• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removingmixed noiseinlow ranktexturesbyconvex optimization

    2016-12-14 05:28:37XiaoLiang
    Computational Visual Media 2016年3期

    Xiao Liang()

    ?The Author(s)2016.This article is published with open access at Springerlink.com

    Removingmixed noiseinlow ranktexturesbyconvex optimization

    Xiao Liang1()

    ?The Author(s)2016.This article is published with open access at Springerlink.com

    DOI 10.1007/s41095-016-0056-2 Vol.2,No.3,September 2016,267–276

    This paper introduces a new low rank texture image denoising algorithm,which can restore low rank texture contaminated by both Gaussian and salt-and-pepper noise.The algorithm formulates texture image denoising in terms of solving a low rank matrix optimization problem.Simply assuming low rank is insufficient to describe the properties of natural images,causing high noise amplitudes which lead to unsatisfactory denoising results or serious loss of image details.Thus,in addition to the low rank assumption, the continuity of natural images is also assumed by the algorithm,by adding a total variation regularizer to the optimization objective function. We further give an effective algorithm to solve this optimization problem.By combining the low rank and continuity assumptions,the proposed algorithm overcomes the deficiencies of using either the low rank assumption or total variation regularization alone.Experiments show that our algorithm can effectively remove mixed noise in low rank texture images,and is better than existing algorithms in both its subjective visual effects and in terms of quantitative objective measures.

    image denoising;low rank texture; total variation;convex optimization; augmented Lagrangian method

    1 Introduction

    Image denoising is an extensively studied problem in the image processing community and continues to attract researchers who aim to perform better restoration in the presence of noise. During the past few decades,many intelligent methods havebeen proposed to improve single-image denoising performance. From pixel level filtering methods, such as Gaussian filtering[1],bilateral filtering,and total variation regularization[2],to patch based filtering methods,such as non-local means[3], block-matching 3D filtering(BM3D)[4],and sparse representation [5],single-imagebased denoising performance has been greatly improved,with image details well recovered when the image is slightly noisy.As such filtering methods are widely used in computer vision,work has considered how to speed them up,e.g.,for the bilateral filter[6]and weighted median[7].Comprehensive overviews of image denoising methods can be found in Refs.[8,9].

    Most of the approaches mentioned above consider the input image as an ordinary signal,taking the image as a vector or a set of patches. They do explicitly utilize internal structural information in the image. However,a typical 3D scene of an artificial environment is rich in regular structures. For instance,in an urban environment,the scene istypically filled with man-madeobjectsthat have parallel edges,right-angled corners,regular shapes,symmetric structures,and repeated patterns. Developing algorithms targeted to such images is necessary.In this paper,we mainly study images or textures with low rank structure(see Fig.1 for examples).A rigorous definition[10]of low rank texture is given in Section 2.

    Fig.1 Representative examples of low rank textures.These provide initial images for Figs.3–5.

    Recently,low rank matrix denoising algorithms have been widely studied[11–15].The traditional, image denoising algorithms based on low rank matrix recovery only have the low rank constraint. When Gaussian noise becomes too large,these algorithms produce unsatisfactory denoising results, with serious loss of image details. The reason is partially because that most algorithms use the nuclear norm of the matrix to approximate its rank, in order to get a soluble convex object function, which brings the following problem:as the amplitude of the Gaussian noise increases,the energy of the matrix is compressed more and more seriously.In order to solve the problem of texture image denoising in a mixed noise model,we propose a new algorithm call LRTD(low rank texture denoising)in this paper.

    LRTD formulates texture image denoising in terms of solving a low rank matrix optimization problem.Because the low rank assumption is not sufficient by itself to describe the properties of natural images[16],high noise amplitudes will lead to unsatisfactory denoising results with serious loss of image details.Thus,in addition to the low rank assumption,we also assume image continuity in the algorithm,by adding a total variation regularizer to the optimization objective function.An effective algorithm to solve this optimization problem is also given in the paper. By combining the low rank assumption and the continuity assumption, the proposed LRTD algorithm can overcome the deficiencies of assuming low rank assumption or using total variation regularization alone. The algorithm can effectively remove mixed noise in low rank texture images,and is better than existing algorithms in terms of both subjective visual effects and objective quantitative measurements.

    2 Definition of low rank textures

    In this paper,we consider a 2D texture as a function I0(x,y),defined on ?2.We say that I0is a low rank texture if the family of one-dimensional functions {I0(x,y0)|y0∈?}span a finite low-dimensional linear subspace:

    for some small positive integer k.If r is finite,then we refer to I0as a rank-r texture.Figure 1 shows some ideal low rank textures.To a large extent,the notion of low rank texture unifies many conventional local features.Using this definition,it is easy to see that images of regular symmetric patterns always lead to low rank textures.Thus,the notion of low rank texture encompasses a much broader range of“features”or regions than corners and edges.

    3 Problem formulation

    Before we statistically analyze image denoising,we first define our image formation model:

    where‖E‖0denotes the number of non-zero entries in E,‖·‖F(xiàn)denotes the Frobenius norm,δ>0 is a Gaussian noise intensity parameter,and λ is a weighting parameter which trades off the rank and sparsity of the recovered image.In the above problem,both the rank function and the l0norm can be replaced by convex surrogates[17]:the matrix nuclear norm1The nuclear norm of a matrix is the sum of all its singular values.‖L‖?for rank(L)and the l1norm2The l1norm is the sum of absolute values.‖E‖1for‖E‖0,respectively.Thus,we end up with the following optimization problem:

    Formulation(2)utilizes the low rank nature of the image and the sparsity of the impulsive noise E.But as noted in Ref.[16],while being low rank is a necessary condition for most regular, structured images,it is certainly not sufficient.We need other priors to model additional structures in

    the natural image.Moreover,because the nuclear norm is an approximation to the rank of a matrix, when the noise amplitude is large,formulation(2) leads to over-compression of the nuclear norm[18], causing the total energy of the denoised image to significantly decrease:the picture becomes darker; see for example the fourth column of Fig.5.Thus,to take into account the piecewise smooth continuity of a natural image,we add a total variation regularizer to the optimization problem:

    where‖L‖TV= ‖DxL‖1+‖DyL‖1is the total variation regularizer,in which Dxand Dyare first order forward finite-difference operators in horizontal and vertical directions respectively.Their definitions are

    with periodic boundary conditions;vec(·)represents the vectorization operator.

    4 Denoising by convex optimization

    To solve the convex optimization problem in Eq.(3), we use the alternating direction method(ADM)[19], as it has been proven to be one of the fastest algorithms for solving various low rank matrix completion and recovery problems.To be able to adopt the ADM method to our problem,we need to make our objective function separable. Thus we introduce three auxiliary variables Cx,Cy,and

    W,which turns the optimization problem into the following:

    In formulation(4),the augmented Lagrangian function is defined as

    where L,W,E,Z,Cx,Cy are the unknown variables,Y1,Y2,Y3,Y4are Lagrange multipliers, andμ>0 is a penalty parameter;〈·,·〉indicates inner product.The resulting classic ADM iteration scheme for our problem is given by

    where ρ>1 is a constant. We now focus on efficiently solving the first six steps of the above iterative scheme.

    1)Solving Eq.(6)

    in which UΣVTistheSVD (singularvalue decomposition)of X,and T[·]represents the softthresholding operator defined for scalars as follows:

    for ε≥0;it is extended to vectors and matrices by applying it elementwise.

    2)Solving Eqs.(7)–(9)

    Each of these three variables has closed form solutions,as follows:

    3)Solving Eq.(10)

    Here W also has a closed form solution:

    where Id is the identity matrix.Then we use Fourier transform to solve W[2]:

    where F denotes the 2D Fourier transform operator. The denominator on the right hand side of Eq.(12)is independent of the iteration number k,and so can be precalculated outside the main loop.Therefore,the complexity of solving Eq.(12)is the complexity of one 2D Fourier transform and one inverse 2D Fourier transform.

    4)Solving Eq.(11)

    Following Ref.[13],we write

    Algorithm 1 gives pseudocode of the overall LRTD algorithm.

    5 Results

    In this section we compare our LRTD algorithm with existing approaches.All experiments were performed using MATLAB on a laptop with a 2.30GHz processor and 8GB of RAM.

    We select a set of parameters with the best overall performance for λ and α in our algorithm;LRTD is not sensitive to parameterμ0.ρ=max(1.4?

    σ/600,1.2)is related to noise intensity σ. The greater the σ,the smaller the ρ.

    Algorithm 1:ADM algorithm for solving problem(4) Input:Input image I∈?m×n,parameters λ>0,α>0. Initialize:k=0,L0=I,E0=0,Z0=0,W0=0,Cx=DxI,Cy=DyI,Y1,0=0,Y2,0=0,Y3,0=0,Y4,0=0, μ0>0,ρ>1. WHILE‖Lk+1?Lk‖2/‖Lk‖2≥tolerance DO Lk+1=S(μk)?1?I?Ek?Zk?1μkY3,k+Wk?1μkY4,k/2)?; Cxk+1=Tα/μk(DxWk?Y1,k/μk); Cyk+1=Tα/μk(DyWk?Y1,k/μk); Ek+1=Tλ/μk(I?Lk+1?Zk?Y3,k/μk); Wk+1=F?1?F[DTx(Cxk+1+Y1,k/μk)+DTy(Cyk+1+Y2,k/μk)+L?Y4,k/μk] F[Id+DTxDx+DTyDy] ?;‖N‖F(xiàn) N; Y1,k+1=Y1,k+μk·(Cxk+1?DxLk+1); Y2,k+1=Y2,k+μk·(Cyk+1?DyLk+1); Y3,k+1=Y3,k+μk·(Lk+1+Ek+1+Zk+1?I); Y4,k+1=Y4,k+μk·(Lk+1?Wk+1); μk+1=ρμk; END WHILE Output:Solution(L,E,W,Z,Cx,Cy)to problem(4). Zk+1=min{‖N‖F(xiàn),δ}

    5.1 Comparison with othermixed noise removal methods

    In this paper we consider image denoising problems with mixed noise,in which the image is contaminated by both Gaussian white noise and salt-and-pepper noise. Somewellknown denoising methods such as BM3D work very well to restore images contaminated by pure Gaussian noise,but are completely unable to deal with salt-and-pepper noise[21].Thus,we only compare our LRTD method with three other noise removal methods[13,22,23] specifically designed for mixed noise.

    Following their papers,the parameter settings used were:for Ref.[22],β2=0.00002,tol=10?4, η=1;for Ref.[23],outPer=sr,blocksize=[8,8], stepsize=[2,2];for Ref.[13],η=1.3,β=0.13β0. Besides visual comparison of the results,peak signal to noise ratio(PSNR)was measured to quantitatively evaluate the quality of the restoration results.Given an image L?∈[0,255]m×n,the PSNR of its estimated L is defined as

    A quantitative comparison is shown in Fig.2. Here,we used the image in Fig.1(c)for testing. The percentage of salt-and-pepper noise pixels in the image is denoted by sr(salt-and-pepper noise ratio), while the standard deviation of the white Gaussian noise is denoted by σ.Figure 3(a)shows how PSNR varies for the denoised images as the salt-and-pepper noise ratio sr varies from 0 to 100%with fixed Gaussian noise σ=10;Fig.3(b)shows how PSNR of denoised images varies as the standard deviation of the Guassian noise σ varies from 0 to 60 with a fixed salt-and-pepper noise percentage sr=10%.

    Further quantitative results for the four algorithms were obtained using input images generated by adding salt-and-pepper noise with different levels (sr=15%,30%,45%)mixed with Gaussian noise with different levels(σ=5,15,30,60)to the textures shown in Fig.1.The PSNR values of the restoration results of these methods are summarized in Table 1. Figures 3–5 give qualitative comparisons;the original images in these experiment are shown in Fig.1.We can see from these results that LRTD works better on low rank texture images than previous algorithms.

    From Fig.2 and Table 1 we can see that LRTD's ability to process salt-and-pepper noise is very good. In low Gaussian noise environments(σ<10),as the percentage of salt-and-pepper noise increases from 0%to 60%,the PSNRs of our image restoration results do not decrease significantly,and are always more than 30dB.However,the LRTD algorithm is more sensitive to Gaussian noise.As Gaussian noise increases to about σ=60,results shown in Fig.5 display the excessive compression issue caused by use of convex surrogates for the rank function.Although the structure of the restored image is still quite good, due to the compression of the overall energy of the input image during the optimization process,the resulting PSNR decreases significantly.

    Fig.2 Variation of PSNR with varying amounts of salt-and-pepper noise and Gaussian noise.(a)σ=10,sr varying from 0 to 100%;(b) sr=10%,σ varying from 0 to 60.

    Table 1 Comparison with other mixed noise removal methods,showing PSNR values for varying amounts of salt-and-pepper and Gaussian noise

    The results in this subsection demonstrate that our LRTD denoising method can effectively remove mixed noise in low rank texture images,and works better than other existing algorithms.Addition of the TV regularizer to the optimization objective function has a good effect on avoiding the problem of excessive compression.Our LRTD shows significant improvement compared to the simple low rank optimization algorithm[13].

    5.2 Computation time

    We performed a further experiment to test the convergence performance of LRTD.Let I=L?+E?+Z?be the noisy data matrix,where L?and E?are the low rank and sparse components to be recovered. We generated a rank 2 checkerboard image as L?∈?320×320.The support ? of the impulsive noise E?(sparse but large)was chosen uniformly at random, and the non-zero entries of E?were i.i.d.uniform in the interval[?500,500].

    As our aim was to test running speed and convergence of LRTD,we set σ=0;this differs from the mixed noise used in the earlier tests as there is no Gaussian noise.In this case,the algorithm can converge to the ground truth noiseless matrix L?.

    Here we compare our method with another low rank matrix recovery algorithm ASALM[13].The objective function of ASALM is given in Eq.(2):the only difference between ASALM with our LRTD is that ASALM lacks the TV regularizer.Following their paper,we set the parameters for ASALM to η=1.3,β=0.13β0.Table 2 shows that LRTD is slower than ASALM.However,LRTD performs better in denoising.We believe the trade-off to be acceptable.

    Table 2 Computation time and number of iterations

    Fig.3 Qualitative comparison of results of various methods(1).Left to right:input noisy image with σ=10,sr=10%,denoising results of Ref.[22],KALS[23],ASALM[13],and our denoising result.

    6 Conclusions and discussion

    This paper introduced a new low rank texture image denoising algorithm,which can restore low rank texture contaminated by both Gaussian and salt-and-pepper noise. Our method directly uses raw pixel values of the image as the matrix and models texture image denoising as a low rank matrix optimization problem. Besides the low rank assumption,we also utilize the assumption of continuity of natural images,by adding a total variation regularizer to the optimization objective function. Our results demonstrate that the TV regularizer indeed helps low rank texture denoising.

    Through extensive experiments,we have shown that our LRTD method works better than existing algorithms both in subjective visual terms and through objective quantitative measures.

    Although our algorithm works robustly under a broad range of conditions and for a wide range of regular textures,it may fail if the conditions are too challenging or the assumptions are violated.Figure 6 shows some such cases.The denoising results in Fig.6(c)and Fig.6(e)are reasonable but not perfect. As mentioned earlier in Section 1,our algorithm is not designed to work on random textures.Although there has been work in the literature showing that it is possible to get a reasonable denoised result for

    such examples as grass lawns,our algorithm is not designed to handle such cases.LRTD is effective for regular symmetric textures,but not for random textures which normally have high rank matrices.

    Fig.4 Qualitative comparison of results of various methods(2).Left to right:input noisy image with σ=15,sr=45%,denoising results of Ref.[22],KALS[23],ASALM[13],and our denoising result.

    Clearly,a natural image of low rank texture may be deformed by the camera projection and undergoes a certain domain transformation (say affine or projective). The transformed texture,viewed as a matrix,in general is no longer low rank in the image domain.Nevertheless,by utilizing advanced convex optimization tools[10]from matrix rank minimization,we can recover a low rank texture from the deformed image and the associated deformation. As TILT(transform invariant low rank texture)[10] uses image interpolation during its iterations,simply running LRTD on TILT results would hurt image performance.Finding how to combine TILT with LRTD to enable a wider range of applications would be valuable future work.

    Acknowledgements

    We sincerely appreciate Zhouchen Lin and Xin Tong's help with valuable suggestions and comments for this paper.

    [1]Rank,K.;Unbehauen,R.An adaptive recursive 2-D filter for removal of Gaussian noise in images.IEEE

    Transactions on Image Processing Vol.1,No.3,431–436,1992.

    Fig.5 Qualitative comparison of results of various methods(3).Left to right:input noisy image with σ=60,sr=10%,denoising results of Ref.[22],KALS[23],ASALM[13],and our denoising result.

    Fig.6 Examples with decreasing regularity and increasing randomness.(a),(c),and(e)input noisy images,with σ=10,sr=10%;(b), (d),and(f)denoising results and their PSNRs.

    [2]Chan,S.H.;Khoshabeh,R.;Gibson,K.B.;Gill,P.E.; Nguyen,T.Q.An augmented Lagrangian method for total variation video restoration.IEEE Transactions on Image Processing Vol.20,No.11,3097–3111,2011.

    [3]Buades,A.;Coll,B.;Morel,J.-M.A non-local algorithm for image denoising.In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Vol.2,60–65,2005.

    [4]Dabov,K.;Foi,A.;Katkovnik,V.;Egiazarian, K.Image denoising by sparse 3-D transform-domain

    collaborative filtering.IEEE Transactions on Image Processing Vol.16,No.8,2080–2095,2007.

    [5]Afonso,M.V.;Sanches,J.M.R.Blind inpainting using l0and total variation regularization.IEEE Transactions on Image Processing Vol.24,No.7, 2239–2253,2015.

    [6]Gastal, E.S.L.; Oliveira, M.M.Adaptive manifoldsforreal-timehigh-dimensionalfiltering. ACM Transactions on Graphics Vol.31,No.4,Article No.33,2012.

    [7]Zhang,Q.;Xu,L.;Jia,J.100+ timesfaster weighted median filter(WMF).In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2830–2837,2014.

    [8]Buades,A.;Coll,B.;Morel,J.-M.A review of image denoising algorithms,with a new one.SIAM Journal on Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal Vol.4,No.2,490–530,2005.

    [9]Chatterjee,P.;Milanfar,P.Is denoising dead?IEEE Transactions on Image Processing Vol.19,No.4,895–911,2010.

    [10]Zhang,Z.;Ganesh,A.;Liang,X.;Ma,Y.TILT: Transform-invariant low-rank textures.International Journal of Computer Vision Vol.99,No.1,1–24,2012.

    [11]Dong,W.;Shi,G.;Li,X.Nonlocal image restoration with bilateralvariance estimation: A low-rank approach.IEEE Transactions on Image Processing Vol.22,No.2,700–711,2013.

    [12]Shabalin,A.A.;Nobel,A.B.Reconstruction of a lowrank matrix in the presence of Gaussian noise.Journal of Multivariate Analysis Vol.118,No.5,67–76,2013.

    [13]Tao,M.;Yuan,X.Recovering low-rank and sparse components of matrices from incomplete and noisy observations.SIAM Journal on Optimization Vol.21, No.1,57–81,2011.

    [14]Zhang,Y.;Liu,Y.;Li,X.;Zhang,C.Salt and pepper noise removal in surveillance video based on low-rank matrix recovery.Computational Visual Media Vol.1, No.1,59–68,2015.

    [15]Zhou,Z.;Li,X.;Wright,J.;Cand`es,E.J.;Ma,Y. Stable principal component pursuit.In:Proceedings of IEEE International Symposium on Information Theory,1518–1522,2010.

    [16]Liang,X.;Ren,X.;Zhang,Z.;Ma,Y.Texture repairing by unified low rank optimization.Journal of Computer Science and Technology Vol.31,No.3,525–546,2016.

    [17]Cand`es,E.J.;Li,X.;Ma,Y.;Wright,J.Robust principal component analysis?Journal of the ACM Vol.58,No.3,Article No.11,2011.

    [18]Wang,Z.;Zhang,J.;Chen,G.Mixture noise image denoising using reweighted low-rank matrix recovery. Compuer Science Vol.43,No.1,298–301,2016.(in Chinese)

    [19]Lin,Z.;Ganesh,A.;Wright,J.;Wu,L.;Chen,M.; Ma,Y.Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix.Technical Report.University of Illinois at Urbana-Champaign, 2009.

    [20]Cand`es,E.J.;Plan,Y.Matrix completion with noise. Proceedings of the IEEE Vol.98,No.6,925–936,2010.

    [21]Djurovi′c,I.BM3D filter in salt-and-pepper noise removal.EURASIP Journal on Image and Video Processing Vol.2016,13,2016.

    [22]Cai,J.-F.;Chan,R.H.;Nikolova,M.Fast twophase image deblurring under impulse noise.Journal of Mathematical Imaging and Vision Vol.36,46–53, 2010.

    [23]Wang,Y.;Szlam,A.;Lerman,G.Robust locally linear analysis with applications to image denoising and blind inpainting.SIAM Journal on Imaging Sciences Vol.6, No.1,526–562,2013.

    Xiao Liang iscurrently a Ph.D. student in computer science and technology at the Institute for Advanced Study in Tsinghua University,Beijing, China. Her adviser is Prof. Harry Shum.She received her B.E.degree in electronic engineering from Tsinghua University. During herstudy,she interned at Microsoft Research Asia for over four years. Her research interests include texture processing,3D computervision and sparsity,and low rank matrix recovery.

    Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License(http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095. To submit a manuscript,please go to https://www. editorialmanager.com/cvmj.

    1 Institute for Advanced Study,Tsinghua University, Beijing100084,China. E-mail: liangx04@mails. tsinghua.edu.cn().

    Manuscript received:2016-04-22;accepted:2016-05-25

    日韩三级视频一区二区三区| 一边摸一边抽搐一进一出视频| 亚洲色图综合在线观看| 成年女人毛片免费观看观看9| 久久精品亚洲av国产电影网| 国产欧美日韩精品亚洲av| 国产精品久久久久久人妻精品电影| 制服诱惑二区| 757午夜福利合集在线观看| 在线观看免费午夜福利视频| 久久精品aⅴ一区二区三区四区| 一本大道久久a久久精品| svipshipincom国产片| 最新在线观看一区二区三区| 99热国产这里只有精品6| 99久久国产精品久久久| 99精国产麻豆久久婷婷| 宅男免费午夜| 国产精品国产av在线观看| 国产野战对白在线观看| 久久人人97超碰香蕉20202| 亚洲熟女毛片儿| 欧美成人午夜精品| 在线观看免费视频日本深夜| 欧美激情久久久久久爽电影 | 国产成人精品久久二区二区免费| 黄网站色视频无遮挡免费观看| 国产男靠女视频免费网站| 亚洲av美国av| 美女高潮喷水抽搐中文字幕| 久久精品国产亚洲av香蕉五月| 日韩免费av在线播放| 嫩草影视91久久| 久久狼人影院| 日本精品一区二区三区蜜桃| 一二三四社区在线视频社区8| 久久久国产成人免费| 午夜福利在线免费观看网站| 免费高清在线观看日韩| 国产精品av久久久久免费| 国产精品自产拍在线观看55亚洲| а√天堂www在线а√下载| 在线观看午夜福利视频| 高清毛片免费观看视频网站 | 十八禁人妻一区二区| 精品福利永久在线观看| 满18在线观看网站| 中亚洲国语对白在线视频| 日韩av在线大香蕉| 欧美激情极品国产一区二区三区| 日韩欧美一区视频在线观看| 人人妻,人人澡人人爽秒播| 成人特级黄色片久久久久久久| 欧美激情久久久久久爽电影 | 亚洲精品av麻豆狂野| 国产亚洲欧美精品永久| 亚洲人成伊人成综合网2020| 一级作爱视频免费观看| 日韩高清综合在线| 人成视频在线观看免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 另类亚洲欧美激情| 一级a爱片免费观看的视频| 亚洲少妇的诱惑av| 纯流量卡能插随身wifi吗| 麻豆成人av在线观看| 无限看片的www在线观看| 91精品国产国语对白视频| xxx96com| 伦理电影免费视频| av网站在线播放免费| 成年女人毛片免费观看观看9| 久99久视频精品免费| 久久久国产成人免费| 欧美人与性动交α欧美精品济南到| 久久九九热精品免费| 久久精品成人免费网站| 久久久久久久精品吃奶| 俄罗斯特黄特色一大片| 90打野战视频偷拍视频| 久久久久久久午夜电影 | 操美女的视频在线观看| 99精品久久久久人妻精品| 成人黄色视频免费在线看| 18禁裸乳无遮挡免费网站照片 | 少妇的丰满在线观看| 欧美日韩视频精品一区| 桃红色精品国产亚洲av| 中亚洲国语对白在线视频| 久久亚洲真实| av网站免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美激情极品国产一区二区三区| 久久中文看片网| avwww免费| 精品国产美女av久久久久小说| 精品国产美女av久久久久小说| 欧美午夜高清在线| 精品乱码久久久久久99久播| 亚洲,欧美精品.| 亚洲精品一二三| 国产高清激情床上av| 欧美老熟妇乱子伦牲交| av中文乱码字幕在线| 亚洲精品一区av在线观看| 99久久人妻综合| ponron亚洲| 亚洲精品国产区一区二| 国产视频一区二区在线看| 水蜜桃什么品种好| 亚洲五月色婷婷综合| 亚洲人成网站在线播放欧美日韩| www日本在线高清视频| 国产精品一区二区精品视频观看| 老司机在亚洲福利影院| 午夜激情av网站| av免费在线观看网站| av免费在线观看网站| 亚洲全国av大片| 神马国产精品三级电影在线观看 | 天堂俺去俺来也www色官网| 国产精品免费视频内射| 宅男免费午夜| 午夜福利,免费看| 国产欧美日韩精品亚洲av| 久久久水蜜桃国产精品网| 亚洲精品美女久久av网站| 国产亚洲欧美在线一区二区| 19禁男女啪啪无遮挡网站| av在线天堂中文字幕 | 国产成人一区二区三区免费视频网站| 日本撒尿小便嘘嘘汇集6| 色综合欧美亚洲国产小说| svipshipincom国产片| 中文字幕av电影在线播放| 国产99久久九九免费精品| 丝袜美足系列| 亚洲一区二区三区不卡视频| 亚洲自偷自拍图片 自拍| 亚洲午夜精品一区,二区,三区| 又黄又爽又免费观看的视频| 亚洲国产精品合色在线| 水蜜桃什么品种好| 国产亚洲精品久久久久久毛片| 亚洲人成网站在线播放欧美日韩| 久久香蕉精品热| 国产欧美日韩一区二区三区在线| 亚洲美女黄片视频| 久久亚洲精品不卡| 亚洲精品美女久久av网站| 久久中文字幕一级| 国产精品偷伦视频观看了| 欧美乱妇无乱码| 国产极品粉嫩免费观看在线| 国产成人欧美在线观看| 高清在线国产一区| 国产99久久九九免费精品| 国产亚洲精品一区二区www| 在线十欧美十亚洲十日本专区| 黄色成人免费大全| 悠悠久久av| 在线视频色国产色| 国产一卡二卡三卡精品| 久久久久久大精品| 亚洲精华国产精华精| 久久久久九九精品影院| 天天添夜夜摸| а√天堂www在线а√下载| 亚洲人成电影免费在线| 我的亚洲天堂| 热99国产精品久久久久久7| 日本五十路高清| 亚洲,欧美精品.| 午夜福利免费观看在线| 在线看a的网站| 免费看十八禁软件| av福利片在线| 国产97色在线日韩免费| 成熟少妇高潮喷水视频| 久久午夜综合久久蜜桃| 看片在线看免费视频| 成人永久免费在线观看视频| 超碰成人久久| 少妇 在线观看| 999久久久国产精品视频| 亚洲成人精品中文字幕电影 | av有码第一页| 亚洲av熟女| 嫁个100分男人电影在线观看| 黄色片一级片一级黄色片| 久久久久国产一级毛片高清牌| 多毛熟女@视频| 亚洲欧美日韩高清在线视频| 精品久久久精品久久久| 国产一区二区三区视频了| 无遮挡黄片免费观看| 日韩欧美一区视频在线观看| 国产成年人精品一区二区 | 9色porny在线观看| 精品国产国语对白av| av免费在线观看网站| 亚洲三区欧美一区| 欧美午夜高清在线| 黄片大片在线免费观看| 午夜久久久在线观看| 免费日韩欧美在线观看| 久久久久亚洲av毛片大全| 久久香蕉国产精品| 欧美日韩福利视频一区二区| 91老司机精品| 老司机亚洲免费影院| 亚洲成人免费av在线播放| 久久久久久大精品| 国产成人影院久久av| 色综合欧美亚洲国产小说| 精品卡一卡二卡四卡免费| 色老头精品视频在线观看| av中文乱码字幕在线| 啦啦啦 在线观看视频| 一夜夜www| 热99re8久久精品国产| 多毛熟女@视频| 久久精品亚洲精品国产色婷小说| 久久久久久人人人人人| 亚洲国产看品久久| 亚洲狠狠婷婷综合久久图片| 国产精品偷伦视频观看了| 91av网站免费观看| 十八禁人妻一区二区| 国产成人欧美在线观看| 久久久久久久久中文| 身体一侧抽搐| 亚洲男人天堂网一区| 久久精品成人免费网站| 91麻豆av在线| 精品国产国语对白av| 免费在线观看影片大全网站| 国产精品久久久人人做人人爽| а√天堂www在线а√下载| 精品国产一区二区久久| 男女高潮啪啪啪动态图| 91九色精品人成在线观看| 亚洲一区二区三区色噜噜 | 亚洲久久久国产精品| 久久人妻熟女aⅴ| 亚洲欧美激情综合另类| 在线国产一区二区在线| 久久久久久人人人人人| 亚洲久久久国产精品| 男人操女人黄网站| 久久国产精品人妻蜜桃| 在线观看免费视频日本深夜| 日本 av在线| 少妇裸体淫交视频免费看高清 | 国产亚洲欧美在线一区二区| 高清毛片免费观看视频网站 | 亚洲色图av天堂| 波多野结衣高清无吗| 国产精品日韩av在线免费观看 | 真人一进一出gif抽搐免费| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 人人妻人人爽人人添夜夜欢视频| 丝袜人妻中文字幕| 中文字幕色久视频| 午夜福利影视在线免费观看| 波多野结衣av一区二区av| 亚洲狠狠婷婷综合久久图片| 国产成人一区二区三区免费视频网站| 一级毛片精品| 老熟妇仑乱视频hdxx| 男女床上黄色一级片免费看| 色精品久久人妻99蜜桃| 高清av免费在线| 久久久久国产精品人妻aⅴ院| 日韩免费av在线播放| 国产精品爽爽va在线观看网站 | 国产精品一区二区精品视频观看| 99精品欧美一区二区三区四区| 大香蕉久久成人网| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| 午夜福利欧美成人| 精品免费久久久久久久清纯| 成人三级做爰电影| 一级a爱视频在线免费观看| 精品人妻在线不人妻| 满18在线观看网站| 18禁黄网站禁片午夜丰满| 看黄色毛片网站| 日本免费一区二区三区高清不卡 | 一区二区日韩欧美中文字幕| 免费人成视频x8x8入口观看| 多毛熟女@视频| 久热爱精品视频在线9| 两个人免费观看高清视频| 久久99一区二区三区| 亚洲欧美精品综合久久99| 成年版毛片免费区| 两个人免费观看高清视频| 电影成人av| 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 国产在线观看jvid| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 在线观看舔阴道视频| 久久欧美精品欧美久久欧美| 啦啦啦 在线观看视频| 两性夫妻黄色片| 国产在线精品亚洲第一网站| 亚洲精品在线美女| 亚洲第一青青草原| 国产精品偷伦视频观看了| 国产亚洲欧美精品永久| 亚洲va日本ⅴa欧美va伊人久久| 女人高潮潮喷娇喘18禁视频| 色综合站精品国产| 麻豆国产av国片精品| 国产在线精品亚洲第一网站| 黄色 视频免费看| 国产免费现黄频在线看| 久久这里只有精品19| 午夜福利影视在线免费观看| 国产男靠女视频免费网站| 91av网站免费观看| www国产在线视频色| 亚洲av五月六月丁香网| 十八禁人妻一区二区| 日韩欧美在线二视频| 一边摸一边抽搐一进一出视频| 国产xxxxx性猛交| 久久人妻福利社区极品人妻图片| 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| 午夜a级毛片| 亚洲av成人av| 久久久久九九精品影院| 制服人妻中文乱码| 久热爱精品视频在线9| 久久亚洲精品不卡| 亚洲五月天丁香| 伦理电影免费视频| 中文亚洲av片在线观看爽| 久久天堂一区二区三区四区| 一个人观看的视频www高清免费观看 | 国产伦人伦偷精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产精品人妻aⅴ院| 婷婷六月久久综合丁香| 麻豆av在线久日| 怎么达到女性高潮| 亚洲成人久久性| 亚洲av成人av| 久99久视频精品免费| 淫妇啪啪啪对白视频| 热re99久久精品国产66热6| 国产免费av片在线观看野外av| 亚洲国产欧美一区二区综合| av网站在线播放免费| 亚洲欧美激情在线| 国产精品爽爽va在线观看网站 | 亚洲精品在线美女| 99精品欧美一区二区三区四区| 制服诱惑二区| 国产激情欧美一区二区| 精品电影一区二区在线| 国产精品日韩av在线免费观看 | 麻豆国产av国片精品| 久久 成人 亚洲| 久久久久久人人人人人| 亚洲av成人av| 成人国语在线视频| 激情在线观看视频在线高清| 一区二区日韩欧美中文字幕| 母亲3免费完整高清在线观看| 色综合欧美亚洲国产小说| 久久香蕉精品热| 日韩三级视频一区二区三区| x7x7x7水蜜桃| 欧美日韩瑟瑟在线播放| 1024香蕉在线观看| 久久久国产成人免费| 国产亚洲精品综合一区在线观看 | 亚洲国产毛片av蜜桃av| 69av精品久久久久久| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡| 88av欧美| 无人区码免费观看不卡| 美国免费a级毛片| 午夜影院日韩av| 亚洲精华国产精华精| 亚洲av成人一区二区三| 国产免费av片在线观看野外av| e午夜精品久久久久久久| 亚洲精品中文字幕在线视频| 精品福利永久在线观看| 级片在线观看| 亚洲熟女毛片儿| 国产av精品麻豆| 亚洲avbb在线观看| 国产精品成人在线| 免费在线观看日本一区| 涩涩av久久男人的天堂| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| 99久久国产精品久久久| 一级a爱视频在线免费观看| 午夜福利免费观看在线| 日本三级黄在线观看| 麻豆久久精品国产亚洲av | 91大片在线观看| 成人国产一区最新在线观看| av网站免费在线观看视频| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月| 国产成人av教育| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 99久久综合精品五月天人人| 夜夜看夜夜爽夜夜摸 | 别揉我奶头~嗯~啊~动态视频| 高清欧美精品videossex| 久久精品国产清高在天天线| 久久香蕉激情| 99国产精品一区二区三区| 亚洲成人国产一区在线观看| 午夜老司机福利片| 9热在线视频观看99| 亚洲熟妇中文字幕五十中出 | 国产成人欧美| 黄色视频,在线免费观看| 免费av中文字幕在线| 欧美一区二区精品小视频在线| 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 久久人人97超碰香蕉20202| 18禁美女被吸乳视频| 国产在线精品亚洲第一网站| 免费看a级黄色片| 丝袜人妻中文字幕| 在线国产一区二区在线| 久久精品国产亚洲av香蕉五月| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 一二三四社区在线视频社区8| 两人在一起打扑克的视频| 不卡一级毛片| 天堂中文最新版在线下载| 伦理电影免费视频| 午夜影院日韩av| 欧美乱妇无乱码| 亚洲午夜精品一区,二区,三区| 国产一区二区在线av高清观看| 免费久久久久久久精品成人欧美视频| 午夜视频精品福利| 久久精品91无色码中文字幕| 成人永久免费在线观看视频| 99在线人妻在线中文字幕| 在线播放国产精品三级| 天天影视国产精品| 日本一区二区免费在线视频| 国产精品一区二区精品视频观看| 黄色视频,在线免费观看| 久久久久久久久免费视频了| 两个人免费观看高清视频| 最新在线观看一区二区三区| 身体一侧抽搐| 久久亚洲真实| 欧美乱码精品一区二区三区| 黄色视频不卡| 男女高潮啪啪啪动态图| 欧美精品啪啪一区二区三区| 黄色视频不卡| 伦理电影免费视频| 久久欧美精品欧美久久欧美| 亚洲色图 男人天堂 中文字幕| 黄色成人免费大全| 久久亚洲真实| 亚洲一区中文字幕在线| 国产有黄有色有爽视频| 99国产精品99久久久久| 国产精品二区激情视频| 伦理电影免费视频| 欧美黑人精品巨大| 亚洲性夜色夜夜综合| xxxhd国产人妻xxx| 另类亚洲欧美激情| 成人三级做爰电影| 精品人妻1区二区| 美女 人体艺术 gogo| 女同久久另类99精品国产91| 交换朋友夫妻互换小说| netflix在线观看网站| 免费高清视频大片| 最近最新中文字幕大全电影3 | 黑丝袜美女国产一区| 中文字幕av电影在线播放| 88av欧美| 9色porny在线观看| 在线永久观看黄色视频| 午夜精品久久久久久毛片777| 一边摸一边做爽爽视频免费| av网站免费在线观看视频| 美女国产高潮福利片在线看| 欧美成人性av电影在线观看| 欧美激情久久久久久爽电影 | 国产精品av久久久久免费| 免费在线观看日本一区| 国产精品久久久人人做人人爽| 性欧美人与动物交配| www.自偷自拍.com| 一进一出抽搐动态| 午夜视频精品福利| 大香蕉久久成人网| 老司机深夜福利视频在线观看| 国产成年人精品一区二区 | 久热这里只有精品99| 成人亚洲精品av一区二区 | 老司机午夜福利在线观看视频| 亚洲国产毛片av蜜桃av| 最新在线观看一区二区三区| 国产三级在线视频| 性少妇av在线| 久久人人精品亚洲av| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 亚洲一区高清亚洲精品| 在线视频色国产色| 97超级碰碰碰精品色视频在线观看| 国产成人欧美| 成人黄色视频免费在线看| 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 神马国产精品三级电影在线观看 | 成人国语在线视频| 涩涩av久久男人的天堂| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕在线视频| 一边摸一边抽搐一进一小说| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 亚洲一区二区三区不卡视频| 俄罗斯特黄特色一大片| netflix在线观看网站| 琪琪午夜伦伦电影理论片6080| 一级毛片女人18水好多| 国产午夜精品久久久久久| 看免费av毛片| 女性生殖器流出的白浆| 精品久久久精品久久久| 久久久精品欧美日韩精品| 国产精品久久久久成人av| 久久精品国产亚洲av高清一级| 欧美日韩瑟瑟在线播放| 交换朋友夫妻互换小说| 国产精品1区2区在线观看.| 丝袜人妻中文字幕| 亚洲中文字幕日韩| 两性夫妻黄色片| 国产精品综合久久久久久久免费 | 久久久精品欧美日韩精品| 久久精品国产综合久久久| 俄罗斯特黄特色一大片| 午夜福利影视在线免费观看| 性色av乱码一区二区三区2| 99国产精品一区二区三区| 日韩av在线大香蕉| 久热爱精品视频在线9| 久久性视频一级片| 午夜视频精品福利| 女警被强在线播放| 男女午夜视频在线观看| 高清毛片免费观看视频网站 | 亚洲精品在线美女| 满18在线观看网站| 色播在线永久视频| 久久中文字幕人妻熟女| 国产免费男女视频| 交换朋友夫妻互换小说| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| tocl精华| 日韩精品青青久久久久久| 少妇的丰满在线观看| 日韩 欧美 亚洲 中文字幕| 久久伊人香网站| 18禁国产床啪视频网站| 淫妇啪啪啪对白视频| 久久精品影院6| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品一区二区三区| 1024视频免费在线观看| 动漫黄色视频在线观看| 99热国产这里只有精品6| 波多野结衣高清无吗| 亚洲成a人片在线一区二区| 天天影视国产精品| 日本三级黄在线观看| 美女高潮喷水抽搐中文字幕| 日日爽夜夜爽网站| av在线天堂中文字幕 | 久久国产乱子伦精品免费另类| 欧美一级毛片孕妇| 在线永久观看黄色视频| 人人妻人人添人人爽欧美一区卜| 女性生殖器流出的白浆| av电影中文网址| 久久亚洲真实| 国产99白浆流出| 国产成人av教育|