• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    (強)余純內射模和(強)余純平坦模

    2016-12-21 05:25:20淄博師范高等??茖W校初教系山東淄博255130
    淄博師專論叢 2016年2期
    關鍵詞:內射模淄博師范

    張 珍(淄博師范高等專科學校 初教系 ,山東 淄博 255130)

    ?

    (強)余純內射模和(強)余純平坦模

    張 珍(淄博師范高等??茖W校 初教系 ,山東 淄博 255130)

    R是任意一個結合環(huán),M既是左R-模又是右R-模。M稱為強余純內射的,如果對于任意的內射R-模E和任意的 i ≥ 1都有Exti(E, M ) = 0;如果 Ext1(E, M ) = 0,我們稱M是余純內射的。類似的,M稱為余純平坦的,如果對于任意的內射R-模E和任意的i ≥ 1都有Tori(E,M)=0;如果Tor1(E,M)=0 ,我們稱M是余純平坦的。我們找出并證明了(強)余純內射模和(強)余純平坦模之間的關系。更重要的是,我們給出了由Enochs and Jenda所列出的一些重要結論的證明。

    余純內射模;余純平坦模,(預)蓋類;(預)包類;余撓理論

    2000 Mathematics Subject Classification: 13D02; 13D07; 13E15; 16D10

    Introduction

    Let R be an associative ring. R is called an Iwanaga-Gorenstein ring if R is both left and right noetherian and if the self-injective dimension on both the left and right is finite, [2]. In Homological algebra, injective precovers and flat preenvelopes caught many authors’ attention and the two classes of modules of copure injective and copure flat were discovered when studying the injective precovers and flat preenvelopes. Recently, the copure injective modules and copure flat modules have been studied by many authors, see [1], [3], [4], and [9].

    In section 2 of this paper, we impose the definition of (strongly) copure injective modules, (strongly) copure flat modules and study the property of them. Furthermore, we investigate the equivalent condition of copure injective modules and strongly copure injective modules, copure flat modules and strongly copure flat modules. And we obtained a characterization for 1-Gorenstein ring. See the following Theorem

    Theorem Let R be a left and right noetherian ring. The following are equivalent:

    (1).R is 1-Gorenstein;

    (2).An R-module (left and right) M is copure injective if and only if it is strongly copure injective;

    (3).Every copure injective R-module (left and right) is h-divisible;

    (4).Every homomorphic image of a copure injective R-module (left and right) is copure injective;

    (5).Every h-divisible R-module (left and right) is copure injective;

    (6).An R-module (left and right) M is copure flat if and only if it is strongly copure flat;

    (7).Every submodule of a copure flat R-module (left and right) is copure flat;

    (8).Every submodule of a flat R-module (left and right) is copure flat;

    On the other hand, we imposed two new homological dimensions related to the class of copure injective modules and the class of copure flat modules, which we denote by cid and cfd respectively. And we proved the following two propositions, which were introduced by Enochs and Jenda [2]

    Proposition Let R be a left and right noetherian ring and M a strongly copure flat R-module. The following are equivalent:

    (1).R is n-Gorenstein;

    (2).cidM≤ n for all left and right R-modules M ;

    (3).If 0 → M → E0→ E1→…→ En-1→ C → 0 is an exact sequence of any left (right) R-module M with each Eiinjective, then C is strongly copure injective.

    Proposition Let R be a left and right noetherian ring and M a strongly copure flat R-module. The following are equivalent:

    (1).R is n-Gorenstein;

    (2).cfdM ≤ n for all left and right R-modules M ;

    (3).If 0 → K → Pn-1→ … → P1→ P0→ M → 0 is an exact sequence of any left (right) R-module M with each Piprojective, then K is strongly copure flat.

    §1 Preliminaries

    In this section, we introduce a number of notions and results which will be used throughout this work. Firstly, we employ some notions used by Holm in [6].

    Definition 1.1. Let X be a class of R-modules and M be an R-module. An X-resolution of M is an exact sequence X=…→X1→X0→M→0with each Xi∈X. The X-coresolution of M is defined dually.

    Let…→X1→X0→M→0 be an X-resolution of M . We set

    K0= M , K1= ker(X0→ M ), Ki= ker(Xi-1→ Xi-2) for all i ≥ 2.

    The nth kernel Kn(n ≥ 0) is called the nth X -syzygy of M.

    Let 0→ M → X0→ X1→ … be an X -coresolution of M . We set

    L0= M , L1= coker(M → X0), Li= ker(Xi-2→ Xi-1) for all i ≥ 2.

    The nth cokernel Ln(n ≥ 0) is called the nth X -cosyzygy of M.

    IfX is the class of projective (resp., injective) modules, then Kn(resp., Ln)is simply called the nth syzygy (resp.,cosyzygy).

    We conclude this section by recalling the notion of cotorsion theory, which was first introduced by Salce in [11] for abelian groups, and which is a useful tool for showing the existence of (pre)covers and (pre)envelopes, see [2, Definitions 5.1.1 and 6.1.1].

    Definition 1.3. [2, Definition 7.1.2] A pair of classes of modules (F , G ) is a cotorsion theory if F⊥= G and⊥G= F .

    A set D is said to generate the cotorsion theory if⊥D = F and a set D′is said to cogenerate (F , G ) if D′⊥= G .

    For a cotorsion theory (F , G ), we usually call F ∩ G the kernel of (F , G). A cotorsion theory (F, G) is called perfect if F is covering and G is enveloping, and (F, G ) is complete if F is special precovering, equivalently, G is special preenveloping [5, Lemma 2.2.6]. Note that a perfect cotorsion theory is always complete by [5, Corollary 2.2.5].A cotorsion theory(F,G)is hereditary if F is projectively resolving,equivalently,G is injectively resolving,or Ext 1 R(F.G)=0 for any F∈F and G∈G[5,Lemma 2.2.10].

    In this section, we give the proof of the conclusion given by Enochs and Jenda.Moreover,we discussed the homological dimension related to the class of copure injective modules and copure flat modules.

    Firstly,we give the definition of h-divisible modules.

    Definition 2.1.Let R be any ring and M an R-module.M is called h-divisible if M is a homophic image of any injective R-module.

    Now,we impose the definitions of(strongly)copure injective and (strongly)copure flat modules,which were defined by Enochs and Jenda in[2,Exercises 1,2].

    Definition 2.2. Let R be a ring. An Rmodule M is called strongly copure injective if Exti(E,M)=0for any injective R-module E andi 1, and M is called copure injective if Ext1(E,M)=0.

    Definition 2.3.Let R be a ring. An Rmodule M is called strongly copure flat if Tory(E,M)=0 for any injective R-module E and i 1,and M is called copure flat if Tor1(E,M)=0.

    The following Proposition indicates that the relation between (strongly)copure injective modules and(strongly)copure flat modules.

    Proposition 2.4. Let R be a ring and E an injective R-modele(left and right).Then an R-module M (left and right) is copure flat if and only if Hom(M,E)is copure injective.

    Proof.By [2,Theotem 3.2.1],we have the following is omorphism

    Ext1(I,Hom(M,E)) Hom(Tor1(I,M),E)

    wite I any injective R-modele (left and right).Hence M is copure flat if and only if Hom(M,E)is copure injective.

    The following Theorem was given by Enochs and Jenda,and we give the detailed proof.

    Theorem 2.5.Let R be a left and right noetherian ring.The following are equivalent;

    (1).R is 1-Gorenstein;

    (2).An R-modele(left and right)M is copure injective if and only if it is strongly copure injective;

    (3).Every copure injective R-modele(left and right)is h-divisible;

    (4).Every homomorphic image of a copure injective R-modele(left and right)is copure injective;

    (5).Every h-divisible R-modele(left and right) is copure injective;

    (6).An R-modele(left and right) M is copure flat if and only if it is strongly copure flat;

    (7).Every submodule of a copure flat R-modele(left and right)is copure flat;

    (8).Every submodule of a flat R-modele (left and right)is copure flat;

    with I injective, and K the kernel of by Wakamatsu Lemma, Ext1(E, K) = 0 for any injective R-module (left and right) E. Therefore, K is copure injective. By (2), K is strongly copure injective. Applying Hom(E,-) to (*), we get a long exact sequence

    … → Ext1(E, I ) → Ext1(E, M ) → Ext2(E, K) → …

    Since Ext1(E, I ) = Ext2(E, K) = 0, we get that Ext1(E, M ) = 0. Hence M is copure injective.

    0 → N → I → C → 0

    with I injective and C the cokernel of(N → I) . So C is h-divisible module by Definition 2.1. For any R-module E (left and right), applyingHom(E,-), we get an isomorphism

    Ext1(E,C)?Ext2(E,N)

    By (5), C is copure injective. So Ext1(E, C ) = 0, hence Ext2(E, N ) = 0. Therefore, pdE ≤ 1. By [2, Theorem 9.1.11], R is 1-Gorenstein.

    where the first row is the projective resolution of M and P0is projective. Consider the middle column, which is the injective resolution of P0with I injective. Since R is 1-Gorenstein, idP0≤ 1 by [2, Theorem 9.1.11(3)]. So C is injective. Hence the right most column in the pushout split and there is a morphism from D to M . So there is an epimorphism I → M and M is h-divisible.

    → Ext1(E, M ) → Ext1(E, N ) → Ext2(E, K) →

    As Ext1(E, M ) = 0 = Ext2(E, K), we get that Ext1(E, N ) = 0. Hence N is copure injective and (4) follows.

    0 → K → P0→ M → 0.

    For any injective R-module E (left and right), applying E? -, we get an isomorphism Tor1(E,K)≌ Tor1(E,M). Obviously, K is the submodule of P0, so K is copure flat by (8). Hence Tor1(E, K) = 0 and Tor2(E, M ) = 0 follows. Thus pdE ≤ 2. By [2, Theorem 9.1.11], R is 1-Gorenstein.

    The copure injective dimension(cid) of an R-module M is the largest positive integer n such that Extn(E, M )≠0 for all injective E. For a strongly copure injective module M , we set cidM = 0. We have the following Proposition:

    Proposition 2.6. Let R be a left and right noetherian ring and M a strongly copure injective R-module. The following are equivalent:

    (1).R is n-Gorenstein;

    (2).cidM ≤ n for all left and right R-modules M ;

    (3).If 0 → M → E0→ E1→ … → En-1→ C → 0 is an exact sequence of any left (right) R-module M with each Eiinjective, then C is strongly copure injective.

    0 → M → E0→ E1→ … → En-1→ C → 0,

    applying Hom(E, -) with E an injective left (right) R-module, by dimension shifting, we get an isomorphism Exti(E,C)?Extn+i(E,M) for all i ≥ 1. By (2), cidM ≤ n, thus Extn+i(E,M)=0 and so Exti(E, C ) = 0 for all i ≥ 1. Hence C is strongly copure injective.

    0 → M → E0→ E1→ … → En-1→ C → 0,

    with C the n-th cosyzygy of M , applying Hom(E, -) with E an injective left (right) R-module, we get an isomorphism Exti(E, C )≌Extn+i(E, M) by dimension shifting for all i ≥ 1. By (3), C is strongly copure injective, so Exti(E, C ) = 0 and we get that Extn+i(E, M ) = 0. Hence pdE ≤ n. Therefore R is n-Gorenstein again by [2, Theorem 9.1.11(5)].

    Similarly, we can define the copure flat dimension (cfd) of an R-module M,which is the largest positive integer n such that Torn(E, M ) ≠0 for all injective E. For an strongly copure flat module M , we set cfdM = 0.

    We have the following Proposi-tion:

    Proposition 2.7. Let R be a left and right noetherian ring and M a strongly copure flat R-module. The following are equivalent:

    (1).R is n-Gorenstein;

    (2).cfdM ≤ n for all left and right R-modules M ;

    (3).If 0 → K → Pn-1→ … → P1→ P0→ M → 0 is an exact sequence of any left (right) R-module M with each Piprojective, then K is strongly copure flat.

    Proof. It is similar to Proposition 2.6 and we omit the proof.

    Acknowledgement The authors would like to express their sincere thanks to the referee for his or her careful reading of the manuscript and helpful suggestions.

    This research was partially supported by the school level subject of ZiBo Normal College (the study of homology dimension with respect to semidualizing modules, No.14XK014).

    [1]N.Q.Ding, J.L.Chen, On copure flat modules and flat resolvents, Comm. Algebra 24(1996), 1071 -1081.

    [2]Enochs, E. E., Jenda, O. M. G. (2000). Relative homological algebra. Berlin, New York: De-Gruyter.

    [3]E.E.Enochs,O.M.G.Jenda,Copure injective modules,Quaest.Math.14(1991),401-409.

    [4]E.E.Enochs, O.M.G.Jenda, Copure injective resolutions, flat resolutions and dimen-sions, Comment. Math. 34 (1993), 203-201.

    [5]G¨obel, R., Trlifaj, J. (2006). Approximations and Endomorphism Algebras of modules.Berlin, New York: De Gruyter.

    [6]Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra 189(1)(2004), 167-193.

    [7]O.Jenda, On Gorenstein rings, Math. Z.197 (1988), 119-122.

    [8]Holm, H., J?rgensen, P. Covers, precovers and purity, Illinois J. Math. 52(2)(2008), 691-703.

    [9]R.Sazeedeh, Strongly torsionfree, copure flat and Matlis reflexive modules, J.Pure Appl. Algebra 192(2004), 265-274.

    [10]Rada, J., Saor'n, M. Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm.Algebra, 26(1998), 899-912.

    [11]Salce, L. Cotorsion theories for abelian groups, Symp. Math., 23(1979), 11-32.

    [12]White, D., Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra, 2(1)(2010), 111-137.

    (責任編輯:胡安波)

    Let R be an associative ring, M be a left and right R-module. M is called strongly copure injective if Exti(E, M ) = 0 for all injective module E and all i ≥ 1, copure injective if Ext1(E, M ) = 0. M is called strongly copure flat if Tori(E,M)=0 for all injective module E and all i ≥ 1, copure flat if Tor1(E,M)=0. We find the relation between the (strongly) copure injective and the (strongly) copure flat modules. Furthermore, we give the proof of some conclusions put forward by Enochs and Jenda in [2, Exercises 1,2,3].

    copure injective module; copure flat module; (pre)covering; (pre)enveloping; cotorsion theory.

    2016-01-01

    張珍(1982-),女,山東菏澤人,博士,淄博師范高等專科學校初等教育系教師,主要從事同調代數方向的研究。

    注:本文為淄博師范??茖W校校極課題“半對偶化模誘導的同調維數的研究”[14xk014]的階段性研究成果。

    理學研究

    O151

    A

    (2016)02-0040-05

    猜你喜歡
    內射模淄博師范
    How Zibo broke the curse of short-lived virality and kept the tourists flowing
    鄭州幼兒師范高等專科學校
    千年瓷都演繹淄博陶瓷之美
    山東陶瓷(2021年5期)2022-01-17 02:35:48
    桂林師范高等專科學校作品
    大眾文藝(2021年12期)2021-07-19 08:07:12
    桂林師范高等??茖W校美術作品
    大眾文藝(2021年12期)2021-07-19 08:06:48
    GIac-內射模與GIac-平坦模的環(huán)刻畫
    Gorenstein FPn-內射模和Gorenstein FPn-平坦模
    IG-內射模和SI-代數
    關于淄博窯系的探討
    關于NA-內射模
    色哟哟哟哟哟哟| 电影成人av| 啪啪无遮挡十八禁网站| 欧美丝袜亚洲另类 | 黄色怎么调成土黄色| 午夜福利影视在线免费观看| 亚洲专区中文字幕在线| 十八禁网站免费在线| 久久精品国产亚洲av高清一级| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 精品福利观看| 午夜福利一区二区在线看| 午夜亚洲福利在线播放| 日本vs欧美在线观看视频| 91老司机精品| 在线观看www视频免费| 欧美黑人精品巨大| 大型av网站在线播放| 操出白浆在线播放| 成人18禁高潮啪啪吃奶动态图| 高清欧美精品videossex| 12—13女人毛片做爰片一| 无遮挡黄片免费观看| 久久久水蜜桃国产精品网| 欧美日韩乱码在线| 国产成人精品在线电影| 国产精品爽爽va在线观看网站 | 怎么达到女性高潮| 夜夜夜夜夜久久久久| 久久久国产成人精品二区 | 日韩欧美国产一区二区入口| 久久影院123| 国产1区2区3区精品| 亚洲一区中文字幕在线| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 在线十欧美十亚洲十日本专区| 国产高清videossex| 美女 人体艺术 gogo| 中亚洲国语对白在线视频| 亚洲片人在线观看| 亚洲精品一区av在线观看| 91字幕亚洲| 亚洲久久久国产精品| 中国美女看黄片| 首页视频小说图片口味搜索| 一本大道久久a久久精品| 99国产极品粉嫩在线观看| 视频区欧美日本亚洲| 精品熟女少妇八av免费久了| xxxhd国产人妻xxx| 亚洲一区二区三区色噜噜 | 啪啪无遮挡十八禁网站| 亚洲国产欧美一区二区综合| 久久精品aⅴ一区二区三区四区| 日韩有码中文字幕| 久久久久久久精品吃奶| 美女高潮到喷水免费观看| 19禁男女啪啪无遮挡网站| 国产一区二区激情短视频| 亚洲熟妇中文字幕五十中出 | 叶爱在线成人免费视频播放| 真人一进一出gif抽搐免费| 9色porny在线观看| 少妇粗大呻吟视频| 黑丝袜美女国产一区| av片东京热男人的天堂| 色老头精品视频在线观看| 丁香欧美五月| 久久久久国内视频| 在线播放国产精品三级| 国产精品免费视频内射| 中文字幕人妻丝袜一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 神马国产精品三级电影在线观看 | 一本大道久久a久久精品| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 国产精品国产av在线观看| 午夜福利在线观看吧| 丰满人妻熟妇乱又伦精品不卡| 亚洲五月色婷婷综合| 日韩欧美一区二区三区在线观看| 欧美精品一区二区免费开放| 9色porny在线观看| 97碰自拍视频| 日韩欧美免费精品| 男女高潮啪啪啪动态图| 欧美成人午夜精品| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 国产精品乱码一区二三区的特点 | 亚洲黑人精品在线| 久久热在线av| 亚洲av成人不卡在线观看播放网| 久久人妻熟女aⅴ| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品成人av观看孕妇| 亚洲成人国产一区在线观看| 久99久视频精品免费| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 日日干狠狠操夜夜爽| 国产亚洲欧美精品永久| 一区二区三区激情视频| 啦啦啦 在线观看视频| 99精品久久久久人妻精品| 精品卡一卡二卡四卡免费| av中文乱码字幕在线| 久久人妻熟女aⅴ| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 国产免费现黄频在线看| 一级片'在线观看视频| 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| 欧美日韩一级在线毛片| 最近最新中文字幕大全电影3 | 悠悠久久av| 欧美日本亚洲视频在线播放| 一二三四社区在线视频社区8| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 天天影视国产精品| 桃红色精品国产亚洲av| 亚洲精品av麻豆狂野| 99久久人妻综合| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 亚洲成人久久性| 嫩草影院精品99| 欧美黄色淫秽网站| 久久香蕉精品热| 亚洲精品美女久久久久99蜜臀| 日韩有码中文字幕| netflix在线观看网站| 国产xxxxx性猛交| 搡老熟女国产l中国老女人| 国产野战对白在线观看| 国产有黄有色有爽视频| 久久热在线av| 国产亚洲精品第一综合不卡| 亚洲aⅴ乱码一区二区在线播放 | 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 日本免费一区二区三区高清不卡 | www国产在线视频色| 高清欧美精品videossex| 欧美在线黄色| 国产欧美日韩一区二区精品| 99国产精品一区二区三区| 黄色女人牲交| 视频区图区小说| 精品久久久精品久久久| 亚洲成人国产一区在线观看| 色婷婷av一区二区三区视频| 一级黄色大片毛片| 免费在线观看完整版高清| 久久久国产成人免费| 在线国产一区二区在线| 日韩 欧美 亚洲 中文字幕| 国产精品久久视频播放| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 母亲3免费完整高清在线观看| 国产aⅴ精品一区二区三区波| 午夜视频精品福利| cao死你这个sao货| 精品一区二区三区av网在线观看| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 亚洲国产毛片av蜜桃av| 波多野结衣一区麻豆| 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美98| 777久久人妻少妇嫩草av网站| 天堂√8在线中文| 亚洲成a人片在线一区二区| 亚洲午夜精品一区,二区,三区| 99国产精品免费福利视频| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 一个人免费在线观看的高清视频| 法律面前人人平等表现在哪些方面| 亚洲国产欧美日韩在线播放| 一夜夜www| 高清在线国产一区| 久久国产乱子伦精品免费另类| 久久精品成人免费网站| 男男h啪啪无遮挡| 99re在线观看精品视频| 免费在线观看亚洲国产| 亚洲精品国产区一区二| 欧美日韩乱码在线| 国产精品电影一区二区三区| 一区二区日韩欧美中文字幕| 免费在线观看亚洲国产| 亚洲精品国产区一区二| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| 欧美黄色片欧美黄色片| 久久草成人影院| 日韩中文字幕欧美一区二区| 国产av精品麻豆| 正在播放国产对白刺激| av天堂在线播放| 亚洲国产欧美一区二区综合| 国产伦一二天堂av在线观看| 长腿黑丝高跟| www.熟女人妻精品国产| 国产精品影院久久| 麻豆av在线久日| 可以在线观看毛片的网站| 久久国产乱子伦精品免费另类| 91国产中文字幕| 欧美乱色亚洲激情| 国产精品九九99| 国产成人啪精品午夜网站| 欧美日韩亚洲高清精品| 亚洲一区二区三区欧美精品| 亚洲自偷自拍图片 自拍| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 黄色 视频免费看| 亚洲av熟女| 免费在线观看日本一区| 国产欧美日韩一区二区三| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 日韩大码丰满熟妇| 亚洲国产精品合色在线| 久久中文字幕一级| 国产精品电影一区二区三区| 日韩欧美三级三区| 国产精品 欧美亚洲| 亚洲全国av大片| 人成视频在线观看免费观看| 韩国av一区二区三区四区| 午夜免费观看网址| 亚洲avbb在线观看| 欧美日本亚洲视频在线播放| 国产国语露脸激情在线看| 精品少妇一区二区三区视频日本电影| 国产成人精品久久二区二区91| 真人做人爱边吃奶动态| 午夜福利,免费看| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 中文字幕人妻丝袜制服| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 午夜久久久在线观看| 韩国精品一区二区三区| 久久久国产成人免费| 欧美精品亚洲一区二区| 俄罗斯特黄特色一大片| 热re99久久国产66热| 午夜免费观看网址| 免费av中文字幕在线| 午夜免费成人在线视频| 中文字幕人妻熟女乱码| 久久精品91蜜桃| 国产成人精品无人区| 国产成人免费无遮挡视频| 男女做爰动态图高潮gif福利片 | 亚洲欧洲精品一区二区精品久久久| 亚洲美女黄片视频| 亚洲欧美激情综合另类| www.自偷自拍.com| 久久久国产成人免费| 在线观看66精品国产| 国产亚洲精品久久久久5区| 一级毛片女人18水好多| 国产成年人精品一区二区 | 欧美日本中文国产一区发布| 制服人妻中文乱码| 国产高清激情床上av| 在线av久久热| 99国产极品粉嫩在线观看| 后天国语完整版免费观看| 老司机在亚洲福利影院| 69av精品久久久久久| 韩国av一区二区三区四区| 久久精品影院6| 级片在线观看| 国产精品久久久人人做人人爽| 成年女人毛片免费观看观看9| 国产欧美日韩一区二区三区在线| 69精品国产乱码久久久| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 精品久久久精品久久久| 黄色视频,在线免费观看| 脱女人内裤的视频| 亚洲av第一区精品v没综合| 色播在线永久视频| 色综合站精品国产| √禁漫天堂资源中文www| 涩涩av久久男人的天堂| 国产麻豆69| 一进一出抽搐gif免费好疼 | 波多野结衣高清无吗| 99在线视频只有这里精品首页| av免费在线观看网站| 亚洲欧美一区二区三区黑人| 在线国产一区二区在线| 淫秽高清视频在线观看| 中文字幕高清在线视频| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 亚洲激情在线av| www.精华液| 久久人人精品亚洲av| 国产成人一区二区三区免费视频网站| 伊人久久大香线蕉亚洲五| 亚洲五月婷婷丁香| 少妇 在线观看| 最近最新中文字幕大全免费视频| 超碰成人久久| 最近最新中文字幕大全免费视频| 99国产精品一区二区三区| 露出奶头的视频| 50天的宝宝边吃奶边哭怎么回事| 88av欧美| 国产精品一区二区免费欧美| 亚洲激情在线av| 色综合欧美亚洲国产小说| 新久久久久国产一级毛片| 99精品久久久久人妻精品| 国产精品98久久久久久宅男小说| 一个人观看的视频www高清免费观看 | 欧美日韩中文字幕国产精品一区二区三区 | 精品国产一区二区久久| 亚洲伊人色综图| 欧美日韩一级在线毛片| 午夜视频精品福利| 视频区图区小说| 黄色 视频免费看| 欧美成狂野欧美在线观看| 亚洲中文字幕日韩| 成年人黄色毛片网站| 日韩中文字幕欧美一区二区| 欧美精品一区二区免费开放| 亚洲熟女毛片儿| 亚洲五月天丁香| 超碰成人久久| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 亚洲狠狠婷婷综合久久图片| 9191精品国产免费久久| 国产有黄有色有爽视频| 在线十欧美十亚洲十日本专区| 免费女性裸体啪啪无遮挡网站| 91在线观看av| 男女之事视频高清在线观看| 亚洲一区中文字幕在线| 一级,二级,三级黄色视频| 国产精品98久久久久久宅男小说| 丝袜人妻中文字幕| 妹子高潮喷水视频| 麻豆国产av国片精品| 动漫黄色视频在线观看| 欧美日韩视频精品一区| 亚洲成人久久性| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧美日韩在线播放| 黄色片一级片一级黄色片| 三上悠亚av全集在线观看| 日韩有码中文字幕| 午夜免费成人在线视频| 成年女人毛片免费观看观看9| 国产成人系列免费观看| 久久久国产一区二区| 午夜a级毛片| www.精华液| 午夜福利一区二区在线看| 男女高潮啪啪啪动态图| 人人妻人人爽人人添夜夜欢视频| 人人妻人人添人人爽欧美一区卜| av有码第一页| 亚洲av成人一区二区三| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 久久精品国产亚洲av高清一级| 欧美精品啪啪一区二区三区| 久久精品91无色码中文字幕| 国产亚洲精品久久久久久毛片| 国产精品偷伦视频观看了| 亚洲中文字幕日韩| 99精品久久久久人妻精品| 亚洲专区中文字幕在线| 亚洲免费av在线视频| 欧美日本亚洲视频在线播放| 一级片'在线观看视频| 日本 av在线| 国产亚洲欧美精品永久| 亚洲激情在线av| 国产精品一区二区免费欧美| 国产三级黄色录像| 91在线观看av| 亚洲av熟女| 一边摸一边抽搐一进一出视频| 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽| 中文欧美无线码| 亚洲熟女毛片儿| 国产精品成人在线| 欧美日韩亚洲高清精品| 欧美精品一区二区免费开放| 日韩免费av在线播放| 国产国语露脸激情在线看| 日本五十路高清| 亚洲成国产人片在线观看| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 欧美老熟妇乱子伦牲交| av国产精品久久久久影院| 久久久久久久午夜电影 | 日日干狠狠操夜夜爽| 精品福利观看| 国产成人影院久久av| 动漫黄色视频在线观看| 热99re8久久精品国产| 色在线成人网| 色尼玛亚洲综合影院| 1024香蕉在线观看| 中文字幕av电影在线播放| 91成年电影在线观看| 亚洲一区二区三区不卡视频| 啪啪无遮挡十八禁网站| 色综合欧美亚洲国产小说| 亚洲成人免费av在线播放| 精品久久蜜臀av无| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区免费| 香蕉丝袜av| 亚洲国产精品合色在线| 久久久久国内视频| 麻豆久久精品国产亚洲av | 日韩精品免费视频一区二区三区| 高清av免费在线| a级片在线免费高清观看视频| 99精品在免费线老司机午夜| 淫秽高清视频在线观看| 不卡av一区二区三区| 一级片免费观看大全| 亚洲五月色婷婷综合| 久9热在线精品视频| 人人妻,人人澡人人爽秒播| 欧美一级毛片孕妇| 91麻豆精品激情在线观看国产 | 男女之事视频高清在线观看| 国产精品免费视频内射| 国产av又大| 少妇粗大呻吟视频| 亚洲免费av在线视频| 久久精品aⅴ一区二区三区四区| 国产精品一区二区免费欧美| 久久久久久大精品| 免费日韩欧美在线观看| 亚洲七黄色美女视频| 久热爱精品视频在线9| 成人手机av| 激情视频va一区二区三区| 精品熟女少妇八av免费久了| 亚洲欧美日韩无卡精品| 日本三级黄在线观看| 深夜精品福利| 一级毛片精品| 精品国产乱码久久久久久男人| 欧美日韩精品网址| 欧美色视频一区免费| 丁香欧美五月| av天堂久久9| 琪琪午夜伦伦电影理论片6080| 精品国产国语对白av| 满18在线观看网站| 国产视频一区二区在线看| 69精品国产乱码久久久| 天天躁狠狠躁夜夜躁狠狠躁| 成人影院久久| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 青草久久国产| 新久久久久国产一级毛片| 日本三级黄在线观看| 久久久水蜜桃国产精品网| 色播在线永久视频| 欧美成人性av电影在线观看| 热re99久久精品国产66热6| 性少妇av在线| 日本 av在线| 亚洲精品国产一区二区精华液| 黄色女人牲交| 麻豆一二三区av精品| 在线看a的网站| 亚洲熟女毛片儿| 很黄的视频免费| 一区福利在线观看| 我的亚洲天堂| 久久人妻熟女aⅴ| 国产熟女xx| 午夜亚洲福利在线播放| 午夜福利影视在线免费观看| 国产一区二区三区在线臀色熟女 | 国产精品一区二区免费欧美| 亚洲第一青青草原| 久久青草综合色| 久久精品人人爽人人爽视色| 91在线观看av| 久久中文字幕人妻熟女| 国产亚洲精品一区二区www| 日韩三级视频一区二区三区| 久久热在线av| 丰满的人妻完整版| 久久久久精品国产欧美久久久| 亚洲欧美日韩无卡精品| 久9热在线精品视频| 日韩中文字幕欧美一区二区| а√天堂www在线а√下载| 中文字幕高清在线视频| 黄色视频不卡| 黄色a级毛片大全视频| 免费在线观看完整版高清| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av香蕉五月| 在线播放国产精品三级| 国产一卡二卡三卡精品| 超色免费av| 久久久国产成人免费| 国产视频一区二区在线看| 亚洲人成电影观看| 又紧又爽又黄一区二区| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看| 热99国产精品久久久久久7| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| www.999成人在线观看| 脱女人内裤的视频| 欧美日韩中文字幕国产精品一区二区三区 | 丰满的人妻完整版| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀| 色播在线永久视频| 国产成人精品无人区| 少妇 在线观看| 国产熟女午夜一区二区三区| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx| 80岁老熟妇乱子伦牲交| 欧美久久黑人一区二区| 91成年电影在线观看| 老司机亚洲免费影院| 久久亚洲真实| 久久精品91蜜桃| 在线观看免费日韩欧美大片| 女人被躁到高潮嗷嗷叫费观| 无人区码免费观看不卡| 纯流量卡能插随身wifi吗| 香蕉国产在线看| 亚洲国产欧美日韩在线播放| 无人区码免费观看不卡| 人人妻,人人澡人人爽秒播| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 亚洲av成人一区二区三| 亚洲性夜色夜夜综合| 9191精品国产免费久久| 母亲3免费完整高清在线观看| 高清欧美精品videossex| 人成视频在线观看免费观看| 999久久久精品免费观看国产| 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| 搡老乐熟女国产| 国产午夜精品久久久久久| 真人做人爱边吃奶动态| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载| 一级黄色大片毛片| 一进一出抽搐动态| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久| 国产一卡二卡三卡精品| 看免费av毛片| 欧美激情极品国产一区二区三区| 99精品在免费线老司机午夜| 国产精品爽爽va在线观看网站 | 免费搜索国产男女视频| 亚洲专区字幕在线| 人成视频在线观看免费观看| 久热爱精品视频在线9| 久久久久九九精品影院| 好男人电影高清在线观看| 成人三级做爰电影| 少妇被粗大的猛进出69影院| 国产99久久九九免费精品| 久久人妻熟女aⅴ| 久久精品91蜜桃| 色婷婷av一区二区三区视频| 国产av一区二区精品久久| 国产精品电影一区二区三区| 国产精品av久久久久免费|