• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Apolipoprotein A-V gene therapy for disease prevention / treatment: a critical analysis

    2016-12-13 09:27:46TrudyForteVineetaSharmaRobertRyan
    THE JOURNAL OF BIOMEDICAL RESEARCH 2016年2期

    Trudy M. Forte, Vineeta Sharma, Robert O. Ryan

    Center for Prevention of Obesity, Diabetes and Cardiovascular Disease, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.

    Apolipoprotein A-V gene therapy for disease prevention / treatment: a critical analysis

    Trudy M. Forte, Vineeta Sharma, Robert O. Ryan?

    Center for Prevention of Obesity, Diabetes and Cardiovascular Disease, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.

    Apolipoprotein (apo) A-V is a novel member of the class of exchangeable apo's involved in triacylglycerol (TG) homeostasis. Whereas a portion of hepatic-derived apoA-V is secreted into plasma and functions to facilitate lipoprotein lipase-mediated TG hydrolysis, another portion is recovered intracellularly, in association with cytosolic lipid droplets. Loss of apoA-V function is positively correlated with elevated plasma TG and increased risk of cardiovascular disease. Single nucleotide polymorphisms (SNP) in the APOA5 locus can affect transcription efficiency or introduce deleterious amino acid substitutions. Likewise, rare mutations in APOA5 that compromise functionality are associated with increased plasma TG and premature myocardial infarction. Genetically engineered mouse models and human population studies suggest that, in certain instances, supplementation with wild type (WT) apoA-V may have therapeutic benefit. It is hypothesized that individuals that manifest elevated plasma TG owing to deleterious APOA5 SNPs or rare mutations would respond to WT apoA-V supplementation with improved plasma TG clearance. On the other hand, subjects with hypertriglyceridemia of independent origin (unrelated to apoA-V function) may not respond to apoA-V augmentation in this manner. Improvement in the ability to identify individuals predicted to benefit, advances in gene transfer technology and the strong connection between HTG and heart disease, point to apoA-V supplementation as a viable disease prevention / therapeutic strategy. Candidates would include individuals that manifest chronic TG elevation, have low plasma apoA-V due to an APOA5 mutation/polymorphism and not have deleterious mutations/polymorphisms in other genes known to influence plasma TG levels.

    apolipoprotein A-V, adeno-associated virus, triacylglycerol, lipoprotein lipase, atherosclerosis, single nucleotide polymorphism, gene therapy

    Apolipoprotein A-V dependent modulation of plasma triacylglycerol

    Apolipoprotein (apo) A-V-is an enigmatic modulator of plasma triacylglycerol (TG) homeostasis. ApoA-V is expressed solely in the liver and, following secretion, circulates at extremely low concentrations (~150-400 ng/mL plasma). This value is approximately 10,000 fold lower than that of apoA-I, the major apo of high density lipoprotein (HDL). Given the paucity of circulating apoA-V, it is logical to consider that it does not function as a typical member of the apolipoprotein class. Despite this supposition, apoA-V possesses sequence homology with other apo's, is recovered in association with plasmalipoproteins and displays high lipid-surface seeking activity. Using recombinant protein, it has been demonstrated that apoA-V binds heparan sulfate proteoglycans (HSPG)[1-2], members of the low-density lipoprotein receptor (LDLR) family[3]and the endothelial cell surface protein, glycosylphosphatidylinositol- anchoredhigh-density lipoprotein binding protein 1 (GPIH-BP1)[4]. This latter function has been invoked to explain the ability of apoA-V to enhance lipoprotein lipase (LPL) mediated hydrolysis of lipoprotein associated TG[5]. What is not explained, however, is how this can be achieved at such low circulating apoA-V concentrations. For example, it has been estimated that, in the postprandial state, there is only enough apoA-V present to associate with ~1 in 24 apoB containing lipoproteins[6]. Thus, it would appear that apoA-V is either an exceptionally potent apolipoprotein or it possesses additional functionality that has yet to be revealed.

    Genome wide association studies (GWAS) have identified APOA5 as a determinant of plasma TG concentrations[7]. There is also strong evidence that abnormally high concentrations of TG are associated with atherosclerosis[8-12]. Given this connection, it is important to consider whether APOA5 may be a risk factor for disease processes that develop from chronic elevation of plasma TG. The fact that ~ 40 million adults in the United States have high TG (≥200 mg/dL) and ~4 million of these have hypertriglyceridemia (HTG; ≥500 mg/dL)[12-13]indicates the scale of this health problem. In the Prospective Cardiovascular Munster Study, a six-fold increase in coronary heart disease (CHD) risk was measured in subjects with TG values >200 mg/dL[14]. Likewise, in the Scandinavian Simvastatin Survival Study, the authors reported increased risk of coronary events as TG levels increased above 220 mg/dL[15-16]. In this study the 5- year event rate was significantly increased in untreated patients with mixed dyslipidemia (including those with HTG) compared to those with elevated LDL-cholesterol alone. Finally, the Bezafibrate Infarction Prevention study found that, in men and women with established CHD, elevated plasma TG increased the risk of cardiovascular mortality, stroke and transient ischemic attacks[17].

    Multiple genes can impact plasma TG levels

    It is widely recognized that numerous genes play a role in determining plasma TG levels. In addition to APOA5, well-studied modulators of plasma TG homeostasis include LPL, APOC2, APOC3, GPIHBP1 and others. According to prevailing models, plasma apoA-V functions to facilitate lipoprotein binding to GPIHBP1[5]. As a component of TG-rich lipoproteins, apoA-V binding to GPIHBP1 coordinates LPL and apoC-II interactions in a manner that promotes efficient TG hydrolysis. Indeed, when any one of these proteins is missing or defective, HTG ensues. Further complexity is introduced when the effect of apoA-V on plasma TG is examined in different physiological settings. In mice, for example, an inverse correlation between apoA-V and TG is well documented[18]. These authors showed that gene disruption of apoa5 leads to a marked increase in plasma TG while transgenic overexpression of APOA5 induces a significant decline. By contrast, in human populations with HTG[19], plasma apoA-V and TG are oftentimes positively correlated! Thus, it is likely that, depending on the genetic background/physiological conditions that lead to HTG, apoAV may actually accumulate along with TG.

    APOA5 variants and heart disease

    In a recent study, Do et al.[20]investigated the correlation between rare APOA5 variants and early onset myocardial infarction (MI). In this tour de force study, the authors conducted exome sequencing on over 9,700 human subjects with premature MI (≤50 years of age in males and ≤60 years in females) along with MI-free controls. They sought to identify genes in which rare mutations contribute to the risk of earlyonset MI in the population. Two genes (LDLR and APOA5) were identified in which rare coding mutations were more frequent in MI cases compared to controls. Approximately 2% of early MI cases harbor a rare, damaging mutation in LDLR. Likewise, in APOA5, those subjects with rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared to non-carriers, LDLR mutation car riers had higher plasma LDL cholesterol while APOA5 mutation carriers had higher plasma TG. It may be anticipated that subjects identified to be at risk for premature MI as a result of harboring these rare APOA5 mutations could improve or normalize their plasma TG concentration, and reduce the risk of MI, by augmentation with wild type (WT) apoA-V.

    A basic question emerging from the above investigation relates to the underlying mechanism whereby elevated plasma TG increases the risk of heart disease. Certainly the correlation between chronic elevated plasma TG and atherosclerosis is less clear than that for cholesterol. While the TG content of plaque is far less prominent, evidence suggests that, in cells located in and around plaque deposits, TG-rich lipoproteins induce inflammation and related atherogenic processes[21-23]. Elevated TG also correlates with the formation of small dense LDL, lipoprotein particles that are positively associated with CHD risk and inflammation[24]. Given the very low concentration of apoA-V in plasma under normal circumstances, anydecrease will likely impact lipoprotein-associated TG hydrolysis by LPL, thereby interfering with TG-rich lipoprotein clearance. The resulting increase in circulating TG-rich lipoproteins will promote inflammatory cytokine release, contributing to endothelial injury[25].

    In vivo evidence for an athero-protective effect of apoA-V

    Studies in mouse models of dyslipidemia have provided evidence that apoA-V is athero-protective. For example, Mansouri et al.[26]crossed APOA5 transgenic mice with APOE2 knock in (KI) mice (deficient in apoe and transgenic for APOE2). Compared to control APOE2 KI mice, plasma TG levels were lower and atherosclerotic lesion size was reduced when apoA-V levels were increased. Subsequently, Grosskopf et al.[27]crossed APOA5 transgenic mice with apoe (-/-) mice. In this study a significant decrease in VLDL and remnant lipoproteins, together with a 70% reduction in aortic lesion area, was noted. In both of these studies, the apoA-V concentration in plasma was increased by expression of the transgene. Of interest, however, is the manner in which HTG was induced. In the APOE2 KI model, a dysfunctional apoE protein is present while in apoe (-/-) mice no apoE is present. It is conceivable that, since apoA-V and apoE share the ability to bind HSPGs and members of the LDL receptor family, augmenting apoA-V levels in the absence of functional apoE compensates for the missing or defective apoE.

    Another well established model of HTG is the APOC3 transgenic mouse. These mice manifest delayed catabolism of VLDL and chylomicrons owing to an abundance of apoC-III bound to the surface of these particles[28-30]. To study the effect of apoA-V augmentation on apoC-III overexpression-dependent HTG, Qu et al.[31]used adenovirus mediated gene transfer to increase apoA-V production in APOC3 transgenic mice. ApoA-V gene transfer into APOC3 transgenic mice caused a reduction in apoC-III content on VLDL that, in turn, led to an increase in LPL-mediated TG hydrolysis.

    Individuals predicted to benefit from increased WT apoA-V expression

    As discussed above, and previously by Sharma et al.[5], relatively common APOA5 SNPs are associated with increased plasma TG. For example, individuals homozygous for the c.553G > T APOA5 SNP (rs2075291) have extremely elevated plasma TG levels[32]. Recent studies have shown that HTG in these subjects is due, at least in part, to production of a dysfunctional apoA-V protein[33]. It may be anticipated that an increase in circulating levels of WT apoA-V in homozygous carriers of this SNP will induce TG lowering, thereby reducing the risk of related disease processes. Another coding SNP strongly associated with elevated plasma TG is c.56C>G APOA5 (rs3135506)[19]. This SNP, which introduces an amino acid substitution (Ser19Trp) in the signal sequence of apoA-V, is thought to impede processing/secretion of the mature protein[34]. Along the same lines, a rare homozygous APOA5 deletion mutation has been identified in the signal sequence (c.16_39del; p.Ala6_Ala13del), generating a variant apoA-V protein that is not secreted[35]. The missing amino acids are required for translocation of nascent apoA-V to the endoplasmic reticulum and, as a result, this protein accumulates in the cytoplasm in association with lipid droplets. In both c.56C > G and c.16_39del, the mature protein is predicted to be identical to WT apoA-V. Mutation- and SNP-induced effects on signal sequence function or cleavage decrease secretion efficiency resulting in diminished, or complete lack of, circulating apoA-V. However, despite the fact that indivi duals harboring the c.56C > G SNP may secrete less apoA-V, if this polymorphism is not the sole or primary underlying cause of HTG, then apoA-V levels will likely accumulate in plasma along with TG[19]and it is doubtful augmentation with apoA-V will induce TG lowering.

    Non-coding SNPs located within the APOA5 gene locus are also associated with elevated plasma TG, most likely due to effects on APOA5 gene expression. For example, the -1131T>C SNP (rs662799), located upstream of the transcription start site, has been proposed to reduce transcription efficiency[36]. Likewise, an IVS3+3G > C mutation causes a frameshift in the donor splice site of intron 3 creating a premature stop codon that results in a nonsense protein[37]. Other rare mutations in APOA5 result in severe truncation of apoA-V and abolish function altogether[38-39].

    Given this, it may be anticipated that individuals with HTG caused by deleterious APOA5 SNPs or mutations would benefit from increased circulating levels of WT apoA-V (Table1). Likewise, as seen above, if HTG is caused by enhanced apoC-III production, it may be anticipated that increased circulating levels of apoA-V would be beneficial. On the other hand, if HTG is associated with a diagnosis of metabolic syndrome, for example, simply adding to the pool of apoA-V is not expected to improve the TG profile owing to the multifactorial causation of this disorder. From a practical standpoint, if HTG is observed, then the APOA5 gene should be examined for the presence of deleterious SNPs or loss of function mutations. If present, then WT apoA-V augmentation may induce TG lowering. On the other hand, subjects with HTG unrelated to APOA5 or from a combination of APOA5 variation and other genes, would be expectedto see a lesser or no benefit. This predicted differential response provides a plausible explanation for the conundrum emerging from analysis of apoA-V genetically engineered mouse models (wherein a clear inverse correlation between apoA-V and plasma TG exists) and human population studies that reveal a positive correlation between apoA-V and TG[19]. The importance of discriminating between predicted responders and nonresponders is illustrated below.

    Table 1 Anticipated effect of apoA-V gene therapy in individuals with high plasma TG

    ApoA-V as a TG lowering therapy

    Based on the above discussion, it is conceivable that deleterious APOA5 SNPs or mutations (e.g. interfere with apoA-V secretion efficiency or produce an apoA-V protein with compromised function) may increase the risk of atherosclerosis due to chronically elevated plasma TG levels. To investigate the potential benefit of direct addition of apoA-V, Shu et al.[40]administered recombinant human apoA-V intravenously to hypertriglyceridemic apoa5 (-/-) mice. Administration of apoA-V–containing reconstituted HDL induced a 60% decline in plasma TG after 4 h that was attributed to enhanced catabolism and clearance of VLDL. Despite the reduction in plasma TG observed in this experiment, the effect was short-lived, suggesting that this approach may not represent a feasible therapeutic strategy. In an effort to increase the duration of TG-lowering induced by apoA-V, AAV2/8-mediated gene transfer of WT apoA-V was performed in apoa5 (-/-) mice[41]. In this study, apoA-V expression lasted at least 8 weeks and induced a 50% decline in plasma TG levels, suggesting that gene therapy may be beneficial in some instances.

    It is noteworthy that recent advances suggest gene transfer technology may constitute a feasible therapeutic option for a subset of individuals with chronic HTG. For this purpose, the viral vector must display sustained transgene expression in the absence of toxicity. Vectors most commonly used for treatment of metabolic disorders are adeno-associated virus (AAV) and lenti-virus. Among these, AAV has a number of clinically favorable attributes. First, it lacks both parental agent pathogenicity and vector related cytotoxicity. Furthermore, compared to other viral vectors, AAV induces a minimal host immune response. In fact, AAV vectors have been used to deliver genes to over 500 study subjects by various routes of administration for potential treatment of genetic disorders including cystic fibrosis, hemophilia and Canavan, Batten, Parkinson's and Alzheimer's diseases, without significant safety concerns. Among approved AAV-based therapies, Glybera (UniQure) is used for treatment of LPL deficiency[42-43]. Long- term gene expression (>1.5 years) has been demonstrated after AAV transduction in animal models including canine, murine and hamster[44-50]. Moreover, it has been demonstrated that AAV can successfully be transduced into a variety of cell and tissue types, including brain, liver and muscle[51-54]. An advantage of the AAV serotype 2/8 is that it efficiently targets liver[41,55]. Given that apoA-V is expressed solely in liver, AAV2/8 is a strong candidate vector for studies involving apoA-V gene transfer.

    Given the role of APOA5 in modulation of plasma TG documented in studies of genetically engineered mice, GWAS, human population loss of function studies and large-scale exome sequencing, therapies designed to promote its athero-protective effects are very attractive. Whereas it may be possible to develop a small molecule therapeutic capable of inducing endogenous apoA-V expression, individuals harboring common SNPs or rare mutations in APOA5 may not benefit from this approach. On the other hand, gene therapy represents a safe, robust and efficient means to achieve sustained expression of WT apoA-V. By controlling plasma TG homeostasis in this manner, the risk of heart disease and atherosclerosis can be reduced.

    Acknowledgments

    Supported by a grant from NIH (R37-HL64159) and an AHA Postdoctoral Fellowship Award (VS).

    References

    [1] Lookene A, Beckstead JA, Nilsson S, et al. Apolipoprotein A-V heparin interactions. Implications for plasma lipoprotein metabolism[J]. J Biol Chem, 2005,280(27):25383-25387.

    [2] Gonzales JC, Gordts PL, Foley EM, et al. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans[J]. J Clin Invest, 2013,123(6):2742-2751.

    [3] Nilsson SK, Lookene A, Beckstead JA, et al. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family[J]. Biochemistry, 2007,46(12): 3896-3904.

    [4] Beigneux AP, Davies B, Gin P, et al. Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons[J]. Cell Metab, 2007,5(4):279-291.

    [5] Sharma V, Forte TM, Ryan RO. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol[J]. Curr Opin Lipidol, 2013,24(2):153-159.

    [6] Merkel M, Heeren J. Give me A5 for lipoprotein hydrolysis[J]! J Clin Invest, 2005,115(10):2694-2696.

    [7] Johansen CT, Wang J, Lanktree MB, et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia[J]. Nat Genet, 2010,42(8):684-687.

    [8] Patsch JR, Miesenbock G, Hopferwieser T, et al. Relation of triglyceride metabolism and coronary artery disease: Studies in the postprandial state[J]. Arterioscler Thromb, 1992,12(11):1336-1345.

    [9] Iso H, Naito Y, Sato S, et al. Serum triglycerides and risk of coronary heart disease among Japanese men and women[J]. Am J Epidemiol, 2001,153(5):490-499.

    [10] Kannel WB, Vasan RS. Triglycerides as vascular risk factors: New epidemiologic insights[J]. Curr Opin Cardiol, 2009,24(4):345-350.

    [11] Nordestgaard BG, Benn M, Schnohr P, et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women[J]. JAMA, 2007,298(3):299-308.

    [12] Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and Cardiovascular Disease[J]. Circulation, 2011,123(20):2292-2333.

    [13] Christian JB, Bourgeois N, Nipes R, et al. Prevelance of severe (500 to 2000 mg/dL) hypertriglyceridemia in United States adults[J]. Am J Cardiol, 2011,107(6):891- 897

    [14] Assmann G, Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Prospective Cardiovascular Munster study[J]. Am J Cardiol, 1992,70(7):733-737.

    [15] Pedersen TR, Olsson AG, Faergeman O, et al. Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S)[J]. Circulation, 1998,97(15):1453-1460.

    [16] Ballantyne CM, Olsson AG, Cook TJ, et al. Influence of low high-density lipoprotein cholesterol and elevated triglyceride on coronary heart disease events and response to simvastatin therapy in 4S[J]. Circulation, 2001,104(25):3046-3051.

    [17] Haim M, Benderly M, Brunner D, et al. Elevated serum triglyceride levels and long-term mortality in patients with coronary heart disease: the Bezafibrate Infarction Prevention (BIP) Registry[J]. Circulation, 1999,100(5):475-482.

    [18] Pennacchio LA, Olivier M, Hubacek JA, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing[J]. Science, 2001,294(5540): 169-173.

    [19] Henneman P, Schaap FG, Havekes LM, et al. Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively correlated with the APOA-V S19W polymorphism[J]. Atherosclerosis, 2007,193(1):129-34.

    [20] Do R, Stitziel NO, Won HH, et al. Exome sequencing identi fies rare LDLR and APOA-V alleles conferring risk for myocardial infarction[J]. Nature, 2015,518(7537):102- 106.

    [21] Zilversmit DB. A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyceride-rich lipoproteins[J]. Circ Res, 1973,33(6):633-638.

    [22] Mamo JC, Proctor S.D, Smith D. Retention of chylomicron remnants by arterial tissue; importance of an efficient clearance mechanism from plasma[J]. Atherosclerosis, 1998, 141(Suppl 1):S63-S69.

    [23] Mahley RW, Innerarity TL, Rall SC Jr, et al. Lipoproteins of special significance in atherosclerosis. Insights provided by studies of type III hyperlipoproteinemia[J]. Ann NY Acad Sci, 1985,454:209-221.

    [24] Superko HR. Hypercholesterolemia and Dyslipidemia[J]. Curr Treat Options Cardiovasc Med, 2000,2(2): 173-187.

    [25] Eiselein L, Wilson DW, Lame MW, et al. Lipolysis products from triglyceride-rich lipoproteins increase endothelial perme ability, perturb zonula occludens-1 and F-actin, and induce apoptosis[J]. Am J Physiol Heart Circ Physiol, 2007,292(6):H2745-H2753.

    [26] Mansouri RM, Baugé E, Gervois P, et al. Atheroprotective effect of human apolipoprotein A5 in a mouse model of mixed dyslipidemia[J]. Circ Res, 2008,103(5):450-453.

    [27] Grosskopf I, Shaish A, Afek A, et al. Apolipoprotein A-V modulates multiple atherogenic mechanisms in a mouse model of disturbed clearance of triglyceride-rich lipoproteins[J]. Atherosclerosis, 2012,224(1):75- 83.

    [28] Aalto-Setala K, Fisher EA, Chen X, et al. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles[J]. J Clin Invest, 1992,90(5):1889-1900.

    [29] Aalto-Setala K, Weinstock PH, Bisgaier CL, et al. Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse apoCIII transgenic mice[J]. J Lipid Res, 1996,37(8):1802-1811.

    [30] Ito Y, Azrolan N, O'Connell A, et al. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice[J]. Science, 1990,249(4970):790-793.

    [31] Qu S, Perdomo G, Su D, et al. Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice[J]. J Lipid Res, 2007,48(7):1476-1487.

    [32] Pullinger CR, Aouizerat BE, Movsesyan I, et al. An apolipoprotein A-V gene SNP is associated with marked hypertriglyceridemia among Asian-American patients[J]. J Lipid Res, 2008,49(8):1846-1854.

    [33] Sharma V, Witkowski A, Witskowaski E, et al. Hypertriglyceridemia associated with the c.553G>T APOA-V SNP results from aberrant hetero-disulfide bond formation[J]. Arterioscler Thromb Vasc Biol, 2014,34(10):2254-2260.

    [34] Talmud PJ, Palmen J, Putt W, et al. Determination of the functionality of common APOA-V polymorphisms[J]. J Biol Chem, 2005,280(31):28215-28220.

    [35] Albers K, Schlein C, Wenner K, et al. Homozygosity for a partial deletion of apoprotein A-V signal peptide results in intracellular missorting of the protein and chylomicronemia in a breast-fed infant[J]. Atherosclerosis, 2014,233(1):97-103.

    [36] Pennacchio LA, Olivier M, Hubacek JA, et al. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels[J]. Hum Mol Genet, 2002,11(24): 3031-3038.

    [37] Priore Oliva C, Tarugi P, Calandra S, et al. A novel sequence variant in APOA-V gene found in patients with severe hypertriglyceridemia[J]. Atherosclerosis, 2006,188(1): 215-217.

    [38] Marcais C, Verges B, Charriere S, et al. ApoA-V Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment[J]. J Clin Invest, 2005,115(10),2862-2869.

    [39] [Calandra S, Priore Oliva C, Tarugi P, et al. APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency[J]. Curr Opin Lipidol, 2006,17(2):122-127.

    [40] Shu X, Nelbach L, Weinstein MM, et al. Intravenous injection of apolipoprotein A-V reconstituted high-density lipoprotein decreases hypertriglyceridemia in apoav-/-mice and requires glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1[J]. Arterioscler Thromb Vasc Biol, 2010,30(12):2504- 2509.

    [41] Sharma V, Beckstead JA, Simonsen JB, et al. Gene transfer of apolipoprotein A-V improves the hypertriglyceridemic phenotype of apoA-V (-/-) mice[J]. Arterioscler Thromb Vasc Biol, 2013,33(3):474-480.

    [42] Gaudet D, Méthot J, Déry S, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1- LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial[J]. Gene Ther, 2013,20(4):361-369.

    [43] Wierzbicki AS, Viljoen A. Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency[J]. Expert Opin Biol Ther, 2013,13(1):7-10.

    [44] McCown TJ, Xiao X, Li J, et al. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector[J]. Brain Res, 1996, 713(1-2):99-107.

    [45] Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adenoasso ciated virus vector[J]. J Virol, 1996,70(11):8098-8108.

    [46] Monahan PE, Samulski RJ, Tazelaar J, et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia[J]. Gene Ther, 1998,5(1):40-49.

    [47] Herzog RW, Yang EY, Couto LB, et al. Long-term correction of canine hemophilia B by gene transfer of blood coa gulation factor IX mediated by adeno-associated viral vector[J]. Nat Med, 1999,5(1):56-63.

    [48] Snyder RO, Miao C, Meuse L, et al. Correction of hemophilia B in canine and murine models using recombinant adenoassociated viral vectors[J]. Nat Med, 1999,5:64–70.

    [49] Cottard V, Mulleman D, Bouille P, et al. Adeno-asso ciated virus-medialed delivery of IL-4 prevents collagen- induced arthritis[J]. Gene Ther, 2000;7:1930–1939.

    [50] Li J, Wang D, Qian S, et al. Efficient and long-term intracardiac gene transfer in delta-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors[J]. Gene Ther, 2003;10:1807–1813.

    [51] Song S, Embury J, Laipis PJ, et al. Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adenoassociated virus (rAAV) vectors[J]. Gene Ther, 2001;8: 1299–1306.

    [52] Ye X, Rivera VM, Zoltick P, et al. Regulated delivery of ther apeutic proteins after in. vivo somatic cell gene transfer[J]. Science, 1999;283:88–91.

    [53] Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness[J]. Nat Genet, 2001;28:92–95.

    [54] Flotte TR. Recombinant adeno-associated virus vectors for cystic fibrosis gene therapy[J]. Curr Opin Mol Ther, 2001;3:497–502.

    [55] Thomas CE, Storm TA, Huang Z, et al. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors[J]. J Virol, 2004;78:3110–3122.

    ? Prof. Robert O. Ryan, Center for Prevention of Obesity, Diabetes and Cardiovascular Disease Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA. E-mail: rryan@chori.org.

    11 April 2015, Revised 06 June 2015, Accepted 05 September

    2015, Epub 20 October 2015

    R589.2, Document code: A

    The authors reported no conflict of interests

    97在线视频观看| 国产高清三级在线| 国产毛片在线视频| 午夜福利在线在线| 精品久久国产蜜桃| 国产精品久久久久久精品电影小说 | 久久久久久久国产电影| a级一级毛片免费在线观看| 夫妻性生交免费视频一级片| 久久精品国产自在天天线| 久久影院123| 男人和女人高潮做爰伦理| 美女高潮的动态| 成年女人在线观看亚洲视频| av网站免费在线观看视频| 少妇丰满av| 超碰av人人做人人爽久久| 99久久精品国产国产毛片| 久久久久性生活片| 中国美白少妇内射xxxbb| 国产免费一级a男人的天堂| 亚洲美女黄色视频免费看| 久久人人爽人人爽人人片va| 高清欧美精品videossex| 精品99又大又爽又粗少妇毛片| 久久久欧美国产精品| 在线天堂最新版资源| 3wmmmm亚洲av在线观看| 亚洲,一卡二卡三卡| 国产乱来视频区| 成人美女网站在线观看视频| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 国产成人免费无遮挡视频| a 毛片基地| 观看免费一级毛片| 精品熟女少妇av免费看| av又黄又爽大尺度在线免费看| 男男h啪啪无遮挡| 国产永久视频网站| 亚洲综合色惰| av女优亚洲男人天堂| 九九爱精品视频在线观看| 99国产精品免费福利视频| 亚洲精品自拍成人| 国产亚洲午夜精品一区二区久久| 国产 精品1| av在线老鸭窝| 天堂中文最新版在线下载| 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 精品99又大又爽又粗少妇毛片| 久久亚洲国产成人精品v| 午夜福利高清视频| 色哟哟·www| 大香蕉97超碰在线| 精品一区二区三卡| 我的老师免费观看完整版| 丰满人妻一区二区三区视频av| 久久97久久精品| 成年免费大片在线观看| 国产精品99久久久久久久久| 汤姆久久久久久久影院中文字幕| 精品久久久久久久久av| 久久久久网色| 午夜视频国产福利| 在线观看免费日韩欧美大片 | 久久国产乱子免费精品| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区国产| 免费看不卡的av| av网站免费在线观看视频| 男女边吃奶边做爰视频| 男人爽女人下面视频在线观看| 久久精品熟女亚洲av麻豆精品| 国产女主播在线喷水免费视频网站| 一级片'在线观看视频| 男人爽女人下面视频在线观看| 亚洲丝袜综合中文字幕| 男女边摸边吃奶| 国产精品爽爽va在线观看网站| 99热全是精品| 三级经典国产精品| 国产亚洲欧美精品永久| 国产美女午夜福利| 伦精品一区二区三区| 黄片无遮挡物在线观看| 亚洲,一卡二卡三卡| 亚洲精品乱码久久久v下载方式| .国产精品久久| 七月丁香在线播放| 乱系列少妇在线播放| 人人妻人人看人人澡| 久久久午夜欧美精品| 超碰av人人做人人爽久久| 久久久久精品性色| 欧美高清成人免费视频www| 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 涩涩av久久男人的天堂| 亚洲一区二区三区欧美精品| 亚洲色图综合在线观看| 亚洲人成网站高清观看| 久久久午夜欧美精品| 观看美女的网站| 久久久久久久国产电影| 成人毛片60女人毛片免费| 黑人猛操日本美女一级片| 人妻系列 视频| 久久久久久久久久成人| 日日撸夜夜添| 丝袜脚勾引网站| 午夜免费男女啪啪视频观看| 少妇丰满av| 18禁裸乳无遮挡免费网站照片| 精品久久久噜噜| 成人毛片60女人毛片免费| 伦理电影免费视频| 亚洲人成网站在线播| 国产高清不卡午夜福利| a级毛片免费高清观看在线播放| 久久99热6这里只有精品| 久久久久久久久久成人| 爱豆传媒免费全集在线观看| 久久精品久久久久久久性| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 久久 成人 亚洲| 91精品国产九色| 人人妻人人爽人人添夜夜欢视频 | 丝袜脚勾引网站| 在线播放无遮挡| 黄片wwwwww| 97在线视频观看| 大香蕉97超碰在线| 免费观看的影片在线观看| 内地一区二区视频在线| 又黄又爽又刺激的免费视频.| 亚洲欧美成人精品一区二区| 免费人妻精品一区二区三区视频| 午夜日本视频在线| 欧美一区二区亚洲| 国产 一区 欧美 日韩| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美成人综合另类久久久| 日本爱情动作片www.在线观看| 国产在线一区二区三区精| 人妻制服诱惑在线中文字幕| 久久久久久九九精品二区国产| 国产成人精品婷婷| 夜夜骑夜夜射夜夜干| 夜夜爽夜夜爽视频| 男女免费视频国产| 搡老乐熟女国产| 韩国av在线不卡| av专区在线播放| 国产精品成人在线| 久久99热这里只频精品6学生| 久久精品国产亚洲av天美| 国产成人一区二区在线| 亚洲av欧美aⅴ国产| 免费人妻精品一区二区三区视频| 亚洲自偷自拍三级| 久久久久精品性色| 80岁老熟妇乱子伦牲交| 边亲边吃奶的免费视频| 欧美另类一区| 精品亚洲乱码少妇综合久久| 国产熟女欧美一区二区| 国产精品女同一区二区软件| 水蜜桃什么品种好| 日本黄色日本黄色录像| 国产av码专区亚洲av| 麻豆国产97在线/欧美| 建设人人有责人人尽责人人享有的 | 日本av手机在线免费观看| 精品一区二区三区视频在线| 国产淫语在线视频| 精华霜和精华液先用哪个| 免费大片18禁| 久久久久久人妻| 欧美激情极品国产一区二区三区 | 精品少妇久久久久久888优播| 亚洲精品乱码久久久v下载方式| 国产在线免费精品| 搡女人真爽免费视频火全软件| 国产精品熟女久久久久浪| 成人美女网站在线观看视频| 又大又黄又爽视频免费| 中文字幕精品免费在线观看视频 | 哪个播放器可以免费观看大片| 精品一区在线观看国产| 极品少妇高潮喷水抽搐| 欧美区成人在线视频| 五月伊人婷婷丁香| 高清欧美精品videossex| 久久久久久久亚洲中文字幕| 久久国产乱子免费精品| 亚洲国产最新在线播放| 国产日韩欧美亚洲二区| 亚洲熟女精品中文字幕| 嫩草影院新地址| 精品亚洲成a人片在线观看 | 麻豆乱淫一区二区| 伦精品一区二区三区| 国产极品天堂在线| 卡戴珊不雅视频在线播放| 国产久久久一区二区三区| 欧美激情极品国产一区二区三区 | 九色成人免费人妻av| 成年人午夜在线观看视频| 久久久久久久久久成人| 搡女人真爽免费视频火全软件| 好男人视频免费观看在线| 男女无遮挡免费网站观看| 在线天堂最新版资源| 亚州av有码| 性色avwww在线观看| 久久毛片免费看一区二区三区| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| 简卡轻食公司| 精品视频人人做人人爽| 免费人妻精品一区二区三区视频| av女优亚洲男人天堂| 秋霞伦理黄片| 国产黄频视频在线观看| 国产免费视频播放在线视频| 蜜桃亚洲精品一区二区三区| 大话2 男鬼变身卡| 欧美另类一区| 精品99又大又爽又粗少妇毛片| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 麻豆成人午夜福利视频| 精品一品国产午夜福利视频| 久久久午夜欧美精品| 亚洲国产精品一区三区| 亚洲精品中文字幕在线视频 | 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 国产毛片在线视频| 黑人猛操日本美女一级片| 少妇熟女欧美另类| 国产在线男女| 婷婷色综合大香蕉| 久久久久人妻精品一区果冻| 在线亚洲精品国产二区图片欧美 | 国产男女内射视频| 直男gayav资源| 黑丝袜美女国产一区| 国产精品偷伦视频观看了| 超碰av人人做人人爽久久| 成人二区视频| 国产精品一区二区三区四区免费观看| 国产黄色免费在线视频| 午夜免费鲁丝| 国产久久久一区二区三区| 1000部很黄的大片| 欧美性感艳星| 日韩在线高清观看一区二区三区| 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片| 你懂的网址亚洲精品在线观看| 亚洲av福利一区| 亚洲av免费高清在线观看| 亚洲国产日韩一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久国内精品自在自线图片| 人妻一区二区av| 欧美日韩精品成人综合77777| 欧美精品亚洲一区二区| 在线播放无遮挡| 亚洲欧美日韩无卡精品| 日韩欧美精品免费久久| 久久精品熟女亚洲av麻豆精品| 天堂中文最新版在线下载| 啦啦啦视频在线资源免费观看| 亚洲精品国产av蜜桃| 成人免费观看视频高清| 国产精品偷伦视频观看了| 好男人视频免费观看在线| 国产成人精品一,二区| 亚洲精品aⅴ在线观看| 18禁在线播放成人免费| 另类亚洲欧美激情| 又大又黄又爽视频免费| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | 大陆偷拍与自拍| 99久久中文字幕三级久久日本| 国产 精品1| 人妻一区二区av| 国产精品欧美亚洲77777| 人妻系列 视频| 黄色一级大片看看| 五月玫瑰六月丁香| 免费看av在线观看网站| 国产黄频视频在线观看| 亚洲精品国产av成人精品| 日韩在线高清观看一区二区三区| 日本wwww免费看| 韩国av在线不卡| 在线精品无人区一区二区三 | 亚洲国产精品成人久久小说| 亚洲av成人精品一区久久| 中文资源天堂在线| 一区二区av电影网| 亚洲国产精品成人久久小说| 黄色日韩在线| 久久97久久精品| 国产日韩欧美亚洲二区| 汤姆久久久久久久影院中文字幕| 91精品国产国语对白视频| 日日摸夜夜添夜夜添av毛片| 五月伊人婷婷丁香| 精品一区二区三区视频在线| 久久人妻熟女aⅴ| 久久久久人妻精品一区果冻| 久久久久久久国产电影| 国产免费一级a男人的天堂| 婷婷色综合www| 国产成人午夜福利电影在线观看| 视频区图区小说| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 一区二区三区乱码不卡18| a级一级毛片免费在线观看| 亚洲av中文av极速乱| 日韩欧美精品免费久久| 成年女人在线观看亚洲视频| 26uuu在线亚洲综合色| 亚洲欧美清纯卡通| 亚洲欧美日韩东京热| 亚洲精品国产色婷婷电影| 中文字幕免费在线视频6| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 日韩电影二区| 一级毛片电影观看| 午夜精品国产一区二区电影| 中文天堂在线官网| av国产精品久久久久影院| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 久久久色成人| 国产精品一区二区三区四区免费观看| 国产男人的电影天堂91| 蜜桃久久精品国产亚洲av| 欧美日韩视频精品一区| 在现免费观看毛片| 国产在线视频一区二区| 亚洲国产欧美在线一区| 精品久久久噜噜| 国产真实伦视频高清在线观看| 亚洲精品国产av成人精品| 日韩在线高清观看一区二区三区| 18禁在线播放成人免费| 久久国产精品男人的天堂亚洲 | 久久女婷五月综合色啪小说| 九色成人免费人妻av| 99热这里只有是精品50| 亚洲精品日韩av片在线观看| 狂野欧美激情性bbbbbb| h日本视频在线播放| 97在线视频观看| 国产欧美日韩一区二区三区在线 | 亚洲精品中文字幕在线视频 | h视频一区二区三区| 日韩中字成人| 水蜜桃什么品种好| 欧美最新免费一区二区三区| 最新中文字幕久久久久| 成人二区视频| 国产黄色免费在线视频| av在线播放精品| 国产精品一区二区三区四区免费观看| 久久久精品94久久精品| 一个人免费看片子| 久久精品国产自在天天线| 免费观看性生交大片5| 亚洲在久久综合| 午夜激情久久久久久久| 美女视频免费永久观看网站| 成人毛片a级毛片在线播放| 国产淫片久久久久久久久| 国产成人精品福利久久| 国产精品女同一区二区软件| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 亚洲精品456在线播放app| 两个人的视频大全免费| 一区二区三区免费毛片| 国产一区有黄有色的免费视频| 爱豆传媒免费全集在线观看| 99久久人妻综合| 少妇人妻久久综合中文| 亚洲国产成人一精品久久久| 久久久久久伊人网av| 亚洲精品456在线播放app| 3wmmmm亚洲av在线观看| 三级国产精品片| 久久人妻熟女aⅴ| 男人爽女人下面视频在线观看| 五月开心婷婷网| 中国国产av一级| 99久久人妻综合| 十分钟在线观看高清视频www | 美女主播在线视频| 国产精品熟女久久久久浪| 免费av不卡在线播放| 伦理电影免费视频| 青春草视频在线免费观看| 永久免费av网站大全| 亚洲欧美中文字幕日韩二区| 久久久久久久久久人人人人人人| 亚洲精品久久午夜乱码| h日本视频在线播放| 在线观看美女被高潮喷水网站| 亚洲三级黄色毛片| 草草在线视频免费看| 高清在线视频一区二区三区| 国产精品偷伦视频观看了| 老司机影院成人| 国产欧美亚洲国产| 成人特级av手机在线观看| 91狼人影院| 亚洲内射少妇av| 一个人免费看片子| 91久久精品国产一区二区三区| 国产成人精品一,二区| 黄片wwwwww| 亚洲欧美日韩另类电影网站 | 不卡视频在线观看欧美| 女人十人毛片免费观看3o分钟| 亚洲成色77777| 春色校园在线视频观看| 日韩一本色道免费dvd| 色视频www国产| 一区在线观看完整版| 亚洲精品第二区| 亚洲一区二区三区欧美精品| 亚洲国产成人一精品久久久| 亚州av有码| 少妇的逼水好多| 欧美性感艳星| 男女无遮挡免费网站观看| 一本色道久久久久久精品综合| 久久av网站| 人人妻人人添人人爽欧美一区卜 | 99热6这里只有精品| 全区人妻精品视频| 亚洲aⅴ乱码一区二区在线播放| 美女脱内裤让男人舔精品视频| 亚洲国产最新在线播放| 亚洲色图av天堂| av不卡在线播放| 肉色欧美久久久久久久蜜桃| 国产精品一区www在线观看| 永久免费av网站大全| 建设人人有责人人尽责人人享有的 | 26uuu在线亚洲综合色| 国产日韩欧美亚洲二区| 日本wwww免费看| 亚洲人成网站在线播| 免费高清在线观看视频在线观看| 国产成人aa在线观看| 亚洲欧美一区二区三区黑人 | 中国美白少妇内射xxxbb| 日本色播在线视频| 美女内射精品一级片tv| 在线观看免费视频网站a站| 街头女战士在线观看网站| 丰满乱子伦码专区| 午夜精品国产一区二区电影| 精品国产一区二区三区久久久樱花 | 国产 一区 欧美 日韩| 午夜日本视频在线| av在线播放精品| 国产色爽女视频免费观看| av网站免费在线观看视频| 日韩成人av中文字幕在线观看| 国产亚洲av片在线观看秒播厂| www.av在线官网国产| 高清日韩中文字幕在线| 国产精品99久久99久久久不卡 | 亚洲精品国产色婷婷电影| 亚洲av不卡在线观看| 亚洲av综合色区一区| 久久久久久久国产电影| 在线亚洲精品国产二区图片欧美 | 91精品一卡2卡3卡4卡| 国产精品人妻久久久久久| 亚洲综合色惰| 18禁裸乳无遮挡免费网站照片| 亚洲精品456在线播放app| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| 久久午夜福利片| 尤物成人国产欧美一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲高清免费不卡视频| 秋霞伦理黄片| 国产一区二区三区av在线| 婷婷色综合www| 日韩成人伦理影院| 国产精品av视频在线免费观看| 啦啦啦中文免费视频观看日本| 直男gayav资源| 交换朋友夫妻互换小说| 亚洲国产最新在线播放| 嘟嘟电影网在线观看| 国产熟女欧美一区二区| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 男的添女的下面高潮视频| 男人爽女人下面视频在线观看| 欧美激情国产日韩精品一区| 一本色道久久久久久精品综合| 久久久久久久亚洲中文字幕| 3wmmmm亚洲av在线观看| 男人狂女人下面高潮的视频| 日本黄大片高清| 亚洲国产色片| 夫妻性生交免费视频一级片| 欧美日韩国产mv在线观看视频 | 成人免费观看视频高清| 美女内射精品一级片tv| 欧美日本视频| 又大又黄又爽视频免费| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 黄色怎么调成土黄色| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说| 一边亲一边摸免费视频| 久久婷婷青草| 久久久成人免费电影| 我要看黄色一级片免费的| 天堂中文最新版在线下载| 久久6这里有精品| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 精品亚洲成国产av| 97超视频在线观看视频| 欧美3d第一页| 国内少妇人妻偷人精品xxx网站| 狂野欧美白嫩少妇大欣赏| 精品酒店卫生间| 一级毛片久久久久久久久女| 亚洲国产日韩一区二区| 国产亚洲最大av| 免费黄网站久久成人精品| 国产在线免费精品| 久久久精品94久久精品| 日本黄色片子视频| 亚洲欧美一区二区三区黑人 | 欧美最新免费一区二区三区| 午夜老司机福利剧场| 亚洲欧美一区二区三区黑人 | 高清av免费在线| 国产在线男女| 超碰av人人做人人爽久久| 赤兔流量卡办理| 18禁在线播放成人免费| 国产精品一区二区三区四区免费观看| av免费在线看不卡| 亚洲图色成人| 精品久久久久久电影网| 国产精品伦人一区二区| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 国产爱豆传媒在线观看| 欧美成人一区二区免费高清观看| av.在线天堂| 天天躁日日操中文字幕| 大陆偷拍与自拍| 国产精品久久久久久av不卡| 国产精品久久久久久久电影| 国产高清有码在线观看视频| 网址你懂的国产日韩在线| 午夜免费鲁丝| 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 国产精品人妻久久久久久| 日韩成人av中文字幕在线观看| 赤兔流量卡办理| 色哟哟·www| 99re6热这里在线精品视频| 欧美性感艳星| 亚洲成色77777| 久久97久久精品| 国产精品99久久久久久久久| 亚洲成人手机| 国产精品.久久久| 国产免费一区二区三区四区乱码| 九草在线视频观看| 欧美日韩视频高清一区二区三区二| 看十八女毛片水多多多| 啦啦啦中文免费视频观看日本| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件| 亚洲av不卡在线观看| 成人国产av品久久久| 日本wwww免费看| 国产精品99久久99久久久不卡 | 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 亚洲精品国产成人久久av| 国产伦理片在线播放av一区| 国产亚洲最大av|