張永生,姚恩建,蔡昌俊,楊志強
(1.北京交通大學交通運輸學院,北京100044;2.廣州地鐵集團有限公司,廣東廣州510310)
城市軌道交通網(wǎng)絡新線接入后的客流預測
張永生1,姚恩建1,蔡昌俊2,楊志強2
(1.北京交通大學交通運輸學院,北京100044;2.廣州地鐵集團有限公司,廣東廣州510310)
城市軌道交通網(wǎng)絡新線接入后,網(wǎng)絡拓撲結(jié)構和客流時空規(guī)律都將發(fā)生較大變化。提出通過可達性指標將進出站量預測、OD分布量預測、基于路徑選擇模型的隨機客流分配等階段關聯(lián),構建客流預測模型。進出站量預測時,構建土地利用替代指標,避免對新車站周邊土地利用、社會經(jīng)濟屬性等進行調(diào)查;同時由目的地選擇效用計算得到車站可達性指標,描述車站位置對進出站量的影響。OD分布量預測時,構建目的地選擇模型,可適應拓撲變化后的場景,模型中OD可達性指標由路徑選擇效用計算得到。構建的路徑選擇模型,綜合考慮了影響乘客路徑選擇的各因素。最后,對廣州市地鐵6號線接入后的客流進行建模預測,各模型參數(shù)均符合統(tǒng)計檢驗要求且客流預測精度較高。
交通規(guī)劃;城市軌道交通;客流預測模型;新線接入
為緩解道路交通壓力,中國很多大中城市開始建設城市軌道交通系統(tǒng),尤其是北京、上海、廣州、深圳等超大城市的軌道交通系統(tǒng)已形成了網(wǎng)絡化格局??土黝A測可以指導車站的規(guī)劃設計、進出站客流組織、換乘客流組織、列車運行計劃制定等,對城市軌道交通的規(guī)劃、建設、運營有著重要意義。但城市軌道交通網(wǎng)絡新線接入后,網(wǎng)絡拓撲結(jié)構、客流時空分布規(guī)律等都將發(fā)生較大變化,同時,城市軌道交通的規(guī)劃、建設、運營管理等部門要求客流預測的精度高、時間粒度小、操作簡單易行等,給客流預測帶來了很大的挑戰(zhàn)。
城市軌道交通客流指標一般包括進出站量、OD分布量、斷面流量、換乘量和線路流量等,其中斷面流量、換乘量、線路流量是基于路徑選擇模型的隨機客流分配的結(jié)果。乘客路徑選擇模型、OD分布量預測模型、進出站量預測模型是城市軌道交通客流預測模型的三個核心環(huán)節(jié),本文通過可達性指標將各個環(huán)節(jié)關聯(lián),以改善傳統(tǒng)四階段方法各環(huán)節(jié)參數(shù)一致性較差、難以測算誘增交通量等缺點。如圖1所示,建模時,OD可達性可基于路徑選擇模型計算得到,車站可達性可基于目的地選擇模型計算得到;預測時,進出站量是OD分布量預測模型的輸入,OD分布量是基于路徑選擇模型的隨機客流分配的輸入。
圖1 城市軌道交通網(wǎng)絡新線接入后客流預測流程Fig.1 Flow diagram of passenger volume forecasting with the new rail transit lines in operation
進出站量一般與車站周邊的土地利用、車站所處的位置、車站周邊的交通環(huán)境等因素有關,但該部分因素的調(diào)查需要投入大量的人力、物力、財力,未來的發(fā)展趨勢也不易預測。軌道交通運營部門有大量的進出站量數(shù)據(jù)、全網(wǎng)各車站位置信息和以往新線開通的記錄,因此,本文基于軌道交通運營部門掌握的資料,研究新線接入后全網(wǎng)各車站進出站量的預測方法。在新線接入的條件下,根據(jù)有無歷史數(shù)據(jù),將車站分為既有車站和新車站。
1)既有車站。
既有車站進出站量預測有一定的歷史數(shù)據(jù)和以往新線開通對既有車站進出站量影響的支持。根據(jù)客流生成機理[1],新線對既有車站的影響可從車站的一次吸引范圍[2]和二次吸引范圍進行分析,在此基礎上,結(jié)合新線接入前的進出站量,即得到新線接入后既有車站進出站量預測值
式中:Q'為新線接入后既有車站的日均進出站量預測值/(人次·d-1);Q為新線接入前既有車站的日均進出站量/(人次·d-1);ai,qi為符合條件i的修正系數(shù)和修正量/(人次·d-1)。
2)新車站。
由于缺乏歷史數(shù)據(jù),時間序列預測方法等一般性的數(shù)理統(tǒng)計模型無法應用于新車站進出站量預測。同時,新車站周邊土地利用、社會經(jīng)濟屬性等數(shù)據(jù)的調(diào)查難度,也使得難以基于傳統(tǒng)的發(fā)生吸引量預測模型進行進出站量預測[3]。本文從充分利用現(xiàn)有數(shù)據(jù)、簡化輸入數(shù)據(jù)等角度出發(fā),建立一種新車站進出站量預測的方法。通過構造歷史數(shù)據(jù)庫,描述車站位置、土地利用性質(zhì)、土地利用規(guī)模指標與進出站量的映射關系,實現(xiàn)新車站進出站量的預測。其中,車站位置、土地利用性質(zhì)和土地利用規(guī)模指標是劃分車站類型的依據(jù),各指標值用正整數(shù)唯一標識。
式中:DB為歷史數(shù)據(jù)庫;O為日均進站量/(人次·d-1),進站量與出站量相等;SJ為車站位置指標;TX為車站土地利用性質(zhì)指標;TS為車站土地利用規(guī)模指標。各指標值唯一標識一類車站,通過映射關系可以得到該類車站平均的進出站量。建模時,車站位置指標通過既有路網(wǎng)中車站可達性進行劃分;土地利用性質(zhì)指標利用土地利用位置指標相同車站的早(晚)高峰進站量比例、早(晚)高峰出站量比例等通過模糊聚類進行劃分;土地利用規(guī)模指標通過每類土地利用性質(zhì)下各車站全日進出站量進行劃分。預測時,新車站各對應指標值可從地圖上獲得,通過在歷史數(shù)據(jù)庫中進行模式匹配,即可獲得對應的進出站量。
車站位置指標SJ取正整數(shù),1為郊區(qū)站,2為市區(qū)站,即
式中:若車站可達性指標AZr小于閾值AY,則該站為郊區(qū)站,否則為市區(qū)站。
車站可達性AZr表示該車站客流吸引能力和可達路網(wǎng)各站的方便程度,本文用目的地選擇效用的合成值表示:
式中:s為目的地;S為目的地集合;DErs為在r站選擇s站為目的地的效用。
新線接入后,新OD對缺乏歷史數(shù)據(jù),而既有OD對在新車站的影響下也會發(fā)生不同程度的變化。本文基于非集計理論構建目的地選擇模型,通過分析影響OD分布的因素,實現(xiàn)新線接入后OD分布量的預測。模型考慮的因素主要包括目的地吸引程度、起點到目的地出行方便程度(即OD可達性)、起點與目的地等周邊的土地利用、起點與目的地的線位關系等?;诜羌嬂碚摚瑥钠瘘cr出發(fā)的城市軌道交通乘客n選擇目的地s為終點的概率
式中:Frs為OD對rs間的日均OD分布量/(人次·d-1);Or為起點r的日均進站量/(人次·d-1);為在起點r的城市軌道交通乘客n選擇目的地s的概率/%;為在起點r選擇s為目的地的效用值; j為目的地集合S中的某一目的地;Ds為目的地s的日均出站量/(人次·d-1),表示目的地的吸引程度;Crs為起點r與目的地s之間的票價/元;XZrs為標記起點r與目的地s等周邊土地利用性質(zhì)指標的0-1啞元變量;GMrs為標記起點r與目的地s等周邊土地利用強度指標的0-1啞元變量;TXrs為標記起點r與目的地s線位關系指標的0-1啞元變量;AODrs為起點r與目的地s之間的OD可達性,表示OD對間的交通方便程度;a,φ,η,λ,μ,ω為待定參數(shù),可根據(jù)既有OD分布量利用加權的極大似然估計法得到[4-5]。
本文以路徑選擇效用的合成值表示AODrs,即
基于路徑選擇模型利用MSA(Method of Successive Average)法進行隨機客流分配,可以獲得換乘量、斷面流量和線路流量等客流指標值。路徑選擇模型描述了乘客n選擇某條路徑的概率,即
廣州市地鐵6號線于2013年底開通,全長24.4 km,共設22座車站(含7座換乘站),貫通市中心,連接老城區(qū)和一些大型居住區(qū),與1號線、2號線、3號線和5號線等存在換乘關系(見圖2),使得廣州市軌道交通網(wǎng)絡結(jié)構和客流時空分布規(guī)律發(fā)生巨大改變。本文以地鐵6號線接入軌道交通線網(wǎng)為背景,驗證所構建的新線接入后客流預測模型的預測效果:以6號線開通前的網(wǎng)絡結(jié)構和客流數(shù)據(jù)為基礎,構建客流預測模型,對6號線接入后的客流進行預測,通過將預測值與真實值進行對比,驗證模型的預測效果。
圖2 廣州市地鐵6號線接入后軌道交通線網(wǎng)Fig.2 Rail transit network with the new Metro Line 6 in Guangzhou
表1 路徑選擇模型參數(shù)標定結(jié)果Tab.1 Calibration of route choice model
本文利用2012年9月乘客實際出行路徑的抽樣調(diào)查數(shù)據(jù),對模型待定參數(shù)進行標定。數(shù)據(jù)包括2012年9月平均OD分布量、列車運行計劃、各站進出站量分時數(shù)據(jù),以及2010年3號線北延線開通前后的進出站數(shù)據(jù)。得到的模型結(jié)果見表1~表4。
表1和表2中,各參數(shù)的t值絕對值均大于1.96,即在95%置信水平下認為各參數(shù)估計值可信;p2大于0.2,說明模型對數(shù)據(jù)的擬合效果好,滿足檢驗要求。
表1的結(jié)果顯示,平峰時舒適程度系數(shù)大于0,說明平峰時乘客更愿意選擇出行舒適的路徑。其他各因素的系數(shù)小于0,說明乘客更愿意選擇乘車時間短、換乘次數(shù)少、換乘時間短、角度費用低的路徑。上述結(jié)果符合實際情況。
在表2中,0-1啞元變量的取值規(guī)則為:當兩個車站中,一個屬于居住或居住占優(yōu),另一個屬于辦公或辦公占優(yōu)類時,土地利用性質(zhì)啞元XZrs為1,否則為0;當起點全日進站量與目的地全日出站量之和大于5萬人次·d-1時,土地利用強度啞元ZMrs為1,否則為0;當起點r和目的地s在同一條線路上時,線位關系啞元TXrs為1,否則為0。目的地日均出站量系數(shù)為正值,說明車站客流吸引能力越強,選擇該車站為目的地的乘客越多;線位關系啞元為正,說明當終點站與起始站在同一條線路時,有更多的乘客選擇該站為目的地車站。
在表3中,對應車站位置列,車站可達性小于5的車站為郊區(qū)車站,用1標識,否則為市區(qū)車站,用2標識;郊區(qū)車站類型1,2,3,4,5分別代表居住、居住占優(yōu)、辦公占優(yōu)、樞紐、綜合;市區(qū)車站類型1,2,3,4,5,6分別代表居住、辦公、居住占優(yōu)、辦公占優(yōu)、樞紐、綜合。
根據(jù)以上模型結(jié)果,對地鐵6號線接入后的客流進行預測,誤差指標用平均絕對誤差百分比(MAPE,Mean Absolute Percent Error)表示。各客流指標的對比值來自廣州市地鐵運營管理部門提供的2014年3月工作日均值,其中,進出站量為通過刷卡數(shù)據(jù)統(tǒng)計得到的真實值,換乘量和線路流量為該運營管理部門使用清分算法得出的估算值。表5展示了各客流指標平均的預測效果,誤差都小于9%,滿足運營部門的實際需求。從圖3~圖5可看出,各點均靠近45度線,說明每個站的進站量、出站量和每個換乘站的換乘量預測值都很理想。由圖6可以看出,各條線路的客流量預測值與真實值相差不大,說明預測效果較好。上述各客流指標精確的預測結(jié)果,證明了本文提出的客流預測方法的優(yōu)越性。
圖3 進站量預測效果Fig.3 Performance of passenger entrance volume forecasting
本文提出的城市軌道交通網(wǎng)絡新線接入后的客流預測模型利用車站可達性指標和OD可達性指標將各預測環(huán)節(jié)關聯(lián),避免傳統(tǒng)四階段法中各階段相互孤立的弊端。同時,充分考慮數(shù)據(jù)獲取的方便性,利用刷卡數(shù)據(jù)提取出行規(guī)律進行模型構建,避免大規(guī)模的土地利用、社會經(jīng)濟屬性、目的地選擇情況等數(shù)據(jù)的調(diào)查,在滿足城市軌道交通規(guī)劃、建設、運營管理等部門對客流數(shù)據(jù)預測時間粒度、預測精度需求的同時,極大降低了對輸入數(shù)據(jù)的獲取難度、提高了模型的實用性和便捷性。以廣州市地鐵6號線接入既有線網(wǎng)為例進行建模和預測,驗證了所構建模型在輸入數(shù)據(jù)上的易獲取性、在統(tǒng)計檢驗上的顯著性和在客流預測上的高精度性。
表2 目的地選擇模型參數(shù)標定結(jié)果Tab.2 Calibration of destination choice model
表3 新車站進出站量預測的歷史數(shù)據(jù)庫Tab.3 Historical database for passenger entrance/egress volume forecasting on new stations
表4 既有車站進出站量預測模型參數(shù)Tab.4 Parameters of passenger entrance/egress volume forecasting model for existing stations
表5 模型預測誤差Tab.5 Model estimation error %
圖4 出站量預測效果Fig.4 Performance of passenger egress volume forecasting
圖5 換乘量預測效果Fig.5 Performance of passenger transfer volume forecasting
圖6 客流量預測結(jié)果Fig.6 Prediction performance of line passengers volume
[1]姚恩建,程欣,劉莎莎,張銳.基于可達性的城軌既有站進出站客流預測[J].鐵道學報,2016,38(1):1-7.Yao Enjian,Cheng Xin,Liu Shasha,Zhang Rui.Accessibility-Based Forecast on Passenger Flow Entering and Departing Existing Urban Railway Stations[J].Journal of the China Railway Society,2016,38(1):1-7.
[2]李俊芳,杜慎旭,錢衛(wèi)力.城市軌道交通車站客流吸引范圍重疊區(qū)域劃分模型[J].城市交通,2015,13(6):61-64.Li Junfang, Du Shenxu, Qian Weili.Overlapping Region Partition Modelfor Urban Rail Transit Station Passenger Attraction[J].Urban Transport of China,2015,13(6):61-64.
[3]光志瑞.基于土地利用和可達性的城市軌道交通進出站客流量預測[D].北京:北京交通大學,2013.Guang Zhirui.Passenger Flow Prediction for Urban Railway Station's Entrance and Exit Based on Land-Use and Accessibility[D].Beijing:Beijing Jiaotong University,2013.
[4]Wang Dalei,Yao Enjian,Yang Yang,Zhang Yongsheng.Modeling Passenger Flow Distribution Based on Disaggregate Model for Urban Rail Transit[C]//Sun Fuchun,Hu Dewen,Liu Huapin.Foundations and Practical Applications of Cognitive Systems and Information Processing.Beijing:Springer,2014:715-723.
[5]蔡昌俊,姚恩建,張永生,劉莎莎.基于AFC數(shù)據(jù)的城軌站間客流量分布預測[J].中國鐵道科學,2015,36(1):126-131.Cai Changjun,Yao Enjian,Zhang Yongsheng,Liu Shasha.Forecasting of Passenger Flow's Distribution Among Urban RailTransit Stations Based on AFC Data[J].China Railway Science,2015,36(1):126-131.
[6]Sebastian R,Munoz J C,Grange L D.A Topological Route Choice Model for Metro[J].Transportation Research Part A:Policy and Practice,2011,45(2):138-147.
[7]張永生,姚恩建,代洪娜.成網(wǎng)條件下地鐵換乘量預測方法研究[J].鐵道學報,2013,23(11):1-6.Zhang Yongsheng,Yao Enjian,Dai Hongna.Transfer Volume Forecasting Method for the Metro in Networking Conditions[J].Journal of the China Railway Society,2013,23(11):1-6.
Forecasting Passenger Volume with the New Rail Transit Lines in Operation
Zhang Yongsheng1,Yao Enjian1,Cai Changjun2,Yang Zhiqiang2
(1.School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China;2.Guangzhou Metro Group Co.,Ltd.,Guangzhou Guangdong 510310,China)
The urban rail transit network topology and the spatial/temporal characteristics of passenger flow change significantly with the new rail transit lines in operation.This paper develops a passenger volume forecasting model using accessibility index in connecting entrance/egress passenger forecasting,OD distribution,and assignment based on route choice model.To forecast passenger entrance/egress volumes,the paper replaces land use with an alternative index to circumvent the investigation on land use and sociodemographics surrounding new stations.The station accessibility index is used based on destination choice utility to show the impacts of station location on entrance/egress passenger volumes.To forecast OD distribution,the study develops destination choice model that is tailored to different network topology.The OD accessibility index is calculated using route choice utility.The route choice model is developed with the consideration of various factors in passengers'route choice.Finally,the paper illustrates the passenger volume forecasting for the Guangzhou rail transit network with the new Metro Line 6.The results show that the estimated model parameters meet the statistical requirements and the forecasting results are highly accurate.
transportation planning;urban rail transit;passenger volume forecasting model;new lines in operation
2016-05-09
國家973計劃資助項目“大城市綜合交通系統(tǒng)的基礎理論與實證研究——多方式交通運行的協(xié)同組織與控制(課題三)”(2012CB725403)、國家科技支撐計劃資助項目“成網(wǎng)條件下城軌交通運輸組織關鍵技術與系統(tǒng)研制”(2011BAG01B01)
張永生(1988—),男,山東日照人,在讀博士研究生,主要研究方向:城市交通運輸規(guī)劃與管理。E-mail:12114241@bjtu.edu.cn