史秀超,蔡夢(mèng)昕,田振軍
?
間歇運(yùn)動(dòng)和粒細(xì)胞集落刺激因子促進(jìn)心梗大鼠干細(xì)胞動(dòng)員與內(nèi)源性心肌細(xì)胞增殖的激光共聚焦/流式細(xì)胞術(shù)觀察分析
史秀超1,2,蔡夢(mèng)昕1,田振軍1
目的:探討跑臺(tái)間歇運(yùn)動(dòng)結(jié)合粒細(xì)胞集落刺激因子對(duì)心肌梗死大鼠干細(xì)胞動(dòng)員的效果和在內(nèi)源性心肌細(xì)胞增殖中的作用及其對(duì)心功能的影響。方法:90只成體雄性SD大鼠隨機(jī)分為假手術(shù)組(Sham)、心梗組(MI)、心梗+間歇運(yùn)動(dòng)組(ME)、心梗+粒細(xì)胞集落刺激因子(G-CSF)組(MG)和心梗+G-CSF+間歇運(yùn)動(dòng)組(MGE)。結(jié)扎大鼠左冠狀動(dòng)脈前降支制備心肌梗死模型。ME和MGE組大鼠在心肌梗死手術(shù)結(jié)束1周后進(jìn)行3周跑臺(tái)間歇運(yùn)動(dòng)。MG和MGE組大鼠術(shù)后1 h皮下注射人源重組粒細(xì)胞集落刺激因子(rhG-CSF),10 μg/kg/d×5 d,其他各組大鼠給予同劑量生理鹽水。免疫熒光法檢測(cè)并計(jì)算梗死邊緣區(qū)心肌細(xì)胞增殖百分率;流式細(xì)胞術(shù)檢測(cè)外周血單個(gè)核細(xì)胞中c-kit+和CD29+細(xì)胞百分率;Western Blot方法檢測(cè)心肌組織中c-kit和CD29蛋白表達(dá)水平。TTC染色檢測(cè)心肌梗死面積百分率;彩色多普勒超聲和血流動(dòng)力學(xué)方法檢測(cè)心功能。結(jié)果:與Sham組相比,MI組PCNA+心肌細(xì)胞百分率、外周血單個(gè)核細(xì)胞中c-kit+和CD29+細(xì)胞百分率、心肌組織中c-kit和CD29蛋白表達(dá)和心肌梗死面積顯著增加,心功能顯著降低;與MI組比較,ME、MG和MGE組大鼠梗死邊緣區(qū)心肌組織中PCNA+心肌細(xì)胞百分率、外周血單個(gè)核細(xì)胞中c-kit+和CD29+細(xì)胞百分率、心肌組織中c-kit和CD29蛋白表達(dá)均顯著增加,梗死面積顯著減小,心功能顯著增強(qiáng),且MGE組變化最為顯著。結(jié)論:間歇運(yùn)動(dòng)或粒細(xì)胞集落刺激因子可顯著促進(jìn)干細(xì)胞動(dòng)員歸巢,誘導(dǎo)心肌細(xì)胞增殖,縮小梗死面積,提升心功能,且二者聯(lián)合效果優(yōu)于單一因素作用。
心肌梗死;間歇運(yùn)動(dòng); 粒細(xì)胞集落刺激因子;干細(xì)胞動(dòng)員;心肌細(xì)胞增殖;鼠;動(dòng)物實(shí)驗(yàn)
心肌梗死(myocardial infarction,MI)發(fā)生后,心肌細(xì)胞大量壞死或凋亡,心室發(fā)生惡性重塑,導(dǎo)致心力衰竭[43]。增加有收縮功能的心肌細(xì)胞數(shù)目是基礎(chǔ)和臨床研究的熱點(diǎn)。一般認(rèn)為,成體哺乳動(dòng)物心肌細(xì)胞缺乏增殖能力。近年研究證實(shí),成體哺乳動(dòng)物心肌細(xì)胞存在更新現(xiàn)象,其更新率隨年齡增加而降低[6,21,35]。研究表明,心肌細(xì)胞具有增殖現(xiàn)象[28],但其機(jī)制與方法研究需要不斷豐富,尋求有效促進(jìn)內(nèi)源性心肌細(xì)胞增殖的細(xì)胞來(lái)源、方法和手段,對(duì)促進(jìn)心肌損傷修復(fù)意義重大。針對(duì)心臟損傷修復(fù)的干細(xì)胞療法已有大量研究報(bào)道[30,49],目前認(rèn)為,可參與心肌再生的細(xì)胞來(lái)源包括部分有收縮功能的單個(gè)核心肌細(xì)胞、心肌固有的干/祖細(xì)胞(Cardiac stem/progenitor cells,CSCs/CPCs)[24,26,53]以及外周成體干細(xì)胞,如骨髓干細(xì)胞(Bone marrow stem cells,BMSCs)和誘導(dǎo)型多功能干細(xì)胞(Induced pluripotent stem cells,iPSCs)等[49,50,51]。MI發(fā)生后,梗死區(qū)微環(huán)境發(fā)生改變,可在一定程度上動(dòng)員CSCs/CPCs和外周成體干細(xì)胞,如BMSCs等趨化至損傷部位進(jìn)行增殖與分化,參與內(nèi)源性心肌修復(fù)[13,14,42,52,58]。
間歇運(yùn)動(dòng)是指高強(qiáng)度與低強(qiáng)度鍛煉或自由活動(dòng)等方式交替進(jìn)行的運(yùn)動(dòng)形式。文獻(xiàn)表明,高強(qiáng)度間歇運(yùn)動(dòng)較中強(qiáng)度有氧運(yùn)動(dòng)對(duì)心臟結(jié)構(gòu)與功能的影響更為顯著[12,17,31,56,59]。 MI患者進(jìn)行運(yùn)動(dòng)康復(fù)鍛煉可有效改善心臟惡性重塑現(xiàn)象,提升心功能和改善生活質(zhì)量[15,41,46]。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),運(yùn)動(dòng)可促進(jìn)正常生理狀態(tài)下心肌細(xì)胞增殖[7,57]。本實(shí)驗(yàn)室前期研究發(fā)現(xiàn),8周持續(xù)有氧運(yùn)動(dòng)可促進(jìn)正常和MI大鼠心肌組織增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)和細(xì)胞增殖標(biāo)記物Ki67蛋白表達(dá)[1],有效提高心功能。粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)可促進(jìn)骨髓間充質(zhì)干細(xì)胞和造血干細(xì)胞等趨化至損傷部位,參與心肌損傷后的修復(fù)[27,45]。運(yùn)動(dòng)可促進(jìn)血液循環(huán)中干細(xì)胞數(shù)目增多[8,9,22],但間歇運(yùn)動(dòng)結(jié)合干細(xì)胞動(dòng)員劑G-CSF能否更有效促進(jìn)自體干細(xì)胞動(dòng)員和心臟內(nèi)源性心肌細(xì)胞增殖,缺乏直接證據(jù)。文獻(xiàn)表明,心?;蛐墓:笞⑸銰-CSF動(dòng)員BMSCs入血均存在時(shí)間窗[44,55]。根據(jù)G-CSF動(dòng)員BMSCs時(shí)間窗和心臟運(yùn)動(dòng)負(fù)荷產(chǎn)生效應(yīng)的最短時(shí)間,本研究采用心梗1 h后給予G-CSF動(dòng)員,手術(shù)后1周進(jìn)行3周間歇運(yùn)動(dòng)干預(yù),采用激光共聚焦顯微術(shù)和流式細(xì)胞術(shù)及Western Blot方法,觀察與分析間歇運(yùn)動(dòng)和粒細(xì)胞集落刺激因子對(duì)心梗大鼠內(nèi)源性心肌細(xì)胞增殖和干細(xì)胞動(dòng)員的效果。
1.1 主要儀器和試劑
主要儀器:ALC V8 動(dòng)物呼吸機(jī)、BM Ⅱ型病理組織包埋機(jī)、LEICA RM 2126切片機(jī)、尼康Nikon C2 Plus激光共聚焦顯微鏡(laser scanning confocal microscope,LSCM)、PowerLab/8S生理信號(hào)采集系統(tǒng)、美國(guó)BD公司FACS Aria流式細(xì)胞儀、BioTek epoch超微量微孔板分光光度計(jì)、GE Logiq 7彩色多普勒超聲診斷儀、Bio Rad電泳儀和轉(zhuǎn)移槽等。
主要試劑:甘氨酸、牛血清白蛋白、Tween20、甲叉雙丙烯酰胺、丙烯酰胺、DAPI(羅氏公司)、重組人粒細(xì)胞集落刺激因子(recombinant human granulocyte colony-stimulating factor,rhG-CSF 山東齊魯制藥有限公司)、小鼠抗大鼠PCNA(Cell Signaling Technology公司)、2,3,5-氯化三苯基四氮唑(2,3,5-Triphenyltetrazolium chloride,TTC Amresco公司)、心肌型兔抗大鼠肌鈣蛋白T(cardiac troponin T,cTnT)、兔抗大鼠CD29和c-kit(北京博奧森公司)、FITC標(biāo)記的山羊抗兔抗體和TRITC標(biāo)記的山羊抗小鼠抗體(武漢博士德生物工程有限公司)、動(dòng)物外周血和臟器組織單個(gè)核細(xì)胞分離試劑盒(灝洋生物公司)。
1.2 動(dòng)物分組與MI模型制備
動(dòng)物分組:清潔級(jí)3月齡Sprague Dawley雄性大鼠90只,體重180~220 g,購(gòu)于西安交通大學(xué)實(shí)驗(yàn)動(dòng)物管理中心(動(dòng)物質(zhì)量合格證號(hào):SCXK2013-003號(hào))。隨機(jī)分為假心梗組(Sham)、心梗組(MI)、心梗+間歇運(yùn)動(dòng)組(ME)、心梗+G-CSF組(MG)和心梗+G-CSF+間歇運(yùn)動(dòng)組(MGE),每組18只。大鼠飼養(yǎng)室溫度保持20~29℃,相對(duì)濕度50%~60%,采用國(guó)家標(biāo)準(zhǔn)嚙齒類動(dòng)物干燥飼料喂養(yǎng),自由飲食。
MI大鼠模型制備:采用左冠狀動(dòng)脈前降支結(jié)扎法[1],同時(shí)監(jiān)測(cè)心電圖并觀察結(jié)扎點(diǎn)下方至心尖部位心肌顏色變化。以心電圖ST段弓背抬高、結(jié)扎線以下心肌發(fā)白,或出現(xiàn)病理性Q波或T波倒置為結(jié)扎成功標(biāo)志,之后逐層縫合關(guān)胸。Sham組只開胸穿線,不結(jié)扎。
1.3 間歇運(yùn)動(dòng)和G-CSF給藥方案
1.4 心功能檢測(cè)
心動(dòng)超聲檢測(cè):實(shí)驗(yàn)造模結(jié)束后,常規(guī)腹腔麻醉并稱重,8%Na2S脫毛凈胸,取仰臥位將頭部及四肢固定在手術(shù)臺(tái)上。使用GE Logiq7彩色多普勒超聲診斷儀,i12L寬帶,術(shù)中探頭頻率為12 MHz,超聲檢測(cè)中圖像深度調(diào)至2 cm,增益固定為60 dB。將探頭置于左前胸,與前正中線呈30°左右夾角,顯示胸骨旁左室長(zhǎng)軸切面,探頭順時(shí)針旋轉(zhuǎn)90°顯示左室短軸切面圖像,于胸骨旁左室長(zhǎng)軸切面二維測(cè)量左室室壁厚度及梗死區(qū)范圍。在二維導(dǎo)引下,將取樣線置于左室健索水平,取M型超聲心動(dòng)圖,速度為200 mm/s。測(cè)量左室舒張末期內(nèi)徑(left ventricle diastolic diameter,LVDd)及左室收縮末期內(nèi)徑(left ventricle systolic diameter,LVDs)。儀器自動(dòng)計(jì)算左室短軸縮短率(left ventricular fractional shortening,LVFS)=(LVDd-LVDs)/LVDd ×100%和左室射血分?jǐn)?shù)(Left ventricle ejection fraction,LVEF)=[(LVDd3-LVDs3)/LVDd3]×100%。測(cè)量指標(biāo)均取3個(gè)連續(xù)心動(dòng)周期的平均值。
血流動(dòng)力學(xué)檢測(cè):經(jīng)右頸總動(dòng)脈逆行插管至大鼠左心室,以多導(dǎo)生理記錄儀記錄最大左室收縮壓(Left ventricle systolic pressure,LVSP)、左室舒張末壓(left ventricle end diastolic pressure,LVEDP)、左室壓力最大上升速率(The maximum ascending velocity of left ventricle pressure,LV+dp/dtmax)和最大下降速率(The maximum descending velocity of left ventricle pressure,LV-dp/dtmax)。
1.5 取材與樣本制備
大鼠心功能測(cè)試結(jié)束后,立刻斷頭取血,肝素鈉抗凝,分離外周血單個(gè)核細(xì)胞。摘取心臟,每組隨機(jī)取6個(gè)心臟中性甲醛固定,常規(guī)石蠟包埋,連續(xù)切片(厚度5 μm),用于免疫熒光實(shí)驗(yàn);另取6個(gè)心臟液氮速凍,置-80℃冰箱,用于western blot 實(shí)驗(yàn)。剩余6只大鼠常規(guī)腹腔麻醉,開胸摘取心臟,5% TTC溶液主動(dòng)脈逆向灌流染色,液氮速凍,10 min后取出,手工切片(厚約2 mm),數(shù)碼相機(jī)拍照,統(tǒng)計(jì)梗死區(qū)(乳白色)與非梗死區(qū)(紅色)面積,并計(jì)算梗死面積百分率。
1.6 外周血單個(gè)核細(xì)胞分離和流式細(xì)胞儀檢測(cè)
大鼠外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cell,PBMC)分離嚴(yán)格按照灝洋生物公司的“各種動(dòng)物外周血和臟器組織單個(gè)核細(xì)胞分離試劑盒操作說(shuō)明”進(jìn)行。在15 ml玻璃管中依次加入A和D液各2 ml,取1 ml新鮮抗凝血按1∶1比例與全血及組織稀釋液混勻疊加于D液的液面上,400倍重力離心15 min,收集離心管中由上至下第二層單個(gè)核細(xì)胞懸液,注入5 ml細(xì)胞洗滌液試管中,以500倍重力離心20 min,棄上清,沉淀的細(xì)胞用PBS重懸2次即得單個(gè)核細(xì)胞懸液,500倍重力離心20 min ,沉淀的單個(gè)核細(xì)胞用2.5%戊二醛固定30 min,PBS洗滌3次,離心棄上清,3% BSA 37℃封閉1 h,離心去上清,加入兔抗大鼠c-kit或CD29抗體,37℃孵育2 h,PBS洗滌3次,F(xiàn)ITC標(biāo)記的山羊抗兔c-kit或CD29抗體37℃孵育2 h,PBS洗滌5次。不加一抗,只加FITC標(biāo)記的山羊抗兔二抗的PBMCs作為陰性對(duì)照,F(xiàn)ACS Aria 流式細(xì)胞儀進(jìn)行檢測(cè)。
1.7 免疫熒光檢測(cè)
石蠟切片脫蠟至水,pH6.0枸櫞酸緩沖液抗原修復(fù),切片于修復(fù)液中降至室溫,PBS清洗,濕盒中正常山羊血清37℃封閉1 h,滴加兔抗大鼠心肌型肌鈣蛋白T(cTnT,1∶50)和小鼠抗大鼠細(xì)胞增殖核抗原(PCNA,1∶100),濕盒中4℃過(guò)夜。室溫復(fù)溫45 min,PBS清洗,滴加FITC標(biāo)記的山羊抗兔抗體(1∶50)、TRITC標(biāo)記的山羊抗小鼠抗體(1∶50)和DAPI(1 μg/ml),濕盒中37℃孵育1 h,PBS清洗,甘油緩沖液封片。設(shè)置空白對(duì)照和陰性對(duì)照。尼康Nikon C2 Plus激光共聚焦顯微鏡觀察拍照。
1.8 Western Blot實(shí)驗(yàn)
取心梗邊緣區(qū)心肌組織提取蛋白,10% Tris-甘氨酸SDS聚丙烯酰胺凝膠電泳分離蛋白,轉(zhuǎn)膜,封閉后孵育干細(xì)胞表面抗原c-kit和CD29(濃度均為1∶500),4℃過(guò)夜。室溫孵育二抗30 min(濃度為1∶2 000),洗膜后ECL發(fā)光,內(nèi)參照為GAPDH。
1.9 圖像和數(shù)據(jù)采集與分析
免疫熒光顯微圖片經(jīng)Image-Pro Plus 5.1軟件采集并分析;Western Blot膠片經(jīng)掃描后采用Quantity One 4.6軟件進(jìn)行分析;GraphPad Prism 5.0軟件作圖。所有數(shù)據(jù)均用SPSS 17.0軟件進(jìn)行處理,采用One-Way ANOVA進(jìn)行統(tǒng)計(jì)學(xué)分析,組間顯著性差異水平為P<0.05和P<0.01。
2.1 間歇運(yùn)動(dòng)和/或G-CSF可促進(jìn)心梗大鼠骨髓干細(xì)胞動(dòng)員增加
c-kit+和CD29+均為骨髓干細(xì)胞標(biāo)記物[29,53]。通過(guò)分離大鼠外周血單個(gè)核細(xì)胞,用FITC標(biāo)記c-kit和CD29抗原,流式細(xì)胞儀計(jì)數(shù)被標(biāo)記的和未標(biāo)記的細(xì)胞,計(jì)算免疫標(biāo)記的單個(gè)核細(xì)胞百分率,反映骨髓干細(xì)胞動(dòng)員效果。結(jié)果表明,與Sham組比較,MI組外周血單個(gè)核細(xì)胞中c-kit+和CD29+細(xì)胞的百分率增加顯著(P<0.01)。與MI組比較,ME組和MG組外周血c-kit+和CD29+干細(xì)胞百分率顯著增加(P<0.05),MGE組更為顯著(P<0.01,圖1)。
圖1 本研究大鼠外周血c-kit+和CD29+細(xì)胞的流式細(xì)胞儀檢測(cè)結(jié)果與統(tǒng)計(jì)圖Figure 1.The Result of c-kit and CD29 Positive PBMCs Detected by Flow Cytometer and Statistical Graph
2.2 間歇運(yùn)動(dòng)和/或G-CSF可促進(jìn)大鼠心梗邊緣區(qū)c-kit和CD29蛋白表達(dá)增加
Western Blot檢測(cè)結(jié)果顯示,與Sham組比較,MI組心梗邊緣區(qū)心肌c-kit和CD29蛋白表達(dá)均顯著增加(P<0.01)。與MI組比較,ME組和MG組心梗邊緣區(qū)心肌c-kit和CD29蛋白表達(dá)顯著增加(P<0.05),且MGE組增加效果顯著優(yōu)于單一因素(P<0.01,圖2)。
圖2 本研究大鼠心梗邊緣區(qū)c-kit和CD29蛋白表達(dá)結(jié)果與統(tǒng)計(jì)圖Figure 2.Expression of c-kit and CD29 Protein in Peri-infarct Area of Rat Heart and Statistical Graph
2.3 間歇運(yùn)動(dòng)和/或G-CSF干預(yù)可促進(jìn)心梗大鼠心肌細(xì)胞增殖
PCNA為定位于增殖細(xì)胞核的抗原,cTnT為定位于心肌細(xì)胞質(zhì)的特異性結(jié)構(gòu)蛋白。DAPI為DNA強(qiáng)力結(jié)合染料。PCNA+和cTnT+雙陽(yáng)性細(xì)胞可反映新生心肌細(xì)胞;新生心肌細(xì)胞百分率=新生心肌細(xì)胞數(shù)/所有心肌細(xì)胞數(shù)×100%。免疫熒光顯示,Sham組PCNA+和cTnT+雙陽(yáng)性細(xì)胞極少。MI組、ME組、MG組和MGE組均可見PCNA+和cTnT+雙陽(yáng)性細(xì)胞。與Sham組比較,MI組PCNA+和cTnT+雙陽(yáng)性細(xì)胞數(shù)顯著增加(P<0.01);與MI組比較,ME組、MG組和MGE組心肌細(xì)胞增生百分率顯著增加,且MGE組PCNA+和cTnT+雙陽(yáng)性細(xì)胞數(shù)最多(P<0.05,P<0.01,圖3)。
2.4 間歇運(yùn)動(dòng)和/或G-CSF干預(yù)可縮小心梗面積,改善心功能
TTC染色結(jié)果顯示,與Sham組比較,MI組梗死面積顯著增加(P<0.01);與MI組比較,ME組和MG組大鼠心梗面積顯著縮小(P<0.05),且MGE組梗死面積縮小更加明顯(P<0.01,圖4)。
圖3 本研究心梗邊緣區(qū)大鼠心肌細(xì)胞增殖的激光共聚焦掃描顯微鏡觀察結(jié)果與統(tǒng)計(jì)圖Figure 3.The Immunofluorescent Results of Cardiomyocyte Proliferation Detected by LSCM in Peri-infarct Area of Rats and Statistical Graph
圖4 本研究心梗大鼠心臟TTC染色結(jié)果與統(tǒng)計(jì)圖Figure 4.The Results of TTC Staining of Rat Hearts with Myocardial Infarction and Statistical Graph
血流動(dòng)力學(xué)和超聲心動(dòng)檢測(cè)結(jié)果顯示,與Sham組比較,MI組大鼠LVEF、LVFS、LVSP、LV+dp/dtmax和LV-dp/dtmax顯著降低(P<0.01),LVEDP顯著升高(P<0.01),心功能嚴(yán)重受損;與MI組比較,ME組和MG組大鼠LVEF、LVFS、LVSP、LV+dp/dtmax和LV-dp/dtmax顯著升高(P<0.05),LVEDP顯著下降(P<0.05); MGE組大鼠LVEF、LVFS、LVSP、LV +dp/dtmax和LV-dp/dtmax升高更顯著(P<0.01),LVEDP下降更顯著(P<0.01),心梗大鼠心功能改善明顯(圖5、圖6)。
圖5 本研究心梗大鼠心動(dòng)超聲結(jié)果與統(tǒng)計(jì)圖Figure 5.Echocardiography of Myocardial Infarction Rats and Statistical Graph
圖6 本研究心梗大鼠心臟血流動(dòng)力學(xué)結(jié)果與統(tǒng)計(jì)圖Figure 6.Hemodynamic Statistical Results of Myocardial Infarction Rats and Statistical Graph
3.1 間歇運(yùn)動(dòng)和/或G-CSF均可促進(jìn)心梗大鼠動(dòng)員干細(xì)胞歸巢與分化
近年的研究發(fā)現(xiàn),干細(xì)胞在心肌再生過(guò)程中扮演著重要角色[29,34,42],心臟干細(xì)胞歸巢行為的發(fā)現(xiàn)為MI后心臟損傷修復(fù)的研究帶來(lái)新希望。eCSCs/CPCs作為心肌細(xì)胞增殖的最直接來(lái)源細(xì)胞,在損傷發(fā)生后可被炎性因子誘導(dǎo)激活,進(jìn)一步分化為心肌細(xì)胞并修復(fù)受損心肌組織[16,38]。研究發(fā)現(xiàn),注入c-kit+CSCs可促進(jìn)心肌修復(fù),降低29%的梗死面積和左室重塑,提升心功能[11]。因此,促進(jìn)心肌c-kit+細(xì)胞數(shù)量增加具有重要意義。Orlic等研究證實(shí),BMSCs可被誘導(dǎo)分化為心肌細(xì)胞、內(nèi)皮細(xì)胞和血管平滑肌細(xì)胞,促進(jìn)心肌細(xì)胞新生,改善血供和心功能,降低個(gè)體死亡率[39,40]。此外,近期研究發(fā)現(xiàn),干細(xì)胞同樣可通過(guò)旁分泌效應(yīng),促使存活的心肌細(xì)胞再生[18,32]。CD29為BMSCs的主要標(biāo)記物之一,來(lái)自大鼠股骨和脛骨的BMSCs與新生大鼠心室肌細(xì)胞共培養(yǎng)可分化為心肌細(xì)胞,提升心功能[29]。因此認(rèn)為,促進(jìn)干細(xì)胞動(dòng)員和提高損傷部位干細(xì)胞水平對(duì)心肌再生具有積極作用。外源性注射G-CSF可通過(guò)SDF-1/CXCR4信號(hào)軸誘導(dǎo)BMSCs趨化,參與組織再生[37,52]。G-CSF作為強(qiáng)有力的干細(xì)胞動(dòng)員劑,可有效促進(jìn)骨髓干細(xì)胞進(jìn)入循環(huán)或直接趨化至心肌損傷部位,促進(jìn)心肌組織再生。有研究報(bào)道,運(yùn)動(dòng)可促進(jìn)CSCs和循環(huán)中干細(xì)胞的激活、動(dòng)員、歸巢和分化[14,54],誘導(dǎo)MI患者循環(huán)內(nèi)皮祖細(xì)胞水平增加[25]。
3.2 間歇運(yùn)動(dòng)和/或G-CSF促進(jìn)心梗大鼠心肌細(xì)胞增殖
心肌梗死后有功能的心肌細(xì)胞大量丟失是造成心肌組織惡性重塑的主要原因之一。如何有效促進(jìn)內(nèi)源性心肌增殖是近年來(lái)臨床醫(yī)學(xué)和基礎(chǔ)研究的熱點(diǎn)問(wèn)題。有文獻(xiàn)報(bào)道,正常生理和病理狀態(tài)下,心肌細(xì)胞存在增殖現(xiàn)象。Kajstura等發(fā)現(xiàn),缺血心肌中處于有絲分裂期的心肌細(xì)胞數(shù)量比正常生理狀態(tài)下增加了近10倍[20]。Bostrom等研究發(fā)現(xiàn),游泳可促進(jìn)心肌PCNA蛋白表達(dá),誘導(dǎo)心肌細(xì)胞發(fā)生有絲分裂,其機(jī)制可能與C/EBP beta信號(hào)有關(guān)[7]。Waring等報(bào)道,有氧運(yùn)動(dòng)可上調(diào)NRG1、FGF2和Periostin等多種細(xì)胞生長(zhǎng)因子表達(dá),增加Brdu+和Ki67+心肌細(xì)胞數(shù)目[57]。以上研究表明,運(yùn)動(dòng)可促進(jìn)正常生理狀態(tài)下心肌細(xì)胞的增殖。本研究采用PCNA和cTnT雙陽(yáng)性表達(dá)來(lái)反映心肌細(xì)胞增殖水平。結(jié)果發(fā)現(xiàn),MI后的第4周,梗死邊緣區(qū)心肌組織中檢測(cè)到PCNA+和cTNT+雙陽(yáng)性細(xì)胞水平顯著增加,證實(shí)了MI后心肌細(xì)胞增殖被激活。ME組和MG組PCNA+心肌細(xì)胞比MI組大鼠顯著增加,說(shuō)明間歇運(yùn)動(dòng)和G-CSF均可使梗死邊緣區(qū)心肌細(xì)胞產(chǎn)生較強(qiáng)的增殖效應(yīng)。MGE組梗死邊緣區(qū)PCNA+心肌細(xì)胞比ME組和MG組顯著,提示,間歇運(yùn)動(dòng)協(xié)同G-CSF能產(chǎn)生比單一因素干預(yù)更強(qiáng)的心肌細(xì)胞增殖效應(yīng)。
3.3 間歇運(yùn)動(dòng)和/或G-CSF縮小心肌梗死面積,提升心功能
研究報(bào)道,心肌梗死后的運(yùn)動(dòng)康復(fù)或給予G-CSF可改善心肌損傷后心功能[4,16]。本研究顯示,間歇運(yùn)動(dòng)和G-CSF均可縮小心梗面積,二者協(xié)同作用效果更為顯著,說(shuō)明間歇運(yùn)動(dòng)和G-CSF在心肌梗死后心肌組織再重塑方面發(fā)揮積極作用。本研究進(jìn)一步發(fā)現(xiàn),心肌梗死后大鼠心臟LVEF、LVFS、LVSP、LV+dp/dtmax和LV-dp/dtmax顯著降低,LVEDP顯著升高,心功能嚴(yán)重惡化。心梗后進(jìn)行間歇運(yùn)動(dòng)或G-CSF干細(xì)胞動(dòng)員,均可以顯著升高LVEF、LVFS、LVSP、LV+dp/dtmax和LV-dp/dtmax和降低LVEDP,心功能得到有效改善,間歇運(yùn)動(dòng)和G-CSF聯(lián)合作用效果優(yōu)于單一因素。
間歇運(yùn)動(dòng)或G-CSF均可動(dòng)員心梗大鼠骨髓干細(xì)胞進(jìn)入外周血,有效增加循環(huán)血中c-kit+和CD29+單個(gè)核細(xì)胞比率和增加心肌梗死邊緣區(qū)c-kit和CD29蛋白表達(dá),提示,進(jìn)入外周血的干細(xì)胞可能在趨化因子SDF-1作用下沿SDF-1/CXCR4信號(hào)軸向心肌梗死及其邊緣區(qū)歸巢、分裂和分化,生成新的心肌細(xì)胞或者通過(guò)干細(xì)胞旁分泌作用,促進(jìn)心肌細(xì)胞數(shù)目增加,縮小梗死面積,提升心功能。間歇運(yùn)動(dòng)聯(lián)合G-CSF干預(yù)可更有效動(dòng)員干細(xì)胞歸巢,增加梗死邊緣區(qū)新生心肌細(xì)胞比率,其心功能改善效果優(yōu)于單一因素的作用。
間歇運(yùn)動(dòng)協(xié)同G-CSF干預(yù)可顯著促進(jìn)內(nèi)源性干細(xì)胞動(dòng)員歸巢,誘導(dǎo)心肌細(xì)胞增殖,縮小梗死面積和提升心功能,且二者聯(lián)合效果優(yōu)于單一因素的作用。
[1]蔡夢(mèng)昕,張娟娟,史秀超,等.有氧運(yùn)動(dòng)和G-CSF干預(yù)對(duì)心梗大鼠心肌細(xì)胞再生的影響及其機(jī)制探討[J].體育科學(xué),2013,33(5):50-58.
[2]陳運(yùn)賢,歐瑞明,鐘雪云,等.粒細(xì)胞集落刺激因子動(dòng)員骨髓干細(xì)胞治療大鼠急性心肌梗塞[J].中國(guó)病理生理雜志,2002,18(1):1-3.
[3]田振軍,賀志雄,劉智煒,等.持續(xù)和間歇有氧運(yùn)動(dòng)對(duì)心梗大鼠心肌Myostatin及其受體表達(dá)的影響[J].體育科學(xué),2013,33(11):66-74.
[4]ACHILLI F,MALAFRONTE C,LENATTI L,etal.Granulocyte colony-stimulating factor attenuates left ventricular remodelling after acute anterior STEMI:Results of the single-blind,randomized,placebo- controlled multicentre stem cell mobilization in acute myocardial infarction (STEM-AMI) trial[J].Eur J Heart Fail,2010,12(10):1111-1121.
[5]ANDJIC M,SPIROSKI D,ILIC S O,etal.Effects of short-term exercise training in patients following acute myocardial infarction treated with primary percutaneous coronary intervention[J].Eur J Phys Rehabil Med.2015,Nov 19.[Epub ahead of print].
[6]BERGMANN O,BHARDWAJ R D,BERNARD S,etal.Evidence for cardiomyocyte renewal in humans[J].Sci,2009,324(5923):98-102.
[7]BOSTROM P,MANN N,WU J,etal.C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling[J].Cell,2010,143(7):1072-1083.
[8]BREHM M,PICARD F,EBNER P,etal.Effects of exercise training on mobilization and functional activity of blood-derived progenitor cells in patients with acute myocardial infarction[J].Eur J Med Res,2009,14(9):393-405.
[9]CHENG F C,SHEU M L,SU H L,etal.The effect of exercise on mobilization of hematopoietic progenitor cells involved in the repair of sciatic nerve crush injury[J].J Neurosurg,2013,118(3):594-605.
[10]CIOLAC E G,BOCCHI E A,BORTOLOTTO L A,etal.Effects of high-intensity aerobic interval training vs.moderate exercise on hemodynamic,metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension[J].Hypertens Res,2010,33(8):836-843.
[11]DAWN B,STEIN A B,URBANEK K,etal.Cardiac stem cells delivered intravascularly traverse the vessel barrier,regenerate infarcted myocardium,and improve cardiac function[J].PNAS,2005,102(10):3766-3771.
[12]ELLIOTT A D,RAJOPADHYAYA K,BENTLEY D J,etal.Interval training versus continuous exercise in patients with coronary artery disease:A meta-analysis[J].Heart Lung Circ,2015,24(2):149-157.
[13]ELLISON G M,NADAL-GINARD B,TORELLA D.Optimizing cardiac repair and regeneration through activation of the endogenous cardiac stem cell compartment[J].J Cardiovasc Transl Res,2012,5(5):667-677.
[14]FIGUEIREDO P A,APPELL C H,DUARTE J A.Cardiac regeneration and cellular therapy:Is there a benefit of exercise?[J].Int J Sports Med,2014,35(3):181-190.
[15]FONTES-CARVALHO R,SAMPAIO F,TEIXEIRA M,etal.The role of a structured exercise training program on cardiac structure and function after acute myocardial infarction:Study protocol for a randomized controlled trial[J].Trials,2015,16:90.
[16]FUKUHARA S,TOMITA S,NAKATANI T,etal.G-CSF promotes bone marrow cells to migrate into infarcted mice heart,and differentiate into cardiomyocytes[J].Cell Transplant,2004,13(7-8):741-748.
[17]GODFREY R,THEOLOGOU T,DELLEGROTTAGLIE S,etal.The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling[J].BMJ Case Rep,2013,DOI:10.1136/bcr-2012-007668.
[18]GNECCHI M,ZHANG Z,NI A,etal.Paracrine mechanisms in adult stem cell signaling and therapy[J].Circ Res,2008,103(11):1204-1219.
[19]HARAM P M,KEMI O J,LEE S J,etal.Aerobic interval training vs.continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity[J].Cardiovasc Res.2009,81(4):723-732.
[20]KAJSTURA J,LERI A,FINATO N,etal.Myocyte proliferation in end-stage cardiac failure in humans[J].PNAS,1998,95(15):8801-8805.
[21]KAJSTURA J,ROTA M,CAPPETTA D,etal.Cardiomyogenesis in the aging and failing human heart[J].Circulation,2012,126(15):1869-1881.
[22]KESER I,SUYANI E,AKI S Z,etal.The positive impact of regular exercise program on stem cell mobilization prior to autologous stem cell transplantation[J].Transfus Apher Sci,2013,49(2):302-306.
[23]KIM C,CHOI H E,LIM M H.Effect of high interval training in acute myocardial infarction patients with drug-eluting stent[J].Am J Phys Med Rehabil.2015,94(10 Suppl 1):879-886.
[24]LAFLAMME M A,MURRY C E.Heart regeneration[J].Nature,2011,473(7347):326-335.
[25]LAUFS U,WERNER N,LINK A,etal.Physical training increases endothelial progenitor cells,inhibits neointima formation,and enhances angiogenesis[J].Circulation,2004,109(2):220-226.
[26]LAUGWITZ K L,MORETTI A,LAM J,etal.Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages[J].Nature,2005,433(7026):647-653.
[27]LEONE A M,RUTELLA S,BONANNO G,etal.Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function[J].Eur Heart J,2005,26(12):1196-1204.
[28]LI M, IZPISUA B J C.Mending a Faltering Heart[J].Circ Res,2016,118(2):344-351.
[29]LI X,YU X,LIN Q,etal.Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment[J].J Mol Cell Cardiol,2007,42(2):295- 303.
[30]LIU J,SLUIJTER J P,GOUMANS M J,etal.Cell therapy for myocardial regeneration[J].Curr Mol Med,2009,9(3):287-298.
[31]LU K,WANG L,WANG C,etal.Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis,oxidative stress and metabolism of the infarcted myocardium in a rat model[J].Mol Med Rep,2015,12(2):2374-2382.
[32]MALTAIS S,TREMBLAY J P,PERRAULT L P,etal.The paracrine effect:Pivotal mechanism in cell-based cardiac repair[J].J Cardiovasc Transl Res,2010,3(6):652-662.
[33]MCGREGOR G,GAZE D,OXBOROUGH D,etal.Reverse left ventricular remodelling- effect of cardiac rehabilitation exercise training in myocardial infarction patients with preserved ejection fraction[J].Eur J Phys Rehabil Med,2015,Nov 4.[Epub ahead of print].
[34]MERCOLA M,RUIZ-LOZANO P,SCHNEIDER M D.Cardiac muscle regeneration:Lessons from development [J].Genes Dev,2011,25(4):299-309.
[35]MOLLOVA M,BERSELL K,WALSH S,etal.Cardiomyocyte proliferation contributes to heart growth in young humans[J].PNAS,2013,110(4):1446-1451.
[36]MOTOHIRO M,YUASA F,HATTORI T,etal.Cardiovascular adaptations to exercise training after uncomplicated acute myocardial infarction[J].Am J Phys Med Rehabil.2005,84(9):684-691.
[37]NIENABER C A,PETZSCH M,KLEINE H D,etal.Effects of granulocyte-colony-stimulating factor on mobilization of bone marrow-derived stem cells after myocardial infarction in humans[J].Nat Clin Pract Cardiovasc Med,2006,3(Suppl 1):S73-S77.
[38]OH H,BRADFUTE S B,GALLARDO T D,etal.Cardiac progenitor cells from adult myocardium:Homing,differentiation,and fusion after infarction[J].PNAS,2003,100(21):12313-12318.
[39]ORLIC D,KAJSTURA J,CHIMENTI S,etal.Bone marrow stem cells regenerate infarcted myocardium[J].Pediatr Transplant,2003,7(Suppl 3):86-88.
[40]ORLIC D,KAJSTURA J,CHIMENTI S,etal.Mobilized bone marrow cells repair the infarcted heart,improving function and survival[J].PNAS,2001,98(18):10344-10349.
[41]PEIXOTO T C,BEGOT I,BOLZAN D W,etal.Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction:A randomized controlled trial[J].Can J Cardiol,2015,31(3):308-313.
[42]PFEFFER M A,BRAUNWALD E.Ventricular remodeling after myocardial infarction.Experimental observations and clinical implications[J].Circulation,1990,81(4):1161- 1172.
[43]REDDY K,KHALIQ A,HENNING R J.Recent advances in the diagnosis and treatment of acute myocardial infarction[J].World J Cardiol,2015,7(5):243-276.
[44]RIPA R S,HAACK-SORENSEN M,WANG Y,etal.Bone marrow derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction:Results from the Stem Cells in Myocardial Infarction (STEMMI) trial[J].Circulation.2007,116(11 Suppl):124-130.
[45]RIPA R S,JORGENSEN E,WANG Y,etal.Stem cell mobilization induced by subcutaneous granulocyte- colony stimulating factor to improve cardiac regeneration after acute ST- elevation myocardial infarction:Result of the double-blind,randomized,placebo-controlled stem cells in myocardial infarction (STEMMI) trial[J].Circulation,2006,113(16):1983-1992.
[46]RIVAS-ESTANY E,SIXTO-FERNANDEZ S,BARRERA-SARDUY J,etal.Effects of long-term exercise training on left ventricular function and remodeling in patients with anterior wall myocardial infarction[J].Arch Cardiol Mex,2013,83(3):167-173.
[47]ROGNMO O,HETLAND E,HELGERUD J,etal.High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease[J].Eur J Cardiovasc Prev Rehabil,2004,11(3):216-222.
[48]ROLIM N,SKARDAL K,HOYDAL M,etal.Aerobic interval training reduces inducible ventricular arrhythmias in diabetic mice after myocardial infarction[J].Basic Res Cardiol,2015,110(4):44.
[49]RUSSO V,YOUNG S,HAMILTON A,etal.Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury[J].Biomaterials,2014,35(13):3956-3974.
[50]SEGERS V F,LEE R T.Stem-cell therapy for cardiac disease[J].Nature,2008,451(7181):937-942.
[51]SINGLA D K,LONG X,GLASS C,etal.Induced pluripotent stem (iPS) cells repair and regenerate infarcted myocardium[J].Mol Pharm,2011,8(5):1573-1581.
[52]TAGHAVI S,GEORGE J C.Homing of stem cells to ischemic myocardium[J].Am J Transl Res,2013,5(4):404-411.
[53]THEISS H D,VALLASTER M,RISCHPLER C,etal.Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis[J].Stem Cell Res,2011,7(3):244-255.
[54]WAHL P,BRIXIUS K,BLOCH W.Exercise-induced stem cell activation and its implication for cardiovascular and skeletal muscle regeneration[J].Minim Invasive Ther Allied Technol,2008,17(2):91-99.
[55]WANG Y,JOHNSEN H E,MORTENSEN S,etal.Changes in circulating mesenchymal stem cells,stem cell homing factor,and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention[J].Heart.2006,92(6):768-774.
[56]WARBURTON D E,MCKENZIE D C,HAYKOWSKY M J,etal.Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease[J].Am J Cardiol,2005,95(9):1080-1084.
[57]WARING C D,HENNING B J,SMITH A J,etal.Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining[J].Physiol Rep,2015,3(2):e12302.
[58]WEN Z,MAI Z,ZHANG H,etal.Local activation of cardiac stem cells for post-myocardial infarction cardiac repair[J].J Cell Mol Med,2012,16(11):2549-2563.
[59]WISL?FF U,ELLINGSEN ?,KEMI O J.High-intensity interval training to maximize cardiac benefits of exercise training?[J].Exe Sport Sci Rev,2009,37(3):139-146.
[60]WISL?FF U,LOENNECHEN J P,CURRIE S,etal.Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility,Ca2+sensitivity and SERCA-2 in rat after myocardial infarction[J].Cardiovasc Res,2002,54(1):162-174.
[61]WISL?FF U,ST?YLEN A,LOENNECHEN J P,etal.Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients:A randomized study[J].Circulation,2007,115(24):3086-3094.
The Observation and Analysis of Stem Cell Mobilization and Endogenous Cardiomyocyte Proliferation Promoted by Interval Exercise and Granulocyte Colony-stimulating Factor Using Confocal Microscopy and Flow Cytometry in Myocardial Infarction Rats
SHI Xiu-chao1,2,CAI Meng-xin1,TIAN Zhen-jun1
Objectives:To discuss the effects of treadmill interval exercise and granulocyte colony-stimulating factor(G-CSF) on stem cell mobilization,endogenous cardiomyocyte proliferation and cardiac function in rats with myocardial infarction(MI).Methods:90 Adult male sprague-dawley rats were randomly divided into:Sham-operated group(Sham),MI group(MI),MI with interval exercise group(ME),MI with G-CSF treatment group(MG)and MI with G-CSF treatment plus interval exercise group(MGE).The MI model of rats was established by ligation of the left anterior descending (LAD) coronary artery.Rats in ME and MGE groups were subjected to 3-week treadmill interval exercise seven days after myocardial infarction.Rats in MG and MGE groups were injected with rhG-CSF subcutaneously 1h after myocardial infarction,10 μg/kg/d for 5 days.Cardiomyocyte proliferation ratio was detected by immunofluorescence and calculated in the peri-infarct region.C-kit and CD29 positive peripheral blood mononuclear cells (PBMCs) were counted by flow cytometer.C-kit and CD29 expression in peri-infarct area was measured by western blot.Hearts were picked for TTC dyeing to decide the myocardial infarction area of each group.Hemodynamic measurement and echocardiography were performed to evaluate cardiac function.Results:Compared to Sham group,the ratio of PCNA and cTnT dual positive cardiomyocytes,c-kit+and CD29+cells ratio in the PBMCs,c-kit and CD29 expression in the peri-infarct region,myocardial infarction area were significantly increased and cardiac performance decreased significantly in MI rats;compared to MI rats in peri-infarct region,percentage of PCNA and cTnT dual positive cardiomyocytes,c-kit and CD29 positive PBMCs ratio,the expression of c-kit and CD29 protein in the peri-infarct region,cardiac performance were increased significantly,and myocardial infarction area decreased significantly in ME,MG and MGE group.The combined treatment with G-CSF and interval exercise had a better effect than either of them.Conclusions:Interval exercise or G-CSF could promote stem cell mobilization and homing,cardiomyocyte proliferation,cardiac performance and decrease myocardial infarction area significantly in MI rats.The better effects were shown with the combined treatment.
myocardialinfarction;intervalexercise;granulocytecolony-stimulatingfactor;stemcellmobilization;cardiomyocyteproliferation;rat;animalexperiment
2015-10-23;
2016-02-01
國(guó)家自然科學(xué)基金資助項(xiàng)目(31171141)。
史秀超(1973-),男,陜西城固人,講師,在讀博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)心血管生物學(xué),E-mail:tianzhj2015@hotmail.com;蔡夢(mèng)昕(1987-),女,河南商丘人,在讀博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)心血管生物學(xué);田振軍(1965-),男,陜西綏德人,教授,博士研究生導(dǎo)師,主要研究方向?yàn)檫\(yùn)動(dòng)心血管生物學(xué),E-mail:tianzj611@hotmail.com。
1.陜西師范大學(xué) 體育學(xué)院暨運(yùn)動(dòng)生物學(xué)研究所,陜西 西安 710119;2.渭南師范學(xué)院 化學(xué)與環(huán)境學(xué)院,陜西 渭南 714000 1.Shaanxi Normal University,Xi’an 710119,China;2.Weinan Normal University,Weinan 714000,China.
G804.7
A
10.16469/j.css.201604008