收進入魚體內是可逆的,當將含有異嗅的魚放入清水中時,異嗅物質就會從魚體內進入到水中,但其速度要比進入魚體內慢的多,完全去除異嗅需要幾天[7]。
水中異嗅物質的研究是一個多學科交叉研究領域,涉及分析化學、生態(tài)學、基因學、化學動力學、統(tǒng)計數(shù)學及湖泊學等多個學科領域。雖然目前國外對其已有大量及全面的研究,但仍有許多研究處于假設或者未知階段,需要通過實驗進一步驗證和解決,如:①現(xiàn)在的研究認為MIB和GSM主要是藍藻和放線菌代謝產生,但是不是有真核生物或者其他途徑也有可能產生這兩種物質并沒有被報道;②在影響異嗅物質產生的因素中,怎樣才能抑制異嗅物質在天然水體中的產生;③MIB和GSM遷移轉化過程中,各種生物和物理過程產生的作用和其各所占比例并未見報道。
因此,關于水中異嗅物質MIB和GSM仍然還有許多方面需要研究。包括:①對MIB、GSM和其他異嗅物質來源更加深入和全面地研究;②如何在水中異嗅物質爆發(fā)季節(jié)做好預防工作,有效減少水中異嗅事件的發(fā)生;③比較不同途徑處理異嗅物質的效果、速率和成本,以便在水中異嗅物質爆發(fā)時,幫助快速處理和控制異嗅物質,減輕異嗅事件對水廠、居民用水的影響。在我國這是一個剛剛發(fā)展的研究領域,隨著人們對生活要求的提高,異嗅問題將成為研究熱點。
[1] Benanou D, Acobas F, De Roubin M R, et al. Analysis of off-flavors in the aquatic environment by stir bar sorptive extraction-thermal desorption-capillary GC/MS/olfactometry[J]. Analytical and bioanalytical chemistry, 2003, 376(1): 69-77.
[2] Burlingame GA, Dahme. History oftaste and odor: the Philadelphia story[J]. Proceedings of AWWA Water Quality Technology ConferenceSt. Louis, MO: 1989,13(17):1-12.
[3] 徐盈, 黎雯, 吳文忠,等. 東湖富營養(yǎng)水體中藻菌異嗅性次生代謝產物的研究[J].生態(tài)學報, 1999, 19(2):212-216.
[4] 馬曉雁, 高乃云, 李青松, 等. 上海市飲用水中痕量土臭素和二甲基異冰片年變化規(guī)律及來源研究[J]. 環(huán)境科學, 2008, 29(4): 902-908.
[5] 齊飛, 徐冰冰, 樊慧菊, 等. 北京市景觀水體嗅味污染特征[J]. 環(huán)境科學研究, 2011, 24(10): 1115-1122.
[6] Berthelot M, André G. Sur l’odeur propre de la terre[J]. Comptes rendus, 1891, 112: 598-599.
[7] Gerber N N, Lechevalier H A. GSM, an earthly smelling substance isolated from actinomycetes[J]. Applied Microbiology, 1965, 13(6): 935-938.
[8] Silvey J K, Roach A W. Actinomycetes may cause tastes and odors in water supplies[J]. Public Works, 1956, 87(5): 103-106.
[9] Hoak R D. Origin of tastes and odors in drinking water[J]. Public Works,1957,88:83-85.
[10]Gaines H D, Collins R P. Volatile substances produced by Streptomyces odorifer[J]. Lloydia, 1963, 26(4): 247-253.
[11]Medsker L L,Jenkins D, Thomas J F, et al. Odorous compounds in natural waters. 2-Exo-hydroxy-2-methylbornane, the major odorous compound produced by several actinomycetes[J]. Environmental Science & Technology, 1969, 3(5): 476-477.
[12]Safferman R S, Rosen A A, Mashni C I, et al. Earthy-smelling substance from a blue-green alga[J]. Environmental Science & Technology, 1967, 1(5): 429-430.
[13]Tabachek J A L, Yurkowski M. Isolation and identification of blue-green algae producing muddy odor metabolites, GSM, and 2-methylisoborneol, in saline lakes in Manitoba[J]. Journal of the Fisheries Board of Canada, 1976, 33(1): 25-35.
[15]Persson P E. Odorous algal cultures in culture collections[J]. Water Science & Technology, 1988, 20(8-9): 211-213.
[16]Yagi O, Sugiura N, Sudo R.Chemical and biological factors on the musty odor occurrence in Lake Kasumigaura Japan[J].Japanese Journal of Limnology,1985,46(1):32-40.
[17]Izaguirre G, Taylor W D. A guide to GSM-and MIBproducing cyanobacteria in the United States[J].Water Science &Technology, 2004,49 (9):19-24.
[18]Watson S B. Chemical communication or chemical waste? A review of the chemical ecology of algal odour[J]. Phycologia, 2003, 42: 333-350.
[19]Juttner F, Hoflacher B,Wurster K.Seasonal analysis of volatile organic biogenic substances (VOBS) in freshwater phytoplankton populations dominated by Dinobryon, Microcystis and Aphanizomenon[J]. Phycology,1986,22(2):169-175.
[20]Jones G J, Korth W. In situ production of volatile odour compounds by river and reservoir phytoplankton populations in Australia[J].Water Science Technology,1995,31(11):145-151.
[21]Sklenar K S, Horne A J.Horizontal distribution of GSM in a reservoir before and after copper treatment[J]. Water Science Technology, 1999,40(40):229-237.
[23]Naes H, Post A F. Transient states of geosmin, pigments, carbohydrates and proteins in continuous cultures of Oscillatoria brevis induced by changes in nitrogen supply[J]. Archives of microbiology, 1988, 150(4): 333-337.
[24]Rosen B H, MacLeod B W, Simpson M R. Accumulation and Release of Geosmin during the Growth Phases of Anabaena circinalis (Kutz.) Rabenhorst[J]. Water Science & Technology, 1992, 25(2): 185-190.
[25]Saadoun I M K, Schrader K K, Blevins W T.Environmental and nutritional factors affecting geosmin synthesis byAnabaenasp.[J]. Water Research, 2001, 35(5): 1209-1218.
[26]Dionigi C P, Ingram D A. Effects of temperature and oxygen concentration on geosmin production byStreptomycestendaeandPenicilliumexpansum[J]. Journal of agricultural and food chemistry, 1994, 42(1): 143-145.
[27]Dionigi C P, Ahten T S, Wartelle L H. Effects of several metals on spore, biomass, and geosmin production byStreptomycestendaeandPenicilliumexpansum[J]. Journal of industrial microbiology, 1996, 17(2): 84-88.
[28]Schrader K K, Blevins W T. Effects of carbon source, phosphorus concentration, and several micronutrients on biomass and geosmin production byStreptomyceshalstedii[J].Journal of industrial Microbiology and Biotechnology, 2001, 26(4): 241-247.
[29]Sunesson A L, Nilsson C A, Carlson R, et al. Production of volatile metabolites from Streptomyces albidoflavus cultivated on gypsum board and tryptone glucose extract agar-Influence of temperature, oxygen and carbon dioxide levels[J]. The Annals of Occupational Hygiene, 1997, 41(4): 393-413.
[30]Wood S,Williams S T, White W R.Potential sites of GSM production by Streptomycetes in and around reservoirs[J]. The Journal of Applied Bacteriology,1985,58:319-326.
[31]Sugiura N, Inamori Y, Hosaka R,et al.Algae enhancing musty odor production by actinomycetes in Lake Kasumigaura[J].Hydrobiologia,1994,288(1):57-64.
[32]Dionigi C P, Millie D F, Spanier A M, et al. Spore and geosmin production byStreptomycestendaeon several media[J]. Journal of agricultural and food chemistry, 1992, 40(1): 122-125.
[33]Bentley R, Meganathan R.GSM and methylisoborneol biosynthesis in streptomycetes. Evidence for an isoprenoid pathway and its absence in non-differentiating isolates[J]. FEBS Letters,1981,125(2):220-222.
[34]Cane D E, He X, Kobayashi S. GSM biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/GSM synthase[J]. The Journal of antibiotics, 2006, 59(8): 471-479.
[35]Dionigi C P, Ahten T S, Wartelle L H. Effects of several metals on spore, biomass, and GSM production byStreptomycestendaeandPenicilliumexpansum[J]. Journal of industrial microbiology, 1996, 17(2): 84-88.
[36]Jüttner F, Bogenschütz O. Geranyl derivatives as inhibitors of the carotenogenesis inSynechococcusPCC 6911 (cyanobacteria)[J]. Zeitschrift für Naturforschung C, 1983, 38(5-6): 387-392.
[37]Juttner F,Watson S B.Biochemical and ecological control of GSM and 2-methylisoborneol in source waters[J].Applied and Environment Microbiology,2007,73(14):4395-4406.
[38]Spiteller D, Jux J, Boland W,et al. Feeding of [5,4-2H2]-1-desoxy-D-xylulose and [4,4,6,6,6-2H5]-mevalolactone to a GSM-producingStreptomycessp. andFossombroniapusilla[J].Phytochemistry,2002,61:827-834
[39]Rodríguez-Concepción M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics[J]. Plant Physiol,2002,130(3):1079-1089.
[40]Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units[J]. Bioscience Biotechnology Biochemistry,2002,66(8):1619-1627.
[41]Seto H, Watanabe H, Furihata K. Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenly diphosphate inStreptomycesaeriouvifer[J]. Tetrahedron letters, 1996, 37(44): 7979-7982.
[42]Seto H, Orihara N, Furihata K. Studies on the biosynthesis of terpenoids produced by actinomycetes.Part 4. Formation of BE-40644 by the mevalonate and nonmevalonate pathways[J]. Tetrahedron letters,1998,39(51):9497-9500.
[43]Dickschat J S, Bode H B, Mahmud T, et al. A novel type of GSM biosynthesis in myxobacteria[J]. The Journal of organic chemistry, 2005, 70(13): 5174-5182.
[44]Dickschat J S, Nawrath T, Thiel V, et al. Biosynthesis of the Off-Flavor 2-Methylisoborneol by the Myxobacterium Nannocystis exedens[J]. Angewandte Chemie International Edition, 2007, 46(43): 8287-8290.
[45]Watson S B, Ridal J, Boyer G L. Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2008,65(8): 1779-1796.
[46]Durrer M, Zimmermann U, Jüttner F. Dissolved and particle-bound GSM in a mesotrophic lake (lake Zürich): spatial and seasonal distribution and the effect of grazers[J]. Water Research, 1999, 33(17): 3628-3636.
[47]戴樹桂. 環(huán)境化學[M].北京:高等教育出版社,1987:214.
[48]Silvey J K G, Henley A W, Nunez W J, et al. Biological control: control of naturally occurring taste and odors by microorganisms[C].Detroit, USA: Proceedings of the National Biological Congress, 1970.
[49]Ho L,Sawade E,Newcombe G.Biological treatment options for cyanobacteria metabolite removal-A review[J].Water Research,2012,46(5):1536-1548.
[50]Izaguirre G, Wolfe R L, Means E G. Degradation of 2-methylisoborneol by aquatic bacteria[J]. Applied and environmental microbiology, 1988, 54(10): 2424-2431.
[51]Egashira K, Ito K, Yoshiy Y. Removal of musty odor compound in drinking water by biological filter[J]. Water Science & Technology, 1992, 25(2): 307-314.
[52]Tanaka A, Oritani T, Uehara F, et al. Biodegradation of a musty odour component, 2-methylisoborneol[J]. Water Research, 1996, 30(3): 759-761.
[53]Oikawa E, Shimizu A, Ishibashi Y. 2-methylisoborneol degradation by the cam operon from Pseudomonas putida PpG1[J]. Water Science and Technology, 1995, 31(11): 79-86.
[54]Sumitomo H. Odor decomposition by the yeast Candida[J]. Water Science & Technology, 1988, 20(8-9): 157-162.
[55]Ishida H, Miyaji Y. Biodegradation of 2-methylisoborneol by oligotrophic bacterium isolated from a eutrophied lake[J]. Water Science & Technology, 1992, 25(2): 269-276.
[56]Lauderdale C V, Aldrich H C, Lindner A S. Isolation and characterization of a bacterium capable of removing taste-and odor-causing 2-methylisoborneol from water[J]. Water research, 2004, 38(19): 4135-4142.
[57]Yagi M, Nakashima S, Muramoto S. Biological degradation of musty odor compounds, 2-methylisoborneol and geosmin, in a bio-activated carbon filter[J]. Water Science & Technology, 1988, 20(8-9): 255-260.
[58]Narayan L V, Nunez III W J. Biological Control: Isolation and Bacterial Oxidation of the Taste-and-Odor Compound Geosmin [J]. Journal-American Water Works Association, 1974, 66(9): 532-536.
[59]Saadoun I, El-Migdadi F. Degradation of geosmin-like compounds by selected species of Gram-positive bacteria[J]. Letters in applied microbiology, 1998, 26(2): 98-100.
[60]Elhadi S L, Huck P M, Slawson R M. Removal of GSM and 2-methylisoborneol by biological filtration[J]. Water Science& Technology,2004,49(9):273-280.
[61]Elhadi S L N, Huck P M, Slawson R M. Factors affecting the removal of GSM and MIB in drinking water biofilters[J]. Journal of the American Water Works Association,2006,98(8):108-119.
[62]Ho L, Hoefel D, Bock F, et al. Biodegradation rates of 2-methylisoborneol (MIB) and GSM through sand filters and in bioreactors[J]. Chemosphere, 2007,66 (11):2210-2218.
[63]Aoyama K, Kawamura N, Saitoh M,et al. Interactions between bacteria-free Anabaenamacrospora clone and bacteria isolated from unialgal culture[J].Water Science &Technology,1995,31(11):121-126.
[64]Lupton F S, Marshall K C. Specific adhesion of bacteria to heterocysts ofAnabaenaspp. and its ecological significance[J].Applied and Environmental Microbiology,1981,42(6):1085-1092.
[65]Trudgill P W. Microbial degradation of the alicyclic ring. Structural relationships and metabolic pathways [Crude petroleum extraction][J]. Microbiology Series, 1984, 13: 131-180.
[66]Rittmann, B.E., Gantzer, C.J., Montiel, A. Advances in Taste and-Odor Treatment and Control[M]. Denver, USA: Amer Water Works Assn, 1995:209-246.
[67]Saito A, Tokuyama T, Tanaka A, et al. Microbiological degradation of (-)-GSM[J].Water research, 1999,33(13): 3033-3036.
[68]Westerhoff P, Rodriguez-Hernandez M, Larry B, et al.Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs[J].Water Research,2005,39(20):4899-4912.
[69]Lalezary S, Pirbazari M, McGuire M J, et al. Air stripping of taste and odor compounds from water[J]. Journal-American Water Works Association, 1984, 76(3): 83-87.
[71]Zonglai Li, Peter Hobson, Wei An,et al.Earthy odor compounds production and loss in threecyanobacterial cultures[J].Water Research,2012,46(16):5165-5173.
[72]Korategere V, Atasi K, Linden K, et al. Evaluation of Two UV Advanced Oxidation Technologies for the Removal of Organic and Organoleptic Compounds: A Pilot Demonstration[C].USA: AWWA Annual Conference, 2004.
[73]Collivignarelli C, Sorlini S. AOPs with ozone and UV radiation in drinking water: contaminants removal and effects on disinfection byproducts formation[J]. Water Science and Technology, 2004, 49(4): 51-56.
[74]Glaze W H, Schep R, Chauncey W, et al. Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply[J]. Journal-American Water Works Association, 1990, 82(5): 79-84.
[75]李林, 宋立榮, 陳偉,等. 淡水藻源異嗅化合物的光降解和光催化降解研究[J].中國給水排水,2007,13(23):102-105.
[76]Graham M R, Summers R S, Simpson M R, et al. Modeling equilibrium adsorption of 2-methylisoborneol and geosmin in natural waters[J]. Water Research, 2000, 34(8): 2291-2300.
[77]Whitfield F B. Biological origins of off-flavors in fish and crustacean[J]. Water Science Technology, 1999, 40(6): 265-272.
[78]Clark K E, Gobas F A P C, Mackay D. Model of organic chemical uptake and clearance by fish from food and water[J]. Environmental science & technology, 1990, 24(8): 1203-1213.
[79]Howgate P. Tainting of farmed fish by GSM and 2-methyl-iso-borneol: a review of sensory aspects and of uptake/depuration[J]. Aquaculture, 2004, 234(1): 155-181.
Resource, Migration & Transformation of Two Main Off-Flavor Compounds in Natural Water
LI Chong-wei1, ZOU Pan1, YANG Zhao-guang1, 2, LI Hai-pu1
(1.Schl.ofChem. &Chem.Engin.,ZhongnanUni.,Changsha410083; 2.ShenzhenRes.Inst.ofZhongnanUni.,Shenzhen518057)
In recent years, the issue of taste and odor (T&O) in water attracts people’s attention. Study has found that the main T&O compounds in natural waters were volatile secondary metabolite produced by microbes and algae. In this paper, the resource and biosynthesis of two main off-flavor compounds, 2-methylisoborneol and geosmin (GSM), in natural aqueous matrices were reviewed. In addition, the migration and transformation of these two off-flavor compounds in natural water by means of absorption, volatilization, photolysis, biodegradation were introduced. The transfer pathway of these two compounds into aquatic life was also discussed in this paper.
volatile secondary metabolite; off-flavor compounds; geosmin; 2-methylisoborneol; fate
國家自然科學基金項目(21277175);深圳市戰(zhàn)略性新興產業(yè)發(fā)展專項資金項目(JCYJ20120618164317119)
李沖煒 男,碩士研究生。主要從事水體異嗅物質的匯源及控制方面研究。E-mail:132311085@csu.edu.cn
* 通訊作者。女,教授,博士生導師。研究方向為飲用水安全。Tel:0731-88876961,E-mail:lihaipu@csu.edu.cn
2015-11-12;
2015-12-28
Q939.9; X-1
A
1005-7021(2016)02-0074-07
10.3969/j.issn.1005-7021.2016.02.013