• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Adaptive Integrated Guidance and Control Design against Ground Fixed Targets

    2016-12-20 08:07:41CHENBoLIAOFeiJIHaibo
    現(xiàn)代雷達(dá) 2016年3期
    關(guān)鍵詞:方向設(shè)計(jì)

    CHEN Bo,LIAO Fei,JI Haibo

    (1. Department of Automation, University of Science and Technology of China, Hefei 230027, China)(2. Department No.1, Bengbu Naval Petty Officer Academy, Bengbu 233012, China)

    ?

    ·控制技術(shù)·

    An Adaptive Integrated Guidance and Control Design against Ground Fixed Targets

    CHEN Bo1,2,LIAO Fei1,JI Haibo1

    (1. Department of Automation, University of Science and Technology of China, Hefei 230027, China)(2. Department No.1, Bengbu Naval Petty Officer Academy, Bengbu 233012, China)

    An adaptive integrated guidance and control (IGC) approach is proposed based on backstepping method and input-to-state stability for homing missiles against ground fixed targets with actuator failures. A model of the IGC system in the pitch plane is formulated. The IGC laws are designed via backstepping method, which can provide desired impact attitude angle to hit the fixed targets in the presence of external disturbances and actuator failures. In order to deal with the uncertainties, an adaptive control law is developed. The numerical simulation results demonstrate the effectiveness of the proposed design scheme.

    adaptive; integrated guidance and control; ground fixed targets; actuator failures

    陳 勃1,2,廖 飛1,季海波1

    (1. 中國(guó)科學(xué)技術(shù)大學(xué) 自動(dòng)化系, 合肥 230027; 2. 海軍蚌埠士官學(xué)校1系, 安徽 蚌埠 233012)

    0 Introduction

    Guidance and control systems of homing missiles are traditionally designed separately followed by combining them. However, accuracy requirements of missiles lead to intense maneuvering during the last phase of the engagement, thus violating the spectral separation assumption of the conventional two-loop design. This has led to the birth of integrated guidance and control (IGC) designs that demonstrate superior hitting accuracies by accounting for the coupling between the kinematics and dynamics of the problem.

    IGC scheme was introduced by Williams et al[1]firstly and was addressed in application to a homing missile by Lin and Yueh[2]. Since then, IGC design has become an emerging trend in missile technology and beendeveloped by being combined with different control theories.Palumbo et al[3]used the state-dependent Riccati equation to deal with a more comprehensive model characterized by nonlinear motion in three dimensions; Menon and Ohlmeyer[4]used the feedback linearization method associated with the linear quadratic regulator technique to formulate a nonlinear IGC laws; Sharam and Richards[5]used an IGC design for homing missiles based on the backstepping strategy; Shkolnikov et al[6]and Shima et al[7]introduced an IGC design by using sliding mode control; Choi and Chwa[8]proposed an adaptive nonlinear guidance law considering target uncertainties and control loop dynamics by way of sliding mode control approach; still, there were other interesting and effective methods, such as subspace stabilization method[9]andθ-Dmethod[10]; Guo and Zhou[11]adoptedH∞control method to design an adaptive nonlinear control law; in[12], the missile attitude angles were considered as state variables and the linear quadratic regulator (LQR) was adopted for designing the IGC law; more recently, the input-to-statestability is introduced to deal with the guidance law design sign problem[13-15]. Therefore, it stands to reason that the IGC system design will be one of the most noticed subjects in missile technology. However, in the guidance law design field against the ground fixed targets, there exists another important problem encountered in practice for complex systems, that is control failures. Control failures include bias, loss of effectiveness or thrusts failures, they can cause control system performance deterioration, and lead to instability and even catastrophic accidents. Therefore, fault-tolerant control (FTC) is introduced to increase availability by specifically designing control algorithms capable of maintaining stability and performance despite the occurrence of faults. In order to increase the safety and reliability of system[16], FTC is used properly to manage the redundancies of control and guidance law system in the event of component failures.

    This paper focuses on designing the scheme of IGC for homing missiles against ground fixed targets. To achieve successful interception and better killing effects, impact attitude angle is required. The exact contributions of this paper are concluded as follows. First, an integrated guidance and control error model is given, and the actuation effectiveness phenomenon is described. Compared with existing approaches used to deal with the integrated guidance and control design problem, ground targets and actuator failures are explicitly taken into consideration. Next, FTC guidance laws based on input-to-state stability and backstepping for ground targets are proposed, which not only are robust against external disturbance, but also accommodate actuator failures. Finally, the backstepping approach is utilized to design the integrated guidance and fault-tolerant control (IGFTC) for missiles against ground fixed targets to make the state variables be input-to-state stable with respect to uncertainties and actuator failures. An adaptive law is designed to estimate the unknown parameter with respect to the actuation effectiveness components. And the stability analysis shows that the interception with desired impact angle can be gotten with the proposed law, and the IGFTC scheme enables stability and performance of the overall system.

    The paper is organized as follows. Section 1 formulates the model of the IGC system in the pitch plane. The process of designing adaptive IGFTC law is given in Section 2 and the numerical simulation results and analysis are presented in Section 3. Finally, conclusions are given in Section 4.

    1 Missile Dynamics

    The model derivation of the IGC system in the pitch plane is presented in this section.

    Linearized missile dynamics in the pitch plane is described as follows[17]

    (1)

    whereαis the attack angle,ωis the angular pitch rate,Pis the thrust of the missile,Qis the dynamic pressure,Sis the aerodynamic reference area,cαis the lift force derivative with the angle of attack,mis the missile mass,Vis the velocity of the missile,Lis the reference length,Jzis the moment of inertia aboutz-axis,δzis the deflection angle for pitch control,mω,mα,mδrepresent the pitch moment derivatives with respect to the angle of attack, the nondimensional angular pitch rate and the deflection angle for pitch control respectively,Δα,Δωare unknown bounded uncertainties.

    Fig.1 Angular relationship

    As shown in Fig.1, dynamics of the range along the light-of-sight (LOS) and the LOS angle are given by

    (2)

    whereris the range along the LOS,qis the LOS angle andθis the flight path angle of the missile. By transforming Eq.(2), we get

    (3)

    As shown in Fig.1, the missile's pitch attitude angle is related with the angle of attack and path angle as follow

    ?=α+θ

    (4)

    We may assume that the angle of attack is very small at the engagement time, so it is easy to obtain that

    ?d≈θd

    (5)

    where ?dandθdare the missile's desired impact attitude angle and the desired impact path angle. The following equation and inequality also hold in the terminal game

    (6)

    We can obtain that

    qd=θd

    (7)

    Applying Eq.(5) into Eq.(7), we get

    qd+?d

    (8)

    Hence, the desired impact attitude angles in the interception endgame can be satisfied by the constraint of the desired impact LOS angle. Letσ=q=qd, then differentiation yields

    (9)

    According to the analysis above, we obtain the model of IGC close loop of the pitch plane as follows

    (10)

    ThispaperaimstodesignanappropriateIGClawforhomingmissilesagainstgroundfixedtargets,sothatthemissilecanhitthetargetaccuratelywithadesiredimpactattitudeangle,andthestabilityoftheoverallsystemisalsorequired.Wesupposethatthespeedisconstantandthemissileaimsatthetargetbyadjustingitsflightdirection,andeventuallyzeroingtheLOSrateleadstosuccessfulinterception.TheterminalimpactattitudeangularconstraintcanbesatisfiedbythenullLOSangleerrorσ=q=qd.

    2 Adaptive IGFTC Design

    ThissectionpresentstheprocessofdesigningtheIGClawforthesystemdescribedbyEq.(10).Firstly,atransformationisemployed

    (11)

    The IGC system given by Eq.(10)can be transformed to the equivalent system as follows

    (12)

    The fault-tolerant model is

    (13)

    whereτis the actuation effectiveness components and 0<τ≤1. It assumes that the inequality 0<τm≤|τ|≤1 holds. 0<τ≤1 implies the situation in which the control partially fails.τ=0 means the actuator completely fails. When this case appears, it will make a complete failure of target interception. The control objective is to design an ISS-based fault-tolerant guidance law for interception such that the law keeps the LOS rate within a small neighborhood of zero. Then an IGFTC law is designed for system by recursive application of backstepping.

    The basic concept of input-to-state stability is introduced as follows:

    (14)

    Eq.(14) guarantees that for any initial statex(t0) and any bounded inputu(t), the statex(t) will be bounded. Furthermore, with a zero inputu(t) (usually regarded as a disturbance input), the system will be uniformly asymptotically stable.

    (15)

    (16)

    Proof.ConsidertheequivalentsystemEq.(13),choosevisualcontrolsasfollows

    (17)

    (18)

    where 0<μ≤τmandδ>0. The derivation ofValong the trajectories of system Eq.(13) is given by

    (19)

    Consider the inequalities

    (20)

    Applying the inequalities into Eq.(19), obtain

    (21)

    Substituting the visual control law, we have

    (22)

    Define

    (23)

    and

    (24)

    For 0<μ<τm≤τ≤1,consider the worst caseτ=μ,obtain

    (25)

    (26)

    Substituting the adaptive law

    (27)

    into Eq.(26),we get

    (28)

    Consider the inequality

    (29)

    We get

    (30)

    (31)

    Multiplying both sides by e2kt, then integrate them over [0,t], we get

    (32)

    (33)

    3 Simulation Results

    Inthissection,thefeasibilityandapplicabilityoftheproposedIGClawisverifiedbythenumericalsimulationsforsomepassivehomingmissile'snonlineardynamicmodelinthepitchplane.Theabbreviationsofunitsusedinthissectionaremformeter,sforsecondandradforradian.

    Fig.2 LOS rate ωq

    Fig.3 Pitch rate ω

    Fig.4 Angle of attack α

    Fig.5 LOS angle q

    Fig.6 Relative range r

    Fig.7 Deflection angle δz

    Fig.8 Adaptive parameter estimate v

    4 Conclusions

    This paper develops a scheme of IGC for homing missiles against ground fixed targets to improve the performance of the system with respect to external disturbances and actuator failures. An integrated model of guidance and control loop in the pitch plane is firstly formulated and the adaptive control law is designed by adopting the backstepping method and input-to-state theorem. Numerical simulation results have validated the usefulness of the IGC design to the homing missiles.

    [1] WILLIAM D E, RICHMAN J, FRIEDLAND B. Design of an integrated strapdown guidance and control system for a tactical missile[C]// Proceedings of the AIAA Guidance and Control Conference. Catlinburg: ARC, 1983: 57-65.

    [2] YUEH W R, LIN C F. Optimal controller for homing missiles[J]. Journal of Guidance, Control and Dynamics, 1985, 8(3): 408-411.

    [3] PALUMBO N F, JACKSON T D. Integrated missile guidance and control: a state dependent Riccati differential equation approach[C]// Proceedings of the 1999 IEEE International Conference on Control Applications. Kohala Coast, HI: IEEE Press, 1999: 243-248.

    [4] MENON P K, OHLMEYER E J. Nonlinear integrated guidance control laws for homing missiles[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal: ARC, 2011: 6-8.

    [5] SHARMA M, Richards N. Adaptive integrated guidance and control for missile interceptors[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Rhode Isaond: ARC, 2004: 1-15.

    [6] SHKOLNIKOV I, SHTESSEL Y, LIANOS D. Integrated guidance-control system of a homing interceptor: sliding mode approach[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal: ARC, 2001.

    [7] SHIMA T, IDAN M, GOLAN O M. Sliding mode control for integrated missile autopilotguidance[J]. Journal of Guidance Control & Dynamics, 2006, 29(2): 250-260.

    [8] CHOI J Y, CHWA D Y. Adatpive nonlinear guidance considering target uncertainties and control loop dynamics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003,39(4): 1139-1143.

    [9] TOURNES C, WILKERSON P. Integrated terminal guidance and automatic pilot using subspace stabilization[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal: ARC, 2001.

    [10] XIN M, BALAKRISHNAM S N, OHLMEYER E J. Integrated guidance and control of missiles withθ-Dmethod [J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 981-992.

    [11] GUO J G, ZHOU J. Integrated guidance-control systems design based onH∞control[C]// 2010 International Conference on Electrical and Control Engineering. Wuhan, China: IEEE Press, 2010: 1204-1207.

    [12] YUN J, RYOO C K. Integrated guidance and control law with impact angle constraint[C]// 2011 11th International Conference on Control, Automation and Systems. Gyeonggi-do: IEEE Press, 2011: 1239-1243.

    [13] YAN H, JI H B. Integrated guidance and control for dual-control missiles based on small-gain theorem[J]. Automatica, 2012, 48(10): 2686-2692.

    [14] WEICHENG M A, HAN Y A N, HJI H B. Integrated guidance and control against ground fixed targets based on backstepping and input-to-state stability[C]// 2012 International Conference on Mechatronics and Automation (ICMA). Chengdu: IEEE Press, 2012: 321-326.

    [15] LIAO F, JI H, XIE Y. A novel three-dimensional guidance law implementation using only line-of-sight azimuths[J]. International Journal of Robust and Nonlinear Control, 2014, 25(18): 3679-3696.

    [16] DUCARD G J J. Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles[M]. Germany: Springer, 2009.

    [17] HOU M Z, DUAN G R. Integratied guidance and control of homing missiles against ground fixed targets[J]. Chinese Journal of Aeronautices, 2008, 21(2): 162-168.

    [18] KHALIL H K. Nonlinear systems[M]. 3rd ed. New Jersey: Prentice-Haill, 2002.

    陳 勃 男,1984年生,碩士研究生。研究方向?yàn)閷?dǎo)航制導(dǎo)與控制。

    廖 飛 男,1987年生,博士研究生。研究方向?yàn)閷?dǎo)航制導(dǎo)與控制。

    季海波 男,1964年生,教授,博士生導(dǎo)師。研究方向?yàn)榉蔷€性控制、導(dǎo)航制導(dǎo)與控制等。

    國(guó)家自然科學(xué)基金專項(xiàng)資助項(xiàng)目(61273090)

    陳勃 Email:447001023@qq.com

    2015-10-21

    2015-12-22

    一種針對(duì)地面固定目標(biāo)自適應(yīng)導(dǎo)控一體化設(shè)計(jì)

    基于反步設(shè)計(jì)法和輸入-狀態(tài)穩(wěn)定理論, 針對(duì)地面固定目標(biāo),提出了一種執(zhí)行器失效時(shí)自適應(yīng)導(dǎo)引控制一體化(IGC)設(shè)計(jì)方法。首先,描述了一體化導(dǎo)引控制的數(shù)學(xué)模型;然后,基于反步設(shè)計(jì)法提出一種導(dǎo)引控制一體化算法,該算法能夠在額外擾動(dòng)和執(zhí)行器失效的情況下以設(shè)計(jì)的沖擊姿態(tài)角打擊地面固定目標(biāo);同時(shí),提出一種自適應(yīng)律來處理由于執(zhí)行器部分失效所引起的不確定性。仿真結(jié)果表明該算法是行之有效的。

    自適應(yīng);導(dǎo)引控制一體化;地面固定目標(biāo);執(zhí)行器失效

    TN957.52

    A

    1004-7859(2016)03-0078-08

    10.16592/ j.cnki.1004-7859.2016.03.017

    猜你喜歡
    方向設(shè)計(jì)
    2022年組稿方向
    2022年組稿方向
    2021年組稿方向
    2021年組稿方向
    2021年組稿方向
    何為設(shè)計(jì)的守護(hù)之道?
    《豐收的喜悅展示設(shè)計(jì)》
    流行色(2020年1期)2020-04-28 11:16:38
    瞞天過?!律O(shè)計(jì)萌到家
    設(shè)計(jì)秀
    海峽姐妹(2017年7期)2017-07-31 19:08:17
    有種設(shè)計(jì)叫而專
    Coco薇(2017年5期)2017-06-05 08:53:16
    精品久久久久久,| 男人的好看免费观看在线视频 | 午夜老司机福利片| 热99re8久久精品国产| 亚洲成国产人片在线观看| 亚洲欧美激情综合另类| 在线观看日韩欧美| 99热国产这里只有精品6| 国产麻豆69| 国产极品粉嫩免费观看在线| 亚洲欧美激情综合另类| 高清av免费在线| 天堂影院成人在线观看| 久久 成人 亚洲| 午夜日韩欧美国产| 黑人欧美特级aaaaaa片| 亚洲色图综合在线观看| 久久 成人 亚洲| 又黄又粗又硬又大视频| 水蜜桃什么品种好| 国产无遮挡羞羞视频在线观看| 亚洲人成网站在线播放欧美日韩| 老汉色∧v一级毛片| 男女午夜视频在线观看| 亚洲av成人不卡在线观看播放网| 男女午夜视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 80岁老熟妇乱子伦牲交| 99热只有精品国产| 天堂√8在线中文| 中文字幕另类日韩欧美亚洲嫩草| 香蕉丝袜av| 1024视频免费在线观看| 久99久视频精品免费| 亚洲免费av在线视频| 日韩欧美在线二视频| 久久青草综合色| 午夜日韩欧美国产| 精品福利观看| 成人av一区二区三区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美三级三区| 久久久精品欧美日韩精品| 久久久久久久久久久久大奶| 99在线视频只有这里精品首页| 操美女的视频在线观看| 国产精品永久免费网站| 丰满迷人的少妇在线观看| 一级毛片高清免费大全| 手机成人av网站| 国产精品国产高清国产av| 在线观看免费视频日本深夜| 久久婷婷成人综合色麻豆| 亚洲av成人不卡在线观看播放网| 亚洲第一av免费看| 亚洲精品国产精品久久久不卡| 久久久久久久久久久久大奶| 亚洲情色 制服丝袜| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 精品福利永久在线观看| 国内久久婷婷六月综合欲色啪| 国产精品免费视频内射| 天堂动漫精品| 免费在线观看亚洲国产| 色婷婷久久久亚洲欧美| 日本欧美视频一区| 欧美激情高清一区二区三区| 精品欧美一区二区三区在线| 激情在线观看视频在线高清| 在线观看一区二区三区激情| 91精品三级在线观看| 免费高清在线观看日韩| 18禁美女被吸乳视频| 1024视频免费在线观看| 日本wwww免费看| 男女高潮啪啪啪动态图| 亚洲av五月六月丁香网| 在线观看免费视频网站a站| 亚洲精品美女久久av网站| 91成年电影在线观看| 性色av乱码一区二区三区2| 久久九九热精品免费| 婷婷丁香在线五月| 亚洲精品av麻豆狂野| 欧美日韩av久久| 日本免费一区二区三区高清不卡 | 一区福利在线观看| 90打野战视频偷拍视频| a在线观看视频网站| 69精品国产乱码久久久| 校园春色视频在线观看| 美女福利国产在线| av片东京热男人的天堂| 天堂影院成人在线观看| 好看av亚洲va欧美ⅴa在| 变态另类成人亚洲欧美熟女 | 丁香欧美五月| 国产精品二区激情视频| 亚洲av熟女| 三级毛片av免费| 久久国产精品人妻蜜桃| 国产精品乱码一区二三区的特点 | 欧美日韩亚洲高清精品| 好男人电影高清在线观看| 国产av一区二区精品久久| 久久久精品欧美日韩精品| 国产精华一区二区三区| 国产激情久久老熟女| 欧美日韩av久久| 91麻豆精品激情在线观看国产 | 天天躁夜夜躁狠狠躁躁| 亚洲性夜色夜夜综合| 成人国语在线视频| 国产精品亚洲一级av第二区| 国产免费现黄频在线看| 久久草成人影院| 精品福利观看| 国产午夜精品久久久久久| 精品国产一区二区久久| 曰老女人黄片| 国产精品久久久av美女十八| 18禁国产床啪视频网站| 国产成人精品在线电影| 高清毛片免费观看视频网站 | 日韩精品中文字幕看吧| 久久欧美精品欧美久久欧美| 久久中文字幕人妻熟女| 欧美成人免费av一区二区三区| 亚洲色图av天堂| 亚洲激情在线av| 午夜福利在线观看吧| 少妇的丰满在线观看| 日韩大尺度精品在线看网址 | 国产精品99久久99久久久不卡| av中文乱码字幕在线| 88av欧美| 精品免费久久久久久久清纯| 黄色片一级片一级黄色片| av天堂久久9| 久久精品亚洲熟妇少妇任你| 91字幕亚洲| 亚洲av美国av| 电影成人av| 欧美黄色淫秽网站| 国产精品电影一区二区三区| 久久国产精品影院| 男女午夜视频在线观看| 欧美日本中文国产一区发布| 午夜福利在线观看吧| 精品欧美一区二区三区在线| 精品卡一卡二卡四卡免费| 午夜视频精品福利| 一进一出好大好爽视频| 满18在线观看网站| 97超级碰碰碰精品色视频在线观看| 免费在线观看日本一区| 女同久久另类99精品国产91| 天天影视国产精品| 国产成人精品在线电影| 别揉我奶头~嗯~啊~动态视频| 国产精品久久电影中文字幕| 国产激情欧美一区二区| 国产精品亚洲一级av第二区| 国产又色又爽无遮挡免费看| 欧美日韩亚洲综合一区二区三区_| 别揉我奶头~嗯~啊~动态视频| 国产片内射在线| 欧美性长视频在线观看| 亚洲伊人色综图| 国产一区二区激情短视频| 99在线视频只有这里精品首页| 久久国产精品人妻蜜桃| 曰老女人黄片| 新久久久久国产一级毛片| 精品乱码久久久久久99久播| 黄色视频,在线免费观看| 亚洲黑人精品在线| 亚洲欧美精品综合久久99| 高清欧美精品videossex| 亚洲自拍偷在线| 少妇裸体淫交视频免费看高清 | 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 国产野战对白在线观看| 叶爱在线成人免费视频播放| 最新在线观看一区二区三区| av电影中文网址| 午夜影院日韩av| 99国产综合亚洲精品| 操美女的视频在线观看| 女人爽到高潮嗷嗷叫在线视频| av中文乱码字幕在线| 视频区欧美日本亚洲| 午夜老司机福利片| 国产亚洲精品综合一区在线观看 | av有码第一页| 欧美日韩福利视频一区二区| 中文字幕av电影在线播放| 一进一出抽搐gif免费好疼 | 色综合婷婷激情| 波多野结衣高清无吗| 久久久国产精品麻豆| 国产成人一区二区三区免费视频网站| 国产成人精品久久二区二区免费| 日韩精品青青久久久久久| 国产成人精品在线电影| 日韩一卡2卡3卡4卡2021年| 在线av久久热| 亚洲午夜理论影院| 欧美日本亚洲视频在线播放| 国产伦人伦偷精品视频| 欧美一级毛片孕妇| a级毛片黄视频| 黄色女人牲交| 亚洲五月婷婷丁香| 91大片在线观看| 午夜两性在线视频| 亚洲男人天堂网一区| 黄片大片在线免费观看| 淫妇啪啪啪对白视频| 亚洲精品国产区一区二| 国产欧美日韩精品亚洲av| 精品熟女少妇八av免费久了| 窝窝影院91人妻| 999久久久国产精品视频| 国产亚洲欧美在线一区二区| 很黄的视频免费| 国产伦一二天堂av在线观看| 美女大奶头视频| 人成视频在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 一边摸一边做爽爽视频免费| 日韩欧美三级三区| 午夜精品久久久久久毛片777| 91精品国产国语对白视频| 久久人人97超碰香蕉20202| 一个人免费在线观看的高清视频| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 日本欧美视频一区| 最近最新免费中文字幕在线| 精品第一国产精品| 一进一出抽搐gif免费好疼 | 国产亚洲精品一区二区www| 啦啦啦免费观看视频1| 亚洲五月天丁香| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 国产亚洲欧美在线一区二区| 老司机午夜十八禁免费视频| 超碰成人久久| av欧美777| 午夜免费激情av| 精品国内亚洲2022精品成人| 伊人久久大香线蕉亚洲五| 亚洲性夜色夜夜综合| 欧美成人免费av一区二区三区| av免费在线观看网站| 男女床上黄色一级片免费看| 视频区图区小说| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品综合一区在线观看 | 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 午夜精品国产一区二区电影| 日韩欧美免费精品| 法律面前人人平等表现在哪些方面| 女同久久另类99精品国产91| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 欧美性长视频在线观看| 国产欧美日韩一区二区三| 69精品国产乱码久久久| 91九色精品人成在线观看| 在线视频色国产色| 母亲3免费完整高清在线观看| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区蜜桃| 免费女性裸体啪啪无遮挡网站| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| videosex国产| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看66精品国产| 在线天堂中文资源库| 女人精品久久久久毛片| 免费日韩欧美在线观看| 1024香蕉在线观看| bbb黄色大片| 欧美性长视频在线观看| 国产精品免费一区二区三区在线| av福利片在线| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 欧美日韩一级在线毛片| 欧美乱色亚洲激情| 另类亚洲欧美激情| 一级作爱视频免费观看| 超碰成人久久| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 亚洲va日本ⅴa欧美va伊人久久| 亚洲激情在线av| 久久久精品国产亚洲av高清涩受| 久久久久国产精品人妻aⅴ院| 在线免费观看的www视频| 精品久久久久久电影网| 精品福利观看| 亚洲精品国产精品久久久不卡| 亚洲第一欧美日韩一区二区三区| 天堂俺去俺来也www色官网| 国产精品日韩av在线免费观看 | 人妻丰满熟妇av一区二区三区| 欧美日本亚洲视频在线播放| 一边摸一边抽搐一进一小说| 热re99久久国产66热| 欧美黑人精品巨大| 免费在线观看黄色视频的| 久久精品亚洲熟妇少妇任你| 欧美午夜高清在线| 精品一区二区三区四区五区乱码| 精品福利观看| 美女高潮到喷水免费观看| 婷婷丁香在线五月| 黄色 视频免费看| 亚洲精品中文字幕一二三四区| 黑人欧美特级aaaaaa片| 色在线成人网| 两性夫妻黄色片| 中文字幕精品免费在线观看视频| 宅男免费午夜| 日本vs欧美在线观看视频| 一级黄色大片毛片| 成人亚洲精品一区在线观看| 多毛熟女@视频| www.自偷自拍.com| 日韩人妻精品一区2区三区| 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 欧美人与性动交α欧美精品济南到| 欧美性长视频在线观看| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 纯流量卡能插随身wifi吗| 欧美在线一区亚洲| 日日爽夜夜爽网站| 男女下面进入的视频免费午夜 | 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲国产精品合色在线| 亚洲男人天堂网一区| 黄片大片在线免费观看| 夫妻午夜视频| 999久久久精品免费观看国产| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 在线观看66精品国产| 免费在线观看完整版高清| 首页视频小说图片口味搜索| 两性午夜刺激爽爽歪歪视频在线观看 | 久久狼人影院| 后天国语完整版免费观看| 日韩免费高清中文字幕av| 免费在线观看完整版高清| 女人精品久久久久毛片| 黄网站色视频无遮挡免费观看| 叶爱在线成人免费视频播放| 久久国产精品人妻蜜桃| 无遮挡黄片免费观看| 香蕉国产在线看| 老司机亚洲免费影院| 长腿黑丝高跟| 亚洲avbb在线观看| 女人被躁到高潮嗷嗷叫费观| cao死你这个sao货| 一区二区三区国产精品乱码| 国产高清激情床上av| x7x7x7水蜜桃| 亚洲专区国产一区二区| 美女高潮到喷水免费观看| 亚洲第一欧美日韩一区二区三区| 亚洲三区欧美一区| 久久人妻福利社区极品人妻图片| 国产av一区在线观看免费| 欧美+亚洲+日韩+国产| 人成视频在线观看免费观看| 脱女人内裤的视频| 美女午夜性视频免费| 真人一进一出gif抽搐免费| 欧美人与性动交α欧美软件| 一a级毛片在线观看| 欧美色视频一区免费| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产 | 三上悠亚av全集在线观看| 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 巨乳人妻的诱惑在线观看| 免费看十八禁软件| 热re99久久国产66热| 日本 av在线| 一级作爱视频免费观看| 亚洲av五月六月丁香网| 啦啦啦 在线观看视频| 校园春色视频在线观看| 亚洲精品国产区一区二| 日本免费a在线| 91老司机精品| 午夜福利欧美成人| 麻豆国产av国片精品| 国产伦一二天堂av在线观看| 欧美午夜高清在线| 桃色一区二区三区在线观看| 亚洲熟女毛片儿| 香蕉丝袜av| 免费观看精品视频网站| 久久亚洲精品不卡| 99久久国产精品久久久| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 成人国产一区最新在线观看| 交换朋友夫妻互换小说| 日日爽夜夜爽网站| 亚洲精品久久成人aⅴ小说| 亚洲人成电影免费在线| 欧美日韩瑟瑟在线播放| 亚洲精品粉嫩美女一区| 一二三四在线观看免费中文在| 人妻丰满熟妇av一区二区三区| 精品国产一区二区三区四区第35| 一级作爱视频免费观看| 国产亚洲av高清不卡| 久久久久久久午夜电影 | 国产又色又爽无遮挡免费看| 亚洲人成电影免费在线| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 人人澡人人妻人| 国产xxxxx性猛交| 国产av又大| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| 久久影院123| 丁香欧美五月| 日韩一卡2卡3卡4卡2021年| 悠悠久久av| 十八禁人妻一区二区| 欧美日韩av久久| 18禁美女被吸乳视频| 91九色精品人成在线观看| av有码第一页| 黄色a级毛片大全视频| 日韩欧美一区视频在线观看| 免费在线观看亚洲国产| 999精品在线视频| 99riav亚洲国产免费| 水蜜桃什么品种好| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 国产精品二区激情视频| 伦理电影免费视频| 国产主播在线观看一区二区| 老司机午夜福利在线观看视频| 99久久人妻综合| 无人区码免费观看不卡| 妹子高潮喷水视频| 国产成人影院久久av| 国产精品一区二区精品视频观看| 18禁美女被吸乳视频| 一本综合久久免费| 久久久精品欧美日韩精品| 国产成人免费无遮挡视频| 男女床上黄色一级片免费看| 最新美女视频免费是黄的| 国产蜜桃级精品一区二区三区| 成熟少妇高潮喷水视频| 亚洲国产毛片av蜜桃av| 亚洲人成伊人成综合网2020| 久久久久久人人人人人| 国产色视频综合| 少妇 在线观看| 亚洲五月天丁香| 国产精品免费视频内射| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 91av网站免费观看| 好看av亚洲va欧美ⅴa在| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 国产又色又爽无遮挡免费看| 欧美一级毛片孕妇| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 国产av在哪里看| 日本wwww免费看| www.自偷自拍.com| 国产麻豆69| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 一进一出抽搐gif免费好疼 | ponron亚洲| 中文字幕人妻熟女乱码| 99久久久亚洲精品蜜臀av| 真人一进一出gif抽搐免费| 精品一区二区三区视频在线观看免费 | a在线观看视频网站| 一边摸一边做爽爽视频免费| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 交换朋友夫妻互换小说| 午夜激情av网站| 中亚洲国语对白在线视频| 手机成人av网站| a级毛片在线看网站| 在线观看66精品国产| 久久精品成人免费网站| 黑人巨大精品欧美一区二区mp4| 这个男人来自地球电影免费观看| 亚洲五月色婷婷综合| 国产成人影院久久av| 国产亚洲精品久久久久久毛片| 1024视频免费在线观看| 国产视频一区二区在线看| 超色免费av| 国产99白浆流出| 一级作爱视频免费观看| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 欧美一级毛片孕妇| 亚洲片人在线观看| 国产高清videossex| 欧美激情 高清一区二区三区| 精品一区二区三区av网在线观看| 亚洲av美国av| 18禁美女被吸乳视频| 老熟妇乱子伦视频在线观看| 亚洲精华国产精华精| 国产视频一区二区在线看| 久久精品亚洲av国产电影网| 国产99白浆流出| 99热国产这里只有精品6| 欧美+亚洲+日韩+国产| 色婷婷av一区二区三区视频| 美女大奶头视频| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 国产一区二区三区在线臀色熟女 | 中文字幕人妻丝袜制服| 色老头精品视频在线观看| 18美女黄网站色大片免费观看| 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 18禁观看日本| 桃红色精品国产亚洲av| 女人被躁到高潮嗷嗷叫费观| bbb黄色大片| 久久久国产欧美日韩av| 久久久久国产一级毛片高清牌| 一区福利在线观看| 久久午夜综合久久蜜桃| 长腿黑丝高跟| 亚洲av成人一区二区三| 亚洲av第一区精品v没综合| 水蜜桃什么品种好| 91国产中文字幕| 好男人电影高清在线观看| 99久久精品国产亚洲精品| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀| 日日摸夜夜添夜夜添小说| 俄罗斯特黄特色一大片| 激情在线观看视频在线高清| 超色免费av| 亚洲 国产 在线| 久久久久国产一级毛片高清牌| 男女做爰动态图高潮gif福利片 | 精品久久蜜臀av无| 80岁老熟妇乱子伦牲交| 精品一区二区三区av网在线观看| 视频区欧美日本亚洲| 亚洲va日本ⅴa欧美va伊人久久| 一级,二级,三级黄色视频| 久久婷婷成人综合色麻豆| 久久这里只有精品19| 国产真人三级小视频在线观看| 成人18禁在线播放| 欧美老熟妇乱子伦牲交| 可以在线观看毛片的网站| 丝袜美腿诱惑在线| 在线观看66精品国产| 国产熟女午夜一区二区三区| 色在线成人网| 天堂影院成人在线观看| 五月开心婷婷网| 老司机深夜福利视频在线观看| 麻豆av在线久日| 老熟妇仑乱视频hdxx| 可以免费在线观看a视频的电影网站| 国产精品久久久人人做人人爽| av国产精品久久久久影院| 丝袜美腿诱惑在线| 一级黄色大片毛片| 18禁黄网站禁片午夜丰满| 国产一区在线观看成人免费| 久久热在线av|