• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Adaptive Integrated Guidance and Control Design against Ground Fixed Targets

    2016-12-20 08:07:41CHENBoLIAOFeiJIHaibo
    現(xiàn)代雷達(dá) 2016年3期
    關(guān)鍵詞:方向設(shè)計(jì)

    CHEN Bo,LIAO Fei,JI Haibo

    (1. Department of Automation, University of Science and Technology of China, Hefei 230027, China)(2. Department No.1, Bengbu Naval Petty Officer Academy, Bengbu 233012, China)

    ?

    ·控制技術(shù)·

    An Adaptive Integrated Guidance and Control Design against Ground Fixed Targets

    CHEN Bo1,2,LIAO Fei1,JI Haibo1

    (1. Department of Automation, University of Science and Technology of China, Hefei 230027, China)(2. Department No.1, Bengbu Naval Petty Officer Academy, Bengbu 233012, China)

    An adaptive integrated guidance and control (IGC) approach is proposed based on backstepping method and input-to-state stability for homing missiles against ground fixed targets with actuator failures. A model of the IGC system in the pitch plane is formulated. The IGC laws are designed via backstepping method, which can provide desired impact attitude angle to hit the fixed targets in the presence of external disturbances and actuator failures. In order to deal with the uncertainties, an adaptive control law is developed. The numerical simulation results demonstrate the effectiveness of the proposed design scheme.

    adaptive; integrated guidance and control; ground fixed targets; actuator failures

    陳 勃1,2,廖 飛1,季海波1

    (1. 中國科學(xué)技術(shù)大學(xué) 自動(dòng)化系, 合肥 230027; 2. 海軍蚌埠士官學(xué)校1系, 安徽 蚌埠 233012)

    0 Introduction

    Guidance and control systems of homing missiles are traditionally designed separately followed by combining them. However, accuracy requirements of missiles lead to intense maneuvering during the last phase of the engagement, thus violating the spectral separation assumption of the conventional two-loop design. This has led to the birth of integrated guidance and control (IGC) designs that demonstrate superior hitting accuracies by accounting for the coupling between the kinematics and dynamics of the problem.

    IGC scheme was introduced by Williams et al[1]firstly and was addressed in application to a homing missile by Lin and Yueh[2]. Since then, IGC design has become an emerging trend in missile technology and beendeveloped by being combined with different control theories.Palumbo et al[3]used the state-dependent Riccati equation to deal with a more comprehensive model characterized by nonlinear motion in three dimensions; Menon and Ohlmeyer[4]used the feedback linearization method associated with the linear quadratic regulator technique to formulate a nonlinear IGC laws; Sharam and Richards[5]used an IGC design for homing missiles based on the backstepping strategy; Shkolnikov et al[6]and Shima et al[7]introduced an IGC design by using sliding mode control; Choi and Chwa[8]proposed an adaptive nonlinear guidance law considering target uncertainties and control loop dynamics by way of sliding mode control approach; still, there were other interesting and effective methods, such as subspace stabilization method[9]andθ-Dmethod[10]; Guo and Zhou[11]adoptedH∞control method to design an adaptive nonlinear control law; in[12], the missile attitude angles were considered as state variables and the linear quadratic regulator (LQR) was adopted for designing the IGC law; more recently, the input-to-statestability is introduced to deal with the guidance law design sign problem[13-15]. Therefore, it stands to reason that the IGC system design will be one of the most noticed subjects in missile technology. However, in the guidance law design field against the ground fixed targets, there exists another important problem encountered in practice for complex systems, that is control failures. Control failures include bias, loss of effectiveness or thrusts failures, they can cause control system performance deterioration, and lead to instability and even catastrophic accidents. Therefore, fault-tolerant control (FTC) is introduced to increase availability by specifically designing control algorithms capable of maintaining stability and performance despite the occurrence of faults. In order to increase the safety and reliability of system[16], FTC is used properly to manage the redundancies of control and guidance law system in the event of component failures.

    This paper focuses on designing the scheme of IGC for homing missiles against ground fixed targets. To achieve successful interception and better killing effects, impact attitude angle is required. The exact contributions of this paper are concluded as follows. First, an integrated guidance and control error model is given, and the actuation effectiveness phenomenon is described. Compared with existing approaches used to deal with the integrated guidance and control design problem, ground targets and actuator failures are explicitly taken into consideration. Next, FTC guidance laws based on input-to-state stability and backstepping for ground targets are proposed, which not only are robust against external disturbance, but also accommodate actuator failures. Finally, the backstepping approach is utilized to design the integrated guidance and fault-tolerant control (IGFTC) for missiles against ground fixed targets to make the state variables be input-to-state stable with respect to uncertainties and actuator failures. An adaptive law is designed to estimate the unknown parameter with respect to the actuation effectiveness components. And the stability analysis shows that the interception with desired impact angle can be gotten with the proposed law, and the IGFTC scheme enables stability and performance of the overall system.

    The paper is organized as follows. Section 1 formulates the model of the IGC system in the pitch plane. The process of designing adaptive IGFTC law is given in Section 2 and the numerical simulation results and analysis are presented in Section 3. Finally, conclusions are given in Section 4.

    1 Missile Dynamics

    The model derivation of the IGC system in the pitch plane is presented in this section.

    Linearized missile dynamics in the pitch plane is described as follows[17]

    (1)

    whereαis the attack angle,ωis the angular pitch rate,Pis the thrust of the missile,Qis the dynamic pressure,Sis the aerodynamic reference area,cαis the lift force derivative with the angle of attack,mis the missile mass,Vis the velocity of the missile,Lis the reference length,Jzis the moment of inertia aboutz-axis,δzis the deflection angle for pitch control,mω,mα,mδrepresent the pitch moment derivatives with respect to the angle of attack, the nondimensional angular pitch rate and the deflection angle for pitch control respectively,Δα,Δωare unknown bounded uncertainties.

    Fig.1 Angular relationship

    As shown in Fig.1, dynamics of the range along the light-of-sight (LOS) and the LOS angle are given by

    (2)

    whereris the range along the LOS,qis the LOS angle andθis the flight path angle of the missile. By transforming Eq.(2), we get

    (3)

    As shown in Fig.1, the missile's pitch attitude angle is related with the angle of attack and path angle as follow

    ?=α+θ

    (4)

    We may assume that the angle of attack is very small at the engagement time, so it is easy to obtain that

    ?d≈θd

    (5)

    where ?dandθdare the missile's desired impact attitude angle and the desired impact path angle. The following equation and inequality also hold in the terminal game

    (6)

    We can obtain that

    qd=θd

    (7)

    Applying Eq.(5) into Eq.(7), we get

    qd+?d

    (8)

    Hence, the desired impact attitude angles in the interception endgame can be satisfied by the constraint of the desired impact LOS angle. Letσ=q=qd, then differentiation yields

    (9)

    According to the analysis above, we obtain the model of IGC close loop of the pitch plane as follows

    (10)

    ThispaperaimstodesignanappropriateIGClawforhomingmissilesagainstgroundfixedtargets,sothatthemissilecanhitthetargetaccuratelywithadesiredimpactattitudeangle,andthestabilityoftheoverallsystemisalsorequired.Wesupposethatthespeedisconstantandthemissileaimsatthetargetbyadjustingitsflightdirection,andeventuallyzeroingtheLOSrateleadstosuccessfulinterception.TheterminalimpactattitudeangularconstraintcanbesatisfiedbythenullLOSangleerrorσ=q=qd.

    2 Adaptive IGFTC Design

    ThissectionpresentstheprocessofdesigningtheIGClawforthesystemdescribedbyEq.(10).Firstly,atransformationisemployed

    (11)

    The IGC system given by Eq.(10)can be transformed to the equivalent system as follows

    (12)

    The fault-tolerant model is

    (13)

    whereτis the actuation effectiveness components and 0<τ≤1. It assumes that the inequality 0<τm≤|τ|≤1 holds. 0<τ≤1 implies the situation in which the control partially fails.τ=0 means the actuator completely fails. When this case appears, it will make a complete failure of target interception. The control objective is to design an ISS-based fault-tolerant guidance law for interception such that the law keeps the LOS rate within a small neighborhood of zero. Then an IGFTC law is designed for system by recursive application of backstepping.

    The basic concept of input-to-state stability is introduced as follows:

    (14)

    Eq.(14) guarantees that for any initial statex(t0) and any bounded inputu(t), the statex(t) will be bounded. Furthermore, with a zero inputu(t) (usually regarded as a disturbance input), the system will be uniformly asymptotically stable.

    (15)

    (16)

    Proof.ConsidertheequivalentsystemEq.(13),choosevisualcontrolsasfollows

    (17)

    (18)

    where 0<μ≤τmandδ>0. The derivation ofValong the trajectories of system Eq.(13) is given by

    (19)

    Consider the inequalities

    (20)

    Applying the inequalities into Eq.(19), obtain

    (21)

    Substituting the visual control law, we have

    (22)

    Define

    (23)

    and

    (24)

    For 0<μ<τm≤τ≤1,consider the worst caseτ=μ,obtain

    (25)

    (26)

    Substituting the adaptive law

    (27)

    into Eq.(26),we get

    (28)

    Consider the inequality

    (29)

    We get

    (30)

    (31)

    Multiplying both sides by e2kt, then integrate them over [0,t], we get

    (32)

    (33)

    3 Simulation Results

    Inthissection,thefeasibilityandapplicabilityoftheproposedIGClawisverifiedbythenumericalsimulationsforsomepassivehomingmissile'snonlineardynamicmodelinthepitchplane.Theabbreviationsofunitsusedinthissectionaremformeter,sforsecondandradforradian.

    Fig.2 LOS rate ωq

    Fig.3 Pitch rate ω

    Fig.4 Angle of attack α

    Fig.5 LOS angle q

    Fig.6 Relative range r

    Fig.7 Deflection angle δz

    Fig.8 Adaptive parameter estimate v

    4 Conclusions

    This paper develops a scheme of IGC for homing missiles against ground fixed targets to improve the performance of the system with respect to external disturbances and actuator failures. An integrated model of guidance and control loop in the pitch plane is firstly formulated and the adaptive control law is designed by adopting the backstepping method and input-to-state theorem. Numerical simulation results have validated the usefulness of the IGC design to the homing missiles.

    [1] WILLIAM D E, RICHMAN J, FRIEDLAND B. Design of an integrated strapdown guidance and control system for a tactical missile[C]// Proceedings of the AIAA Guidance and Control Conference. Catlinburg: ARC, 1983: 57-65.

    [2] YUEH W R, LIN C F. Optimal controller for homing missiles[J]. Journal of Guidance, Control and Dynamics, 1985, 8(3): 408-411.

    [3] PALUMBO N F, JACKSON T D. Integrated missile guidance and control: a state dependent Riccati differential equation approach[C]// Proceedings of the 1999 IEEE International Conference on Control Applications. Kohala Coast, HI: IEEE Press, 1999: 243-248.

    [4] MENON P K, OHLMEYER E J. Nonlinear integrated guidance control laws for homing missiles[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal: ARC, 2011: 6-8.

    [5] SHARMA M, Richards N. Adaptive integrated guidance and control for missile interceptors[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Rhode Isaond: ARC, 2004: 1-15.

    [6] SHKOLNIKOV I, SHTESSEL Y, LIANOS D. Integrated guidance-control system of a homing interceptor: sliding mode approach[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal: ARC, 2001.

    [7] SHIMA T, IDAN M, GOLAN O M. Sliding mode control for integrated missile autopilotguidance[J]. Journal of Guidance Control & Dynamics, 2006, 29(2): 250-260.

    [8] CHOI J Y, CHWA D Y. Adatpive nonlinear guidance considering target uncertainties and control loop dynamics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003,39(4): 1139-1143.

    [9] TOURNES C, WILKERSON P. Integrated terminal guidance and automatic pilot using subspace stabilization[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal: ARC, 2001.

    [10] XIN M, BALAKRISHNAM S N, OHLMEYER E J. Integrated guidance and control of missiles withθ-Dmethod [J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 981-992.

    [11] GUO J G, ZHOU J. Integrated guidance-control systems design based onH∞control[C]// 2010 International Conference on Electrical and Control Engineering. Wuhan, China: IEEE Press, 2010: 1204-1207.

    [12] YUN J, RYOO C K. Integrated guidance and control law with impact angle constraint[C]// 2011 11th International Conference on Control, Automation and Systems. Gyeonggi-do: IEEE Press, 2011: 1239-1243.

    [13] YAN H, JI H B. Integrated guidance and control for dual-control missiles based on small-gain theorem[J]. Automatica, 2012, 48(10): 2686-2692.

    [14] WEICHENG M A, HAN Y A N, HJI H B. Integrated guidance and control against ground fixed targets based on backstepping and input-to-state stability[C]// 2012 International Conference on Mechatronics and Automation (ICMA). Chengdu: IEEE Press, 2012: 321-326.

    [15] LIAO F, JI H, XIE Y. A novel three-dimensional guidance law implementation using only line-of-sight azimuths[J]. International Journal of Robust and Nonlinear Control, 2014, 25(18): 3679-3696.

    [16] DUCARD G J J. Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles[M]. Germany: Springer, 2009.

    [17] HOU M Z, DUAN G R. Integratied guidance and control of homing missiles against ground fixed targets[J]. Chinese Journal of Aeronautices, 2008, 21(2): 162-168.

    [18] KHALIL H K. Nonlinear systems[M]. 3rd ed. New Jersey: Prentice-Haill, 2002.

    陳 勃 男,1984年生,碩士研究生。研究方向?yàn)閷?dǎo)航制導(dǎo)與控制。

    廖 飛 男,1987年生,博士研究生。研究方向?yàn)閷?dǎo)航制導(dǎo)與控制。

    季海波 男,1964年生,教授,博士生導(dǎo)師。研究方向?yàn)榉蔷€性控制、導(dǎo)航制導(dǎo)與控制等。

    國家自然科學(xué)基金專項(xiàng)資助項(xiàng)目(61273090)

    陳勃 Email:447001023@qq.com

    2015-10-21

    2015-12-22

    一種針對(duì)地面固定目標(biāo)自適應(yīng)導(dǎo)控一體化設(shè)計(jì)

    基于反步設(shè)計(jì)法和輸入-狀態(tài)穩(wěn)定理論, 針對(duì)地面固定目標(biāo),提出了一種執(zhí)行器失效時(shí)自適應(yīng)導(dǎo)引控制一體化(IGC)設(shè)計(jì)方法。首先,描述了一體化導(dǎo)引控制的數(shù)學(xué)模型;然后,基于反步設(shè)計(jì)法提出一種導(dǎo)引控制一體化算法,該算法能夠在額外擾動(dòng)和執(zhí)行器失效的情況下以設(shè)計(jì)的沖擊姿態(tài)角打擊地面固定目標(biāo);同時(shí),提出一種自適應(yīng)律來處理由于執(zhí)行器部分失效所引起的不確定性。仿真結(jié)果表明該算法是行之有效的。

    自適應(yīng);導(dǎo)引控制一體化;地面固定目標(biāo);執(zhí)行器失效

    TN957.52

    A

    1004-7859(2016)03-0078-08

    10.16592/ j.cnki.1004-7859.2016.03.017

    猜你喜歡
    方向設(shè)計(jì)
    2022年組稿方向
    2022年組稿方向
    2021年組稿方向
    2021年組稿方向
    2021年組稿方向
    何為設(shè)計(jì)的守護(hù)之道?
    《豐收的喜悅展示設(shè)計(jì)》
    流行色(2020年1期)2020-04-28 11:16:38
    瞞天過海——仿生設(shè)計(jì)萌到家
    設(shè)計(jì)秀
    海峽姐妹(2017年7期)2017-07-31 19:08:17
    有種設(shè)計(jì)叫而專
    Coco薇(2017年5期)2017-06-05 08:53:16
    亚洲黑人精品在线| 一区二区三区激情视频| 亚洲伊人色综图| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区mp4| 男女午夜视频在线观看| 90打野战视频偷拍视频| 欧美日韩一级在线毛片| 人人妻人人添人人爽欧美一区卜| 亚洲三区欧美一区| 国产又爽黄色视频| а√天堂www在线а√下载| 99久久精品国产亚洲精品| 黄色毛片三级朝国网站| 欧美亚洲日本最大视频资源| 成年人免费黄色播放视频| 中亚洲国语对白在线视频| 久久久久国产一级毛片高清牌| 在线观看舔阴道视频| 亚洲 国产 在线| 长腿黑丝高跟| 国产欧美日韩综合在线一区二区| 男男h啪啪无遮挡| 999精品在线视频| 黄片小视频在线播放| 在线观看午夜福利视频| 黄色a级毛片大全视频| 亚洲欧美日韩另类电影网站| 日韩 欧美 亚洲 中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 欧美中文日本在线观看视频| a级毛片黄视频| 亚洲国产精品sss在线观看 | 午夜免费激情av| 免费av中文字幕在线| 亚洲av五月六月丁香网| 91麻豆精品激情在线观看国产 | 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 亚洲中文字幕日韩| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器 | 满18在线观看网站| 老司机福利观看| 欧美人与性动交α欧美软件| 美女午夜性视频免费| 天堂中文最新版在线下载| 久久久国产成人精品二区 | 久久天躁狠狠躁夜夜2o2o| 成熟少妇高潮喷水视频| 午夜两性在线视频| 一二三四社区在线视频社区8| 一区二区三区精品91| 国产日韩一区二区三区精品不卡| 黄色 视频免费看| 国产精品一区二区三区四区久久 | 欧美黑人欧美精品刺激| 麻豆国产av国片精品| 精品国内亚洲2022精品成人| 亚洲伊人色综图| 日韩视频一区二区在线观看| 91麻豆av在线| 成年版毛片免费区| 欧美老熟妇乱子伦牲交| 青草久久国产| 怎么达到女性高潮| 亚洲精品在线观看二区| 满18在线观看网站| 制服人妻中文乱码| 亚洲三区欧美一区| 久久精品人人爽人人爽视色| 成年女人毛片免费观看观看9| 免费在线观看视频国产中文字幕亚洲| 国产精品香港三级国产av潘金莲| 母亲3免费完整高清在线观看| 亚洲精品国产一区二区精华液| 欧美不卡视频在线免费观看 | 国产激情欧美一区二区| 日本五十路高清| 大陆偷拍与自拍| e午夜精品久久久久久久| 91在线观看av| 波多野结衣av一区二区av| 久久人妻熟女aⅴ| 成熟少妇高潮喷水视频| 亚洲一区二区三区色噜噜 | 伦理电影免费视频| 丝袜在线中文字幕| 色综合站精品国产| 精品日产1卡2卡| a级毛片黄视频| 国产免费av片在线观看野外av| 麻豆av在线久日| 国产精品永久免费网站| 成人av一区二区三区在线看| 99国产综合亚洲精品| 国产精品亚洲av一区麻豆| 欧美人与性动交α欧美软件| 宅男免费午夜| 三级毛片av免费| 黄色毛片三级朝国网站| 国产不卡一卡二| 色精品久久人妻99蜜桃| 久久国产精品人妻蜜桃| 神马国产精品三级电影在线观看 | 侵犯人妻中文字幕一二三四区| 丰满的人妻完整版| 欧美日韩一级在线毛片| 欧美激情久久久久久爽电影 | 久99久视频精品免费| 一区二区三区国产精品乱码| 亚洲国产精品sss在线观看 | 国产精品99久久99久久久不卡| 久久精品国产清高在天天线| 在线观看日韩欧美| 国产亚洲精品综合一区在线观看 | 天堂影院成人在线观看| 久久人人97超碰香蕉20202| 午夜福利在线免费观看网站| 中文字幕色久视频| 久久精品91蜜桃| 国产一区二区在线av高清观看| 久久这里只有精品19| 搡老熟女国产l中国老女人| 成人三级黄色视频| 桃红色精品国产亚洲av| 咕卡用的链子| 亚洲视频免费观看视频| 精品国产一区二区久久| 美女国产高潮福利片在线看| 成年人免费黄色播放视频| 很黄的视频免费| 岛国在线观看网站| 免费高清视频大片| 久久草成人影院| av免费在线观看网站| 亚洲男人天堂网一区| 久99久视频精品免费| 国产熟女xx| 男女下面进入的视频免费午夜 | 深夜精品福利| 中文字幕色久视频| 麻豆久久精品国产亚洲av | 777久久人妻少妇嫩草av网站| 久久中文看片网| bbb黄色大片| 免费在线观看视频国产中文字幕亚洲| 99精品欧美一区二区三区四区| 视频区图区小说| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| 久久草成人影院| 一边摸一边做爽爽视频免费| 国产av精品麻豆| 美女扒开内裤让男人捅视频| 国产一区二区三区视频了| 亚洲av电影在线进入| 两人在一起打扑克的视频| 久久影院123| 老司机靠b影院| 国产免费av片在线观看野外av| 精品福利永久在线观看| 免费一级毛片在线播放高清视频 | 精品福利永久在线观看| 热re99久久国产66热| 欧美av亚洲av综合av国产av| 亚洲人成电影观看| 又黄又粗又硬又大视频| 99国产精品免费福利视频| 两人在一起打扑克的视频| 国产精品1区2区在线观看.| 亚洲精品美女久久av网站| 国产亚洲欧美98| 亚洲色图av天堂| 长腿黑丝高跟| 性欧美人与动物交配| 亚洲欧美日韩另类电影网站| 中文字幕人妻丝袜制服| 午夜免费鲁丝| 久久精品aⅴ一区二区三区四区| 久久香蕉激情| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| xxxhd国产人妻xxx| 午夜福利一区二区在线看| av福利片在线| 一级a爱视频在线免费观看| 黄色视频不卡| 高清在线国产一区| 国产精品久久久av美女十八| 操出白浆在线播放| 在线观看免费视频日本深夜| 国产亚洲精品久久久久5区| 久久久久精品国产欧美久久久| www.自偷自拍.com| 欧美在线一区亚洲| 色综合婷婷激情| 男女做爰动态图高潮gif福利片 | 中出人妻视频一区二区| 亚洲成人久久性| 久久人妻熟女aⅴ| 国产激情久久老熟女| a级毛片黄视频| 色在线成人网| 亚洲人成电影观看| 又黄又爽又免费观看的视频| 久久精品人人爽人人爽视色| 精品久久久久久久久久免费视频 | 久久香蕉激情| 欧美日韩av久久| 日韩三级视频一区二区三区| 男女高潮啪啪啪动态图| www.自偷自拍.com| 嫁个100分男人电影在线观看| 国产熟女xx| 亚洲男人天堂网一区| www国产在线视频色| 亚洲一区二区三区色噜噜 | 精品国产国语对白av| 另类亚洲欧美激情| 人妻久久中文字幕网| 欧美日韩亚洲高清精品| 一边摸一边抽搐一进一小说| 国产精品乱码一区二三区的特点 | 欧美日韩福利视频一区二区| 欧美成人午夜精品| 欧美成人性av电影在线观看| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 久久伊人香网站| 国产精品影院久久| av福利片在线| 国产99白浆流出| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 国产主播在线观看一区二区| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩一区二区三区在线| 国产精华一区二区三区| 777久久人妻少妇嫩草av网站| 淫秽高清视频在线观看| 国产高清国产精品国产三级| 亚洲片人在线观看| 性欧美人与动物交配| 亚洲国产欧美日韩在线播放| 日韩大码丰满熟妇| 热99国产精品久久久久久7| 亚洲av成人av| 国产精品一区二区免费欧美| 免费av毛片视频| 女人精品久久久久毛片| 三上悠亚av全集在线观看| 夜夜爽天天搞| 久久久久国产精品人妻aⅴ院| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| 在线永久观看黄色视频| 美女福利国产在线| 久久精品影院6| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 亚洲欧美一区二区三区黑人| 午夜福利影视在线免费观看| videosex国产| 丁香六月欧美| www.999成人在线观看| 老司机福利观看| 亚洲精品在线观看二区| 99香蕉大伊视频| 国产精品1区2区在线观看.| 丝袜美腿诱惑在线| 日日夜夜操网爽| 午夜免费观看网址| 丰满人妻熟妇乱又伦精品不卡| 黄色 视频免费看| 麻豆av在线久日| 国产免费男女视频| 99国产综合亚洲精品| 亚洲色图综合在线观看| 男女床上黄色一级片免费看| 丰满迷人的少妇在线观看| 国产又色又爽无遮挡免费看| 欧美黄色淫秽网站| 欧美日本亚洲视频在线播放| 人人妻人人澡人人看| 夜夜看夜夜爽夜夜摸 | 国产精品一区二区在线不卡| 日韩精品免费视频一区二区三区| 久久久久国产一级毛片高清牌| www.自偷自拍.com| 久9热在线精品视频| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| xxx96com| a级片在线免费高清观看视频| 亚洲欧美精品综合久久99| 神马国产精品三级电影在线观看 | 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 日本黄色视频三级网站网址| 国产成人精品久久二区二区91| 黑人操中国人逼视频| 日本黄色日本黄色录像| 91老司机精品| 88av欧美| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 成人三级做爰电影| 国产在线观看jvid| 欧美中文日本在线观看视频| 色在线成人网| 在线av久久热| 久久国产乱子伦精品免费另类| 国产麻豆69| 身体一侧抽搐| 成人黄色视频免费在线看| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 黄色a级毛片大全视频| 久久天堂一区二区三区四区| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区| 色在线成人网| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 日韩精品青青久久久久久| 欧美色视频一区免费| 精品一区二区三区视频在线观看免费 | 国产精品亚洲av一区麻豆| 日韩精品青青久久久久久| 久久午夜亚洲精品久久| 亚洲一区二区三区色噜噜 | 欧美日韩av久久| а√天堂www在线а√下载| 无限看片的www在线观看| 极品教师在线免费播放| 欧美乱色亚洲激情| 精品免费久久久久久久清纯| www日本在线高清视频| 亚洲九九香蕉| 亚洲一区二区三区不卡视频| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 极品教师在线免费播放| 一本大道久久a久久精品| 极品教师在线免费播放| 国产精品久久久久成人av| 日韩视频一区二区在线观看| 成人永久免费在线观看视频| 日本a在线网址| 日韩国内少妇激情av| 99国产综合亚洲精品| 欧美日韩国产mv在线观看视频| 亚洲av电影在线进入| 国产成人精品久久二区二区免费| 午夜福利在线免费观看网站| 一本综合久久免费| 亚洲国产精品一区二区三区在线| 老司机在亚洲福利影院| 久久久久国内视频| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 成人特级黄色片久久久久久久| 嫁个100分男人电影在线观看| 欧美成人午夜精品| 制服诱惑二区| 成人av一区二区三区在线看| 精品国产一区二区久久| 婷婷精品国产亚洲av在线| 国产精品秋霞免费鲁丝片| 999久久久国产精品视频| 久久久国产成人免费| 国产一区二区三区视频了| 男人操女人黄网站| 身体一侧抽搐| 女警被强在线播放| 91字幕亚洲| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 国产区一区二久久| 啦啦啦免费观看视频1| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 日韩 欧美 亚洲 中文字幕| 老司机福利观看| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| 亚洲视频免费观看视频| 日韩大尺度精品在线看网址 | 黄色片一级片一级黄色片| 久久欧美精品欧美久久欧美| 国产单亲对白刺激| 国产高清激情床上av| 国产精品永久免费网站| 99精品欧美一区二区三区四区| 亚洲精品久久午夜乱码| 90打野战视频偷拍视频| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 日韩国内少妇激情av| 欧美在线一区亚洲| 麻豆成人av在线观看| 男人的好看免费观看在线视频 | 最新在线观看一区二区三区| 国产不卡一卡二| 国产精品永久免费网站| 国产精品一区二区三区四区久久 | 久久这里只有精品19| 免费看a级黄色片| 成年女人毛片免费观看观看9| 男人舔女人下体高潮全视频| 欧美大码av| 美女高潮喷水抽搐中文字幕| 美女福利国产在线| 天堂中文最新版在线下载| 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| 精品一区二区三区视频在线观看免费 | 亚洲在线自拍视频| 美女高潮到喷水免费观看| 91在线观看av| 亚洲黑人精品在线| 在线观看www视频免费| 欧美日韩福利视频一区二区| 亚洲美女黄片视频| 欧美激情高清一区二区三区| 色老头精品视频在线观看| 国产精品久久视频播放| 精品一区二区三区视频在线观看免费 | av天堂久久9| 国产精品一区二区三区四区久久 | 97超级碰碰碰精品色视频在线观看| 亚洲国产精品999在线| 国产精品日韩av在线免费观看 | 精品国产超薄肉色丝袜足j| 一区在线观看完整版| ponron亚洲| aaaaa片日本免费| 色在线成人网| 男女高潮啪啪啪动态图| 成年人免费黄色播放视频| 亚洲av成人一区二区三| cao死你这个sao货| 天堂俺去俺来也www色官网| 一区在线观看完整版| 99国产极品粉嫩在线观看| 精品午夜福利视频在线观看一区| 在线永久观看黄色视频| 日日爽夜夜爽网站| 精品免费久久久久久久清纯| 女同久久另类99精品国产91| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播| 大码成人一级视频| 亚洲第一青青草原| 色播在线永久视频| 久久久久久久精品吃奶| 欧美日韩黄片免| 极品人妻少妇av视频| 在线观看一区二区三区激情| 成人18禁高潮啪啪吃奶动态图| 女生性感内裤真人,穿戴方法视频| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 黄网站色视频无遮挡免费观看| 操出白浆在线播放| 在线观看一区二区三区激情| 久久国产精品人妻蜜桃| 国产一区二区三区在线臀色熟女 | 超色免费av| 纯流量卡能插随身wifi吗| 女人被狂操c到高潮| 国产精品久久久人人做人人爽| 精品国内亚洲2022精品成人| 国产伦人伦偷精品视频| 国产精品亚洲一级av第二区| 日韩有码中文字幕| 老熟妇仑乱视频hdxx| 欧美日韩视频精品一区| 波多野结衣高清无吗| 亚洲欧美精品综合久久99| 美女大奶头视频| 最新在线观看一区二区三区| 午夜a级毛片| 黄色怎么调成土黄色| 国产精品av久久久久免费| 老司机在亚洲福利影院| 久久香蕉激情| 欧美在线黄色| 日韩大尺度精品在线看网址 | 精品久久蜜臀av无| 美女高潮喷水抽搐中文字幕| 咕卡用的链子| 日韩高清综合在线| av天堂在线播放| 国产成人啪精品午夜网站| 国产精品二区激情视频| 又黄又粗又硬又大视频| 国产精品成人在线| 色在线成人网| 欧美久久黑人一区二区| 久久久久久久午夜电影 | 欧美乱妇无乱码| av天堂在线播放| 国产av一区在线观看免费| 国产一区二区在线av高清观看| 一本大道久久a久久精品| 日韩高清综合在线| 国产av在哪里看| 正在播放国产对白刺激| 亚洲狠狠婷婷综合久久图片| 久久国产精品影院| 国产成人av教育| 日韩精品免费视频一区二区三区| 啦啦啦在线免费观看视频4| 亚洲欧美一区二区三区黑人| 久久久久久免费高清国产稀缺| 久久久久久亚洲精品国产蜜桃av| 久久中文看片网| 好看av亚洲va欧美ⅴa在| 国产精品 国内视频| 亚洲全国av大片| 成熟少妇高潮喷水视频| 久久久水蜜桃国产精品网| 中文字幕精品免费在线观看视频| 成人手机av| 亚洲国产精品sss在线观看 | 另类亚洲欧美激情| netflix在线观看网站| 国产精品久久视频播放| 亚洲伊人色综图| 正在播放国产对白刺激| 黄色视频,在线免费观看| 国产精品1区2区在线观看.| 无人区码免费观看不卡| 国产av一区二区精品久久| 99国产精品99久久久久| 一级片免费观看大全| 午夜精品国产一区二区电影| 国产成人啪精品午夜网站| 视频区欧美日本亚洲| 国产精品99久久99久久久不卡| 日本一区二区免费在线视频| 少妇被粗大的猛进出69影院| 欧美日韩国产mv在线观看视频| 黄片大片在线免费观看| 国产亚洲精品第一综合不卡| 精品久久久久久久久久免费视频 | 在线国产一区二区在线| 国产精品久久视频播放| 女人高潮潮喷娇喘18禁视频| 9色porny在线观看| 亚洲欧美一区二区三区黑人| 久久久久久人人人人人| 久久伊人香网站| 免费高清在线观看日韩| 日本黄色视频三级网站网址| 亚洲第一欧美日韩一区二区三区| 成年人免费黄色播放视频| 老司机在亚洲福利影院| 很黄的视频免费| 国产精品免费一区二区三区在线| 亚洲专区字幕在线| 欧美人与性动交α欧美精品济南到| av在线播放免费不卡| 日日摸夜夜添夜夜添小说| 久久天躁狠狠躁夜夜2o2o| 亚洲精品一区av在线观看| 精品第一国产精品| 日日干狠狠操夜夜爽| 欧美一区二区精品小视频在线| 午夜久久久在线观看| 亚洲av日韩精品久久久久久密| 精品少妇一区二区三区视频日本电影| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人av| 九色亚洲精品在线播放| aaaaa片日本免费| 国产精品二区激情视频| 9热在线视频观看99| 亚洲人成伊人成综合网2020| 黄片小视频在线播放| 欧美精品啪啪一区二区三区| 人人妻人人澡人人看| 黄片小视频在线播放| 女性被躁到高潮视频| 黄色片一级片一级黄色片| a级片在线免费高清观看视频| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人妻熟女乱码| 在线永久观看黄色视频| 国产精品久久久久成人av| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三| 又黄又粗又硬又大视频| 欧美日韩福利视频一区二区| 亚洲视频免费观看视频| 在线十欧美十亚洲十日本专区| 精品熟女少妇八av免费久了| 亚洲视频免费观看视频| 老司机亚洲免费影院| 国产麻豆69| 亚洲熟妇中文字幕五十中出 | 欧美人与性动交α欧美精品济南到| 久久精品国产亚洲av香蕉五月| 国产伦一二天堂av在线观看|