岳經(jīng)龍,唐新桂
(廣東工業(yè)大學(xué) 物理與光電工程學(xué)院,廣東 廣州 510006)
?
鈦酸鍶鉛陶瓷電阻開(kāi)關(guān)效應(yīng)研究
岳經(jīng)龍,唐新桂
(廣東工業(yè)大學(xué) 物理與光電工程學(xué)院,廣東 廣州 510006)
陶瓷樣品的電阻開(kāi)關(guān)特性報(bào)道較少見(jiàn),本文采用傳統(tǒng)的高溫固相法制備出鈦酸鍶鉛((Sr0.9Pb0.1)TiO3)陶瓷,并對(duì)陶瓷樣品的相結(jié)構(gòu)、電性能、阻抗進(jìn)行了測(cè)試表征.XRD圖譜顯示樣品呈現(xiàn)純的鈣鈦礦四方相晶體結(jié)構(gòu). 循環(huán)回路測(cè)試其I-V特性,當(dāng)施加電壓±60 V,陶瓷樣品顯示出良好的電阻開(kāi)關(guān)效應(yīng).考慮到材料在制備過(guò)程中Pb揮發(fā)產(chǎn)生的氧空位,通過(guò)分析阻抗圖譜,利用Arrhenius公式擬合計(jì)算出樣品的活化能,進(jìn)一步確定引起器件電阻開(kāi)關(guān)特性的可能是氧空位機(jī)制.
(Sr0.9Pb0.1)TiO3; 氧空位; 陶瓷電阻開(kāi)關(guān)效應(yīng); 高速非易失性存儲(chǔ)器件
隨著電子信息技術(shù)的飛速發(fā)展,傳統(tǒng)的閃存技術(shù)已經(jīng)難以滿足當(dāng)下不斷增長(zhǎng)的高速度、大容量、低功耗以及微小尺寸的存儲(chǔ)要求. 因此,對(duì)高性能的非易失性存儲(chǔ)器件的相關(guān)研究已經(jīng)成為一個(gè)熱門,而憶阻器件作為這個(gè)領(lǐng)域的重要組成部分也日益受到各研究機(jī)構(gòu)的關(guān)注. 由于憶阻器件不僅能滿足高速度、超大存儲(chǔ)容量、低功耗的存儲(chǔ)要求,而且具有納米量級(jí)的尺寸、性能穩(wěn)定、可堆疊性等優(yōu)越性能,這為非易失性存儲(chǔ)技術(shù)的發(fā)展帶來(lái)新的希望. 大多數(shù)憶阻器件都是“三明治”結(jié)構(gòu),即兩端表面是金屬電極或者是其他導(dǎo)電非金屬材料,而中間部分是電介質(zhì)或者是半導(dǎo)體組成的. 當(dāng)給憶阻器件的兩端施加一個(gè)脈沖電壓,器件的電阻值能夠突然發(fā)生巨大的改變,而且如果給憶阻器件施加適當(dāng)?shù)拿}沖電壓,它的電阻值可以人為地設(shè)置大小.
本實(shí)驗(yàn)中鈦酸鍶鉛陶瓷材料在循環(huán)脈沖電壓下顯示出完美的單極開(kāi)關(guān)現(xiàn)象.眾多研究表明,氧空位是形成電阻開(kāi)關(guān)現(xiàn)象的一個(gè)重要機(jī)制[12-14].在陶瓷制備過(guò)程中,氧化鉛的揮發(fā)極有可能產(chǎn)生氧空位,并可以通過(guò)活化能解釋由于氧空位的存在引起的一系列電學(xué)性質(zhì)變化. 本文重點(diǎn)探討引起器件電阻開(kāi)關(guān)特性的機(jī)制.
1.1 樣品制備
(Sr0.9Pb0.1)TiO3陶瓷以高純度的TiO2、SrCO3、Pb3O4為原料,采用傳統(tǒng)的高溫固相法制備.原料經(jīng)過(guò)烘干脫水后按照一定配比稱取,然后加入適量乙醇作為分散劑球磨10 h后取出烘干.烘干后的原料壓成大塊在1 200 ℃下預(yù)燒2 h后,再次球磨烘干. 將預(yù)燒好的粉末研磨均勻后用篩網(wǎng)過(guò)濾,然后加入適量5%PVA進(jìn)行造粒,壓成小圓片進(jìn)行埋燒.樣品緩慢升溫到650 ℃進(jìn)行排膠,然后升溫到1 350 ℃燒結(jié)3 h得到陶瓷樣品.
1.2 樣品測(cè)試
陶瓷樣品采用X射線衍射儀(Pgeneral XD-2, CuKα射線源)在室溫下進(jìn)行測(cè)試,運(yùn)行電壓為36 kV,掃描速率為6°/min,掃描角度范圍是10°~70°.將燒結(jié)好的陶瓷圓片進(jìn)行打磨、拋光、鍍上銀漿,燒制好電極后,測(cè)試其電學(xué)性能.漏電流在室溫下由Premier II測(cè)試采集,輸入信號(hào)頻率為100 Hz,采用循環(huán)測(cè)試回路,脈沖電壓從0 V開(kāi)始掃描測(cè)試到正向最大值,然后再掃描測(cè)試到負(fù)向最大值,最后再回到0 V,形成一個(gè)有效的循環(huán)測(cè)試回路. 樣品的阻抗-頻率圖譜測(cè)試采用Premier II在升溫條件下完成.
2.1 樣品的結(jié)構(gòu)表征
圖1給出了室溫時(shí)鈦酸鍶鉛陶瓷((Sr0.9Pb0.1)TiO3)的X射線衍射圖譜. 衍射圖譜表明制備的陶瓷樣品沒(méi)有其他任何的雜相,呈現(xiàn)出純凈的四方相,且可以看出(110)峰衍射強(qiáng)度明顯大于其他的峰,衍射峰非常的尖銳,這也說(shuō)明陶瓷經(jīng)過(guò)高溫?zé)Y(jié)后晶化效果很好,Pb完全固溶在SrTiO3晶格中[14-15].
圖1 鈦酸鍶鉛陶瓷室溫時(shí)XRD圖譜
2.2 樣品的電性能分析
圖2(a)表示了不同測(cè)試電壓下鈦酸鍶鉛陶瓷樣品的I-V特性. 隨著電壓的增加,電阻開(kāi)關(guān)特性越發(fā)穩(wěn)定,這也表明了樣品的抗壓性很好. 圖2(b)中可以看出典型的單極電阻開(kāi)關(guān)現(xiàn)象,器件的開(kāi)關(guān)在高電壓VSET時(shí)從“高阻態(tài)”(HRS)轉(zhuǎn)變“低阻態(tài)”(LRS),隨后在較小的電壓VRESET下又轉(zhuǎn)變?yōu)楦咦钁B(tài). I-V曲線展現(xiàn)出比較對(duì)稱的圖形特點(diǎn),這是由器件兩端的電極是同一種材料造成的.
單極電阻開(kāi)關(guān)效應(yīng)的機(jī)制通常被認(rèn)為是器件在電壓的誘導(dǎo)刺激下形成“導(dǎo)電絲”從而將電阻態(tài)轉(zhuǎn)變成“低阻態(tài)”,但又由于器件電流熱效應(yīng)引起的“導(dǎo)電絲”斷裂電阻態(tài)轉(zhuǎn)變?yōu)椤案咦钁B(tài)”. 而且電流熱效應(yīng)和電流的極性沒(méi)有關(guān)系,這也是器件展現(xiàn)出單極開(kāi)關(guān)特性的原因[10].
陶瓷樣品在高溫?zé)Y(jié)時(shí)鉛的揮發(fā)是不可避免的,所以會(huì)產(chǎn)生鉛空位. 但是為了維持電荷的平衡,滿足電中性的基本原則,因此在此期間也會(huì)產(chǎn)生氧空位來(lái)保持電中性. 在鈣鈦礦氧化物中氧空位的電離能夠產(chǎn)生傳導(dǎo)電子,表述如下:
VO?VO·+e′,
(1)
VO·?VO··+e′.
(2)其中VO·和VO··分別代表單電離和雙電離氧空位.在這種情景下,氧空位電離產(chǎn)生的電子中和了Pb2+離子,全部的反應(yīng)過(guò)程可以用Kroger-Vink標(biāo)記法表示
圖2 (Sr0.9 Pb0.1)TiO3在不同施加電壓循環(huán)測(cè)試的I-V特性圖(a);(b)表示施加電壓為60 V時(shí), I-V曲線展現(xiàn)出完整的電阻開(kāi)關(guān)特性
如下:
(3)
氧空位作為一種外來(lái)缺陷來(lái)維持鈦酸鍶鉛陶瓷的電中性,由于氧空位電離產(chǎn)生的電子用于電荷補(bǔ)償,因此氧空位的產(chǎn)生是不能通過(guò)在氧氣氛圍里退火消除的. 當(dāng)器件兩端施加電壓時(shí),電子移動(dòng)到器件的陽(yáng)極,氧空位移動(dòng)到器件的陰極,陽(yáng)極附近的電子積累到一定量時(shí)產(chǎn)生放電,陰極附近的氧空位聚集在器件內(nèi)形成不對(duì)稱的結(jié)構(gòu),這些氧空位能夠形成“導(dǎo)電絲”開(kāi)關(guān)來(lái)改變電阻狀態(tài)[9-10].
2.3 樣品的阻抗分析
不同溫度下的歸一化阻抗虛部Z″/Z″max頻譜如圖3所示,每條Z″/Z″max曲線在每個(gè)特定的溫度下都有一個(gè)峰對(duì)應(yīng)某個(gè)特征頻率,而且峰位隨著溫度增加向高頻方向漂移.
在鈣鈦礦結(jié)構(gòu)中,電荷傳導(dǎo)是個(gè)復(fù)雜的跳變過(guò)程,這種跳變通常發(fā)生在由晶格結(jié)構(gòu)或者其他離子、原子局部區(qū)域引起的勢(shì)壘. 在高溫介電弛豫過(guò)程中,活化能可以通過(guò)Arrhenius公式進(jìn)行擬合:
(4)
其中ω0,Ea,kβ,T分別代表特征頻率、活化能、玻爾茲曼常數(shù)和絕對(duì)溫度. 對(duì)于特征峰有ωτ=1,測(cè)試得到的角頻率ωp=2πf. 用式(4)擬合阻抗Z″/Z″max頻譜,擬合結(jié)果如圖4所示.由圖可知,活化能大小為1.59 eV. 眾所周知,如果是氧空位引起的弛豫機(jī)制,那么即便是不同材料的鈣鈦礦氧化物,它們的活化能在大小上是相似的[17-19]. 有報(bào)道指明氧空位對(duì)應(yīng)不同活化能的關(guān)系與不同計(jì)量配比有關(guān)[20-21]:即ABO2.8時(shí)Ea=0 eV,ABO2.9時(shí)Ea=1 eV,ABO2.95時(shí)Ea=1.5 eV,ABO3時(shí)Ea=2 eV. 類似的由氧空位機(jī)制引起的電學(xué)性質(zhì)報(bào)道有(K0.5Na0.5)NbO3(1.49 eV)[22],(Pb1-xBax)-(Zr0.95Ti0.05)O3(1.40 eV)[23],0.95K0.5Na0.5NbO3-0.05BaZrO3(1.37 eV)[24],本文的結(jié)果和以上文獻(xiàn)非常的相近,因此有理由相信氧空位機(jī)制是引起以上電學(xué)性質(zhì)變化的原因.
圖3 不同溫度下的歸一化阻抗虛部Z″/Z″max頻譜
傳統(tǒng)高溫固相法制作的鈦酸鍶鉛陶瓷展現(xiàn)出良好的電阻開(kāi)關(guān)效應(yīng),開(kāi)關(guān)性能與之前大量報(bào)道的薄膜和晶體有著相似的優(yōu)越性能,同時(shí)制作工藝更簡(jiǎn)單. 我們通過(guò)對(duì)材料樣品的阻抗、活化能擬合進(jìn)行分析得到活化能Ea大小為1.5 eV有力地證明引起(Sr0.9Pb0.1)TiO3陶瓷電阻開(kāi)關(guān)效應(yīng)的機(jī)制為陶瓷高溫?zé)Y(jié)過(guò)程中產(chǎn)生的氧空位.鈦酸鍶鉛陶瓷的電阻開(kāi)關(guān)效應(yīng)也為憶阻器件的發(fā)展提供了更多的探索空間.
圖4 阻抗虛部Z″/Z″max頻譜峰值A(chǔ)rrhenius擬合Fig.4 The plot fitted from the imaginary part of impedance
[1] HICKMOTT T W. Low-frequency negative resistance in thin anodic oxide films[J].J Appl Phys, 1962, 33(9): 2669-2682.
[2] 季振國(guó),王君杰,毛啟楠,等. Bi2O3薄膜的制備及其電阻開(kāi)關(guān)特性的研究[J]. 無(wú)機(jī)材料學(xué)報(bào),2012, 27(3): 323-326.
JI Z G, WANG J J, MAO Q N, et al. Deposition of Bi2O3thin films and their resistive switching characteristics[J]. Journal of Inorganic Materials, 2012, 27(3): 323-326.
[3] 張濤,徐智謀,武興會(huì),等. 室溫下制備非晶ZnO薄膜及其電阻開(kāi)關(guān)特性研究[J]. 無(wú)機(jī)材料學(xué)報(bào),2014, 29(11): 1161-1166.
ZHANG T, XU Z M, WU X H, et al. Deposition of amorphous Zinc oxide thin film at room temperature and its resistive switching characteristics[J]. Journal of Inorganic Materials, 2014, 29(11): 1161-1166.
[4] KWON D H, KIM K M, JANG J H, et al. Atomic structure of conducting nanofilaments in TiO2resistive switching memory[J]. Nat Nanotechnol, 2010, 5: 148-153.
[5] SZOT K, SPEIER W, BIHLMAYER G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3[J]. Nat Mater, 2006, 5: 312-320.
[6] HIROSE S, NAKAYAMA A, NIIMI H. Fabrication and characterization of colossal electroresistance chip devices composed of polycrystalline lanthanum-doped strontium titanate and palladium electrodes[J]. J Am Ceram Soc, 2008, 91(2): 478-484.
[7] BECK A, BEDNORZ J G, GERBER C, et al. Reproducible switching effect in thin oxide films for memory applications[J]. Appl Phys Lett, 2000, 77(1): 139-141.
[8] SCOTT J C, BOZANNO L D. Nonvolatile memory elements based on organic materials[J]. Adv Mater, 2007, 19(11): 1452-1463.
[9] SAWA A. Resistive Switching in transition metal oxides[J]. Materials Today, 2008, 11(6): 28-36.
[10] PAN F, CHEN C, WANG Z S, et al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges[J]. Prog Nat Sci-Mater, 2010, 20: 1-15.
[11] 劉東青,程海峰,朱玄,等. 憶阻器及其阻變機(jī)理研究進(jìn)展[J]. 物理學(xué)報(bào),2014, 63(18): 187301.
LIU D Q, CHENG H F, ZHU X, et al. Research progress of memristors and memristive mechanism[J]. Acta Physica Sinica, 2014, 63(18): 187301.
[12] PARK J, KWON D H, PARK H, et al. Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3[J]. Appl Phys Lett, 2014, 105(18): 183103.
[13] JUNG C H, PARK M K, WOO S I. Improvement of oxygen vacancy migration through Nb doping on Ba0.7Sr0.3TiO3thin films for resistance switching random access memory application[J]. Appl Phys Lett, 2012, 100(26): 262107.
[14] LEE S, LEE J S, PARK J B, et al. Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3cells[J]. Apl Mat, 2014, 2(6): 066103.
[15] 王一光,丁南,唐新桂. Ba(Zr0.06Ti0.94)O3-BiFeO3復(fù)合陶瓷的介電、鐵電及壓電性能研究[J]. 廣東工業(yè)大學(xué)學(xué)報(bào), 2014, 31(4): 109-114.
WANG Y G, DING N, TANG X G. Dielectric, ferroelectric and piezoelectric properties of the Ba(Zr0.06Ti0.94)O3-BiFeO3composite ceramics[J]. Journal of Guangdong University of Technology, 2014, 31( 4): 109-114.
[16] 賈繼擴(kuò),羅莉,吳浩怡. Sr/Pb的比例對(duì)鈦酸鍶鉛結(jié)構(gòu)的影響[J].廣東工業(yè)大學(xué)學(xué)報(bào), 2010, 27(1):25-27.
JIA J K, LUO L, WU H Y. Effects of Sr/Pb ratio on PbxSr1-xTiO3crystal structures[J]. Journal of Guangdong University of Technology, 2010, 27(1): 25-27.
[17] WANG X F, LU X M, ZHANG C, et al. Oxygen-vacancy-related high-temperature dielectric relaxation in SrTiO3ceramics[J]. J Appl Phys, 2010, 107(11): 114101.[18] SINGH G, TIWARI V S, GUPTA P K. Role of oxygen vacancies on relaxation and conduction behavior of KNbO3ceramic[J]. J Appl Phys, 2010, 107(06): 064103.
[19] WANG J, TANG X G, CHAN H L W, et al. Dielectric relaxation and electrical properties of 0.94Pb(Fe1/2Nb1/2)O3-0.06PbTiO3single crystals[J].Appl Phys Lett, 2005, 86(15): 152907.
[20] STEINSVIK S, BUGGE R, GJONNES J, et al. The defect structure of SrFexTi1-xO3(x=0-0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS)[J]. J Phys Chem Solids, 1997, 58(6): 969-976.
[21] LIN G C, LIU H, ZHANG J X. Oxygen vacancy relaxation in Ca3Co4O9+δceramics[J]. Solid State Phenomena, 2012, 184(3): 98-103.
[22] LIU L J, HUANG Y M, SU C X, et al. Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3at high temperatures[J]. Appl Phys A , 2011, 104(4): 1047-1051.
[23] ZHANG T F, TANG X G, LIU Q X, et al. Oxygen-vacancy-related relaxation and conduction behavior in (Pb1-xBax) (Zr0.95Ti0.05)O3ceramics[J]. AIP Advances, 2014, 4 (10): 107141.
[24] LIU L J, HUANG Y M, LI Y H, et al. Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3-0.05BaZrO3ceramic[J]. Physica B, 2012, 407(1): 136-139.
The Resistance Switching Effect in (Sr0.9Pb0.1)TiO3Ceramic
Yue Jing-long, Tang Xin-gui
(School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 510006, China)
(Sr0.9Pb0.1)TiO3ceramics were prepared by the traditional high temperature solid-state reaction method. The structural, electrical properties and impedance of ceramics were investigated. XRD results show that the ceramics show typical tetragonal perovskite structure. The resistance states can be switched by applying voltage pulses ±60 V. The phenomenon may be attributed to oxygen vacancies caused by Pb volatilization in the preparation of materials, which can be further confirmed by the impedance spectrum analysis of samples. Oxygen vacancy mechanism is the cause of the changes in the electrical properties by using the Arrhenius formula to calculate the activation energy. These resistance switching behaviors indicate that ceramics can even exhibit resistance switching performance as well as thin film devices or single crystal devices and provide the possibility of new switching devices with the memory effect composed of ceramics.
(Sr0.9Pb0.1)TiO3; oxygen vacancy; ceramic resistance switching characteristics; high speed nonvolatile memory device
2016- 03- 01
國(guó)家自然科學(xué)基金資助項(xiàng)目(11574057); 廣東省科技計(jì)劃項(xiàng)目(2013B090500035)
岳經(jīng)龍(1988-),男,碩士研究生,主要研究方向?yàn)楣δ懿牧霞捌骷锢?
唐新桂(1963-),男,研究員,博士,博士生導(dǎo)師,主要研究方向?yàn)楣δ懿牧吓c器件物理.E-mail:xgtang@gdut.edu.cn
10.3969/j.issn.1007- 7162.2016.06.005
TM23
A
1007-7162(2016)06- 0034- 04