





定理1 設(shè)a,b>0,0≤λ≤1.則對f∈Cw,有

值得注意的是,上述結(jié)論中權(quán)函數(shù)的參數(shù)范圍是a,b>0,沒有上界限制.為了提高逼近階,Yu構(gòu)造出了能夠逼近Cw中函數(shù)的Bernstein算子的線性組合[8]和Bernstein擬中插式[9]. Yu等[10]還利用截斷的方法構(gòu)造出能夠逼近具有內(nèi)部奇性函數(shù)的修正Bernstein算子.
需要指出的是,Vechhia等[6]所構(gòu)造的算子并非正線性算子,對于保持目標函數(shù)的幾何性質(zhì)等也有不足之處.為此,本文考慮Bernstein算子的一種重要的推廣形式—Bernstein-Stancu型算子的加權(quán)逼近性質(zhì).Bernstein-Stancu多項式算子是Stancu[11]首次引入的:

其中α,β為非負常數(shù),且有0≤α≤β.顯然當α=β=0時,該式即為通常的Bernstein多項式.Bernstein-Stancu算子是一種正線性算子,已經(jīng)被廣泛應(yīng)用于數(shù)學和計算機科學領(lǐng)域.
本文將證明在α,β>0時Bernstein-Stancu算子可以較好地逼近Cw中的函數(shù).以下總是假設(shè)α,β>0.事實上,本文有如下結(jié)論:
定理2 設(shè)f(x)∈Cw,a,b>0,0≤λ≤1,則對n=2,3,…,存在正常數(shù)C使得

定理3 設(shè)f(x)∈Cw,a,b>0,則對任何0<θ<1,有

1 引理及其證明

證明 記
先證明

(1)
其中兩個量p~q指的是存在兩個正常數(shù)C1和C2使得C2q≤p≤C1q.分幾種情況證明式(1).


且有

從而

當k=n時,類似可證得





這樣,



綜上所述,可知式(1)成立.
另一方面,對任意γ,δ>0,成立[12]:

(2)
利用式(1)和(2),得

引理2 對于任意γ≥0,有

(3)
證明 由文[13]知

(4)
利用式(4)及

即得




(5)
由式(2)知
(6)
類似地,有

(7)
利用式(5),(6),(7)知引理3此時成立.




因此,引理3此時也成立.

證明 注意到



因此,

利用式(1)的證明方法,可以證明當n>2時,有


這樣,利用式(2),就有
2 結(jié)論及其證明
定理2的證明 定義


Kφλ(f,t)w~wφλ(f,t)w,0≤λ≤1.
(8)
利用式(8),對任意固定的n,x和λ,存在g(x)∈W(λ),使得

(9)

(10)

(11)

因此,只需要證明以下不等式:

(12)


利用式(3),(10)和(11),得




綜合以上討論可知

定理3的證明 充分性由定理2即知.必要性由引理3,引理4,知名的Berens-Lorentz引理和文[1]中的方法易得.
[1] DITZIAN Z, TOTIK V. Moduli of smoothness[M]. Berlin: Springer-Verlag,1987.
[2] GUPTA V, AGARWAL R P. Convergence estimates in approximation theory[M]. New York: Springer, 2014.
[3] ZHOU D X. Rate of convergence for Bernstein operators with Jacobi weights[J]. Acta Math Sinica, 1992,35:331-338.
[4] GUO S S, TONG H Z, ZHANG G S. Pointwise weighted approximation by Bernstein operators[J]. Acta Math Hungar, 2003,101(4):293-311.
[5] WANG J J, XUE Y C, LI F J. Stechkin-Marchaud-Type inequalities with Jacobi weights for Bernstein operators[J]. J Appl Math Computing, 2007,24(2):343-355.
[6] VECHHIA B D, MASTROIANNI G, SZABADOS J. Weighted approximation of functions with endpoint and inner singularities by Bernstein operators[J]. Acta Math Hungar, 2004(1/2):19-41.
[7] WEI B R, ZHAO Y. Weighted approximation of functions with singularities by Bernstein operators[J]. J Zhejiang Univ Science A, 2008,9(10):1451-1456.
[8] YU D S. Weighted approximation of functions with singularities by combinations of Bernstein operators[J]. Appl Math Comput,2008,206(2):906-918. [9] ZHAO Y,YU D S. Weighted approximation by Bernstein quasi-interpolants for functions with singularities[J]. Frontier Math in China,2013,8(6):1461-1479.
[10] YU D S, ZHAO D J. Approximation of functions with singuarities by truncated Bernstein operators[J]. Southeast Asian Bull Math,2006,30(6):1169-1178.
[11] STANCU D D. Approximation of functions by a new class of linear polynomial operators[J]. Rev Roum Math Pure Appl,1968,13(8):1173-1194.
[12] YU D S. Weighted approximation by modefied Kantorovich-Bernstein operators[J]. Acta Math Hungar,2013,141(1):132-149.
[13] LORENTZ G G. Bernstein polynomials[M]. Toronto: Univ Toronto Press,1953.
[14] HEILMAN M, MULLER M W. Equvialence of a weighted of modulus of smootheness and a modified weighted K-functional[M]//GONCHAR A A, STAFF E B. Progress in approximation theory. New York:Springer,1991:467-473.
[15] WANG M L, YU D S, ZHOU P. On the approximation by operators of Bernstein-Stancu types[J]. Appl Math Comput,2014,246(8):79-87.
Weighted Approximation of Bernstein-Stancu Operators
QIAN Cheng1, TENG Danxia2, YU Dansheng1
(1. School of Science, Hangzhou Normal University, Hangzhou 310036, China; 2. Department of Public Education,Hangzhou Automobile Advanced Technician’s School, Hangzhou 310012, China)
The paper considerd the weighted approximation problem of Berstein-Stancu operators with singular function and Jacobi weight, and established the direct and converse theorems about weighted approximation.
Bernstein-Stancu type operators; weighted approximation; singular function
2016-05-04
虞旦盛(1976—),男,教授,主要從事函數(shù)逼近論研究.E-mial:dsyu_math@163.com
10.3969/j.issn.1674-232X.2016.06.014
O174.41 MSC2010: 41A25; 41A35
A
1674-232X(2016)06-0636-07