• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    山西市場動物飼料中轉基因成分的檢測

    2016-12-12 05:02:58袁建琴常泓趙江河唐中偉史宗勇王俊東
    生物工程學報 2016年11期
    關鍵詞:太谷定性農(nóng)業(yè)部

    袁建琴,常泓,趙江河,唐中偉,史宗勇,王俊東

    1 山西農(nóng)業(yè)大學 生命科學學院,山西 太谷 030801 2 山西農(nóng)業(yè)大學 動物科技學院,山西 太谷 030801

    山西市場動物飼料中轉基因成分的檢測

    袁建琴1,常泓1,趙江河1,唐中偉1,史宗勇1,王俊東2

    1 山西農(nóng)業(yè)大學 生命科學學院,山西 太谷 030801 2 山西農(nóng)業(yè)大學 動物科技學院,山西 太谷 030801

    袁建琴, 常泓, 趙江河, 等. 山西市場動物飼料中轉基因成分的檢測. 生物工程學報, 2016, 32(11): 1576?1589.

    Yuan JQ, Chang H, Zhao JH, et al. Detection of transgenic components in animal feeds on Shanxi markets. Chin J Biotech, 2016, 32(11): 1576?1589.

    為了評估轉基因玉米和大豆在山西動物飼料市場的占有率和標識情況,采用改良十六烷基三甲基溴化銨法(Hexadecyltrimethy ammonium bromide, CTAB) 提取山西市場抽取的30份雞和豬飼料,通過定性PCR打包篩查,對檢測陽性結果打包飼料拆包并檢測CaMV 35S啟動子、NOS終止子、玉米內標zSSIIb、大豆內標Lectin和CryIA (b)基因。同時檢測玉米和大豆轉化體事件MON810和GTS40-3-2。結果表明,83.3%的飼料含有轉基因成分。所抽取的玉米、大豆、豬飼料和雞飼料轉基因成分陽性率分別為6.67%、100%、93.3%和73.3%。實時熒光定量PCR檢測結果與定性PCR一致。結果提示,雞和豬飼料中轉基因成分在山西市場的占有率較高。

    商業(yè)化雞飼料,商業(yè)化豬飼料,轉基因玉米,轉基因大豆,定性PCR,實時熒光定量PCR,轉化體事件MON810和GTS40-3-2

    Introduction

    By gene modification technique, compositions of plants, animals or microorganisms were altered to gain new characteristics, such as insect resistance, herbicide tolerance, modified nutritional composition or an enhanced shelf life, we call them genetically modified organisms (GMOs)[1-2]. Roundup ReadyTMsoybean (RRS) was firstly produced by the Monsanto Company in Canada in 1996, which was approved for consumption[3-4]. According to the final reports of 2014, the planting of GM crops worldwide had reached 181.5 million hectares and constantly increased 106-fold since that first crop in global area[5-6]. Although GMOs had many advances, consumer had very strong reaction[3]. In China, regulations have come into force, which are the labeling and traceability of GM food. The regulations stipulate the requirement of labeling containing GM material, such as soybean seed, soybean flour, soybean, soybean oil, soybean meal, maize seeds, maize, maize oil and maize flour etc[7]. To comply with the requirements of legislation, usually reliable and practical detection methods is required[1,8-13]. Before either GMO quantification or event identification, the starting point of GMO detection is generally evaluation of the screening method[2,14]. Most of the PCR screening methods usually are to detect either CaMV 35S promoter (the cauliflower mosaic virus) or NOS terminator (the nopaline synthase) or both, because most GM products contain two or one of these sequences[8,15]. ZSSIIb for maize and Lectin for soybean are species-specific PCR testing genes, which arepresent in both GM and non GM maize and soybean. For discrimination between non-approved and approved traits, event-specific PCR methods are used to identify the GMO event (for example GTS40-3-2 and MON810). PAT (Phosphinothricin acetyltransferase) gene mediates tolerance to the herbicide phosphinotricin (glufosinate). A number of soil bacteria naturally possess the PAT gene. Transgenic plants expressing the PAT gene are able to degrade the herbicide agent phospinotricin (glufosinate). BAR gene coding for phosphinothricin acetyltransferase had been isolated from Bacillus amylolique facions. PAT and BAR genes are widely used as selective markers for the transformation of higher plants. CryIA(b) gene is a synthetic gene encoding the 648 amino acids, insecticidal-active truncated product identical to CryIA(b) gene of Bacillus thuringiensis subsp (General Administration of Qality Spervision, Ispection and Quarantine of the People's Republic of China, SN/T 1202-2003).

    Because GMOs have the worldwide high production and fairly uncertain of the current status of the foods, people pay particular attention to them. Soybean and maize were chosen because they were the staple constituents of feed[8,16]. The study objective was to determine the ratio of GM-containing soybean and maize feed obtained from local feed manufacturer and retail shops in Shanxi of China in 2015.

    1 Materials and methods

    1.1 Feed

    Thirty soybean- and maize-containing feeds were purchased from 24 random local retail shops (20 feed manufacturers) in Shanxi of China in May 2015. In the 30 feeds (serial number: 01-30, there were layer feed and pig feed in three periods. Every period there were five different feed manufacturers or brands). In different periods, 5 kinds of feed manufacturers (brand) might be overlapping or different.), 15 layer feeds (including adding concentrate), accounted for about 50.0% of the total feeds, 15 pig feeds accounted for about 50% of the total feeds (Table 1).

    1.2 Qualitative PCR

    1.2.1 Reference materials

    Certified reference samples (CRS) (GTS40-3-2 1% soybean flour, MON810 1% maize flour and flour mixture -Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour), which were provided by the science and technology development center of China’s ministry of agriculture, were used as the positive controls in the study.

    1.2.2 DNA extraction

    For DNA isolation from feed and CRS, an improved version of the cetyltrimethyl ammonium bromide (CTAB) method was used. The collected DNA quantification (concentration and purity) was achieved by measuring the UV absorption at 260 nm and 280 nm using a biophotometer (Eppendorf.AG, Germany) and stored at -20 ℃ until used.

    Table 1 The composition of feed

    1.2.3 PCR primers

    The CaMV 35S promoter and the NOS terminator for amplifying the specific DNA sequences were used for the GMO screening of the products[17]. The amplification of extracted DNA was verified using plant-specific primers targeting the zSSIIb for maize, the Lectin for soybean, specific sequences present in MON 810 event and RRS (GTS40-3-2) for specific GMO detection[18-19]. Primers for amplifying CryIA(b),BAR and PAT genes were used[20-21]. The primer names, orientation, sequences and length synthesized by TAKARA BIOTECHNOLOGY (Dalian, China) in the study were summarized in Table 2.

    Table 2 The primers used in the study

    Table 3 Real-time PCR primer sequences

    1.3 Real-time PCR of feed samples

    1.3.1 Reference materials

    Certified reference material (CRM) (Soya seed powder-GTS40-3-2 Soya (10%), Catalog Number: ERM-BF410GK, IRMM).

    1.3.2 PCR primers

    The names, orientation, sequences and length of the primer and probe (synthesized by TAKARA BIOTECHNOLOGY, Dalian, China) were summarized in Table 3[17,22]. The amplificationswere performed with using Code NO. RR390A from TAKARA BIOTECHNOL (Dalian, China).

    1.3.3 Calculating transformant content

    The experiment observed and analyzed standard curve and amplification curve, calculated transformant content.

    2 Results and discussion

    2.1 Concentration and purity of DNA

    In our study, an appropriate quality and quantity of DNA could be extracted from the feed samples using the improved CTAB method (Fig. 1). The date showed that DNA concentration and purity (A260/A280) extracted by improved CTAB method ranged from 120.9 μg/mL to 778.3 μg/mL and 1.7 to 1.99, respectively. The results showed that improved CTAB method gave sufficient yield of DNA.

    In order to isolate DNA from feeds with different components of GMOs, the improved CTAB were used (Fig. 1). According to the characteristics of the feed production and processing steps in the traditional, the CTAB method was simplified, reagents used commonly in laboratory could be done. Compared to the (high) cost of the kit (40 RMB per time), the cost of the improved CTAB method was 2 RMB per time. Simultaneously, the improved CTAB method could reduce the extraction time of the kit method by at least 50 min. With the improved CTAB method, successful species-specific PCR testing (zSSIIb for maize and Lectin for soybean) and high amplification success rate were achieved with 30 different kinds of feeds extracts just one time, which confirmed that these extracts contained a sufficient amount of amplifiable DNA. In our work, the improved CTAB method was more effective and less time-consuming in comparison with the existing kit methods for isolation of DNA from plant-derived foods and feed.

    Fig. 1 The concentration and purity of DNA extracted from feeds. The graph A and B respectively on behalf of concentration and purity of DNA extracted from feeds; 01-30: 01-30 feed samples.

    2.2 Screening of GMOs by packing feeds

    The 30 feeds mentioned above were packaged as 5 packages (6 samples in each package) for detecting by the CaMV 35S promoter, NOS terminator, CryIA(b), BAR and PAT genes by PCR, all DNA of feeds were run in duplicate. A 195 bp fragment (CaMV 35S promoter) was detected in all 5 packages feeds produced through PCR amplification. Through the process of detecting, feeds of 5 packages gave 180 bp positive amplification signal of NOS gene. Both packed feeds 01-06, 19-24 amplified 146 bp CryIA(b) gene signal. The target fragments of BAR (175 bp) and PAT (191 bp) genes could not be detected in all feeds (Fig. 2).

    2.3 Specific gene detection of GMOs

    According to the results, the positive-packed feeds were subsequently unpacked and detected by CaMV 35S promoter, NOS terminator, CryIA(b), Lectin and zSSbⅡ genes. All DNA of feeds were run in duplicate excepting for zSSbⅡ gene (simple sample).

    2.3.1 CaMV 35S promoter PCR

    30 feed samples were detected by CaMV 35S promoter. 01-23, 25-26 feed samples gave 195 bp positive amplification signal (Fig. 3).

    2.3.2 NOS terminator PCR

    01-30 feed samples were detected by NOS terminator. 180 bp fragment of NOS terminator for 01-18, 20-23 and 25-26 feed samples were produced through PCR amplification (Fig. 4).

    2.3.3 CryIA(b) gene PCR

    01-30 feed samples were detected by CryIA(b) gene. The target fragments of CryIA(b) gene could be detected in 03 and 19 feeds (Fig. 5).

    2.3.4 Lectin gene PCR

    01-30 feed samples were detected by Lectin gene. 01-18, 20-23, 25-26 feeds gave 118 bp positive amplification signal of Lectin gene (Fig. 6).

    2.3.5 ZSSIIb gene PCR

    The 30 feed samples (01-30) were unpacked for detecting by the zSSIIb gene. The target fragments of 88 bp zSSIIb gene could be detected in all feed (Fig. 7).

    2.4 Event-specific qualitative PCR

    According to the results, the positive feeds were unpacked and detected by specific MON810 and GTS40-3-2 events.

    2.4.1 GTS40-3-2 event PCR

    The 24 positive feeds (01-18, 20-23 and 25-26) containing soybean (Lectin gene) were detected for the presence of specific GM GTS40-3-2 event. All these feeds gave 370 bp positive amplification signal of GTS40-3-2 (Fig. 8). DNA of feeds were run in single sample.

    Fig. 2 The electrophoregram of CaMV 35S, NOS, CryIA(b), BAR and PAT genes of packing feeds. The electrophoregram A, B, C, D and E respectively on behalf of detecting CaMV35S, NOS, CryIA(b), BAR and PAT genes; 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 3 The electrophoregram of CaMV 35S promoter. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 4 The electrophoregram of NOS terminator. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 5 The electrophoregram of CryIA(b) gene. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 6 The electrophoregram of Lectin gene of 01-30 feed samples. 01-30: 01-30 feed samples; PC: GTS40-3-2 event flour; NC: negative sample (soybean flour) and BL: ultrapure water, M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 7 The electrophoregram of zSSbⅡ gene. 01-30: 01-30 feed samples; positive control (PC): Bt176 1%, Bt11 1% and kefeng6 1% positive sample mixture flour; negative control (NC): negative sample (maize flour); blank (BL): ultrapure water, respectively; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    Fig. 8 The electrophoregram of GTS40-3-2. 1-12 lanes: 01-12 feed samples; 17-28 lanes: 13-18, 20-23, 25-26 feed samples; 13-14, 29-30 lanes: GTS40-3-2 positive sample flour; 15, 31 lanes: negative sample (soybean flour); 16, 32 lanes: ultrapure water; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    2.4.2 MON810 event PCR

    Feeds (03 and 19) were detected by MON810 event. By detecting, 106 bp amplification signal of MON810 was produced for both feeds (Fig. 9). DNA of feeds was run in triple.

    Fig. 9 The electrophoregram of MON810 of 03 and 19 feed samples. 1-3 lanes: 03 feed sample; 4-6 lanes: 19 feed sample; 7-8 lanes: MON810 1% positive sample flour; 9 lane: negative sample (maize flour); 10 lane: ultrapure water; M: DL2 000 marker (2 000 bp, 1 000 bp, 750 bp, 500 bp, 250 bp, 100 bp).

    2.5 The summary of detecting results of feeds

    In 30 feeds, 25 feeds contained GM ingredients. 01-02, 04-18, 20-23, 25-26 feeds contained CaMV 35S promoter, NOS terminator, GTS40-3-2 event, zSSIIb and Lectin genes. 03 feed contained CaMV 35S promoter, NOS terminator, MON810 event,zSSIIb, Lectin and CryIA(b) genes. 19 feed contained CaMV 35S promoter, MON810 event, zSSIIb and CryIA(b) genes. 24, 27-30 feeds were non GM, only contained zSSIIb (Fig. 10). The overall results of GMO screening of 5 packed feeds were 100% for CaMV 35S promoter, 100% for NOS terminator, 20% for CryIA(b) and 0% for BAR gene and PAT gene. The detecting results of 30 feed samples showed that 83.3% of the feeds were tested positive for GMOs, in which positive rates of maize, soybean, pig and layer feeds were 6.67%, 100%, 93.3% and 73.3%, respectively. In conclusion, commercialized GM feed had a wide positive product scope in Shanxi province of China. The composition and positive rate of feeds were as shown (Fig. 11).

    Fig. 11 The composition and positive rate of 30 feed samples.

    2.6 Real-time PCR of feed samples

    According to the qualitative results, 24 feed samples of containing genes of Lectin and GTS40-3-2 were detected by real-time PCR.

    2.6.1 Lectin gene real-time PCR

    The quantitative results of Lectin gene from identified 24 feeds DNA were presented in Fig. 12 and Fig. 13. The obtained real-time PCR results were according to those requirements since the correlation coefficient (R2) of standard curves was, generally, ≥ 0.98, while PCR efficiencies ranged, on average, from 93.9% to 100.6%, indicating the adequacy of the standard curves for quantification. In Fig.12, standard of Lectin gene had a typical amplification curve. Amplification efficiency was 98.0%, R2of standard curves was 0.984>0.98, slope of standard curve was -3.370>-3.6 and <-3.1, indicating the adequacy of the standard curves for quantification. In Fig. 13, negative control (salmon sperm DNA) and blank control (water) had not typical amplification curve of Lectin gene, the DNA of all feed samples in Lectin gene amplification curve appeared typical amplification curve. In amplification results (generated by the Excel table), Ct values and copy numbers of all feed samples were in Table 4.

    Fig. 12 Lectin gene standard curve.

    Fig. 13 Lectin gene amplification curve.

    Table 4 The Ct value and copy number of Lectin gene from 24 feed samples

    2.6.2 GTS40-3-2 gene real-time PCR

    The quantitative results of special event GTS40-3-2 gene from identified 24 feeds DNA were presented in Fig. 14 and Fig. 15. In Fig. 14, standard of GTS40-3-2 gene had a typical amplification curve. Amplification efficiency was 99.9%, R2of standard curves was 0.988>0.98, slope of standard curve was -3.324>-3.6 and <-3.1, indicating the adequacy of the standard curves for quantification. In Fig. 15, negative control (salmon sperm DNA) and blank control (water) had not typical amplification curve of GTS40-3-2, the DNA of all feed samples in GTS40-3-2 gene amplification curve appeared typical amplification curve. In amplification results (generated by the Excel table), Ct values and copy numbers of all feed samples were in Table 5.

    2.6.3 The content of the special event GTS40-3-2 in the feeds

    The content of the special event GTS40-3-2 in the feeds was calculated according to the following formula:

    nGTS40-3-2was copy number of GTS40-3-2 gene, nLectinwas copy number of Lectin gene. The GTS40-3-2 transformant content of feed samples was in Table 6.

    Fig. 14 GTS40-3-2 gene standard curve.

    Fig. 15 GTS40-3-2 gene amplification curve.

    Table 5 The Ct value and copy number of GTS40-3-2 gene from 24 feed samples

    Table 6 The GTS40-3-2 transformant content of 24 feed samples

    In our study, all 30 feeds were packed (6 feeds of each package) and screened, 5 packages (100%) were determined to be positive for two or three of the novel sequences which indicated the presence of GMOs. The dispersion of these positive packed feeds within soybean and maize were as follows: 25 of the 30 total (83.3%) detected all feeds, 11 of the 15 total (73.3%) detected layer feeds, 14 of the 15 total (93.3%) detected pig feeds were positive (Fig. 11). All 30 feeds contained maize composition, 2 of 30 feeds (6.7%) which were layer feeds were positive of MON810. 30 feeds had 24 feeds containing soybean composition, 24 feeds (10 for chicken feed, 14 for pig feed) containing soybean (100%) tested positive for GTS40-3-2 event, that came mostly from soybean meal of oil residue from imported soybean. Layer feeds had 2 positive feeds of MON810 event, pig feeds had not been detected positively for the composition of MON810 event. The data showed maize sources varied in different feed manufacturers. The ratio of positive feed containing layer feed seemed to be lower than that of the pig feed, which was a different result than was expected. In fact, there were 4 concentrate supplements of layer feeds including DDGS protein feed, dry maize lees protein feed and shoetree maize husk powder and maize feed (raw material-layer), which were also included in the layer feeds. According to the test results, a positive rate of transgenic maize in feed was very low in the market of Shanxi. The results in which we did not detect genetically modified ingredients in these concentrate supplement were also normal. In this study, positive feeds only had one feed (soybean meal) marked as“genetically modified” composition; genetically modified product identification rate was only 3.33%. Furthermore, we also found that on the identified feed products’ packaging logo, the font was very small and hard to recognize.

    Amplification of the maize-specific zSSbⅡsequence in 30 feeds and the soybean-specific Lectin sequence in 24 feeds confirmed that the feeds containing 5 negative feeds and 1 positive feed were negative for Lectin, which indicated that these feeds did not contain soybean DNA. The above mentioned 24 CaMV 35S and/or 23 NOS positive soybean feeds were analyzed for RRS and all of them gave positive amplification signal (GTS40-3-2 event) (Fig. 8). The other 2 positive feed samples containing CryIA(b) were screened for the presence of specific GM maize events. For this purpose, PCR detections of specific sequences of MON 810 event (containing zSSIIb, CaMV 35S, CryIA(b) and MON 810 genes) was performed (Fig. 9). 03 and 19 positive feeds (containing zSSIIb, CaMV 35S, CryIA(b) and MON810) were identified as containing MON810 event. The results of our study showed that 1 feed (19) was negative for the NOS terminator while positive for the CaMV 35S promoter (maize containing feed). In our study, the NOS negative feed was determined to be MON810 maize feed and thus confirmed that the feed was true positive although they did not give any amplification signal with the NOS. In case of maize, it could also be related to the lack of the NOS terminator common inseveral maize events, for example MON810. Similarly, detection of both the CaMV 35S and the NOS sequences in another feed (03) confirmed the GM maize MON810 event (containing CaMV 35S) and GM soybean GTS40-3-2 event (containing NOS) presence.

    By real-time PCR, 24 feed samples of containing genes of Lectin and GTS40-3-2 were detected. The results showed that they contained different content of GTS40-3-2 transformant (0.05%-4.70%, Table 6). The results were consistent with qualitative PCR (Fig. 10).

    In this study, we demonstrated that many layer and pig feeds containing GM GTS40-3-2 event and a small number of layer feeds containing GM MON810 event were sold commercially in Shanxi of China.

    REFERENCES

    [1] Greiner R, Konietzny U. Presence of genetically modified maize and soy in food products sold commercially in Brazil from 2000 to 2005. Food Control, 2008, 19(5): 499-505.

    [2] Arun ??, Y?lmaz F, Murato?lu K. PCR detection of genetically modified maize and soy in mildly and highly processed foods. Food Control, 2013, 32(2): 525-531.

    [3] Ujhelyi G, Vajda B, Béki E, et al. Surveying the RR soy content of commercially available food products in Hungary. Food Control, 2008, 19(10): 967-973.

    [4] Fernandes TJR, Amaral JS, Oliveira MBPP, et al. A survey on genetically modified maize in foods commercialised in Portugal. Food Control, 2014, 35(1): 338-344.

    [5] James C. Global status of commercialized Biotech/GM crops: 2014. ISAAA Brief No. 47. Ithaca, NY: ISAAA, 2014.

    [6] Huang DF. Review of transgenic crop breeding in China. Chin J Biotech, 2015, 31(6): 892-900 (in Chinese).黃大昉. 我國轉基因作物育種發(fā)展回顧與思考.生物工程學報, 2015, 31(6): 892-900.

    [7] Ministry of Agriculture of the People's Republic of China. Chinese Agriculture Department Public Announcement No.10-2002 Agricultural genetically modified organism’s identity management measures [EB/OL]. [2010-07-15]. http://www.moa.gov.cn/ztzl/zjyqwgz/zcfg/201007/t 20100717_1601302.htm.

    [8] Forte VT, Di Pinto A, Martino C, et al. A general multiplex-PCR assay for the general detection of genetically modified soya and maize. Food Control, 2005, 16(6): 535-539.

    [9] Zhu YZ. Study on transgenic detection with PCR and feeding safety of glyphosate-tolerant soybeans [D]. Beijing: China Agricultural University, 2004 (in Chinese).朱元招. 抗草甘膦大豆轉基因PCR檢測及其飼用安全研究 [D]. 北京: 中國農(nóng)業(yè)大學, 2004.

    [10] Zhu YZ, Yin JD, Li DF, et al. Study on metabolism of exogenous DNA from transgenic soybean meal in grower pigs. Acta Vet Zootech Sin, 2005, 36(10): 1083-1086 (in Chinese).朱元招, 尹靖東, 李德發(fā), 等. 生長豬對轉基因豆粕外源DNA的代謝研究. 畜牧獸醫(yī)學報, 2005, 36(10): 1083-1086.

    [11] Zhao ZH, Yang LT, Ai XJ, et al. Analysis of the influence on physiological metabolism and genetic horizontal transformation of rats fed roundup ready soybean meal. J Nanjing Agr Univ, 2006, 29(1): 77-80 (in Chinese).趙志輝, 楊立桃, 艾曉杰, 等. 轉基因抗草苷膦大豆對大鼠生理代謝的影響及外源基因水平轉移研究. 南京農(nóng)業(yè)大學學報, 2006, 29(1): 77-80.

    [12] Tan JZ. The feed safety assessment of glyphosate-tolerant soybean meal in broilers [D]. Beijing: Chinese Academy of Agriculture Sciences, 2011 (in Chinese).譚建莊. 抗草甘膦轉基因豆粕對肉仔雞的飼用安全性評定 [D]. 北京: 中國農(nóng)業(yè)科學院, 2011.

    [13] Lu CB, Zhang W, Liu B, et al. Effects of transgenic soybean feed on proliferation of spleen lymphocyte in male mice. Soybean Sci, 2012, 31(2): 291-294 (in Chinese).蘆春斌, 張偉, 劉標, 等. 抗草甘膦轉基因大豆飼料對雄性小鼠脾淋巴細胞體外增殖的影響. 大豆科學, 2012, 31(2): 291-294.

    [14] Gryson N, Dewettinck K, Messens K. Detection of genetically modified soy in doughs and cookies. Cereal Chem, 2007, 84(2): 109-115.

    [15] Miraglia M, Berdal KG, Brera C, et al. Detection and traceability of genetically modified organisms in the food production chain. Food Chem Toxicol, 2004, 42(7): 1157-1180.

    [16] GMO Compass, GMO Database. Genetically modified food and feed: authorization in the EU[EB/OL]. [2006-06-02]. http://www.gmocompass.org/eng/regulation/regulatory_process/156. european_regulatory_system_genetic_engineering. html.

    [17] Ministry of Agriculture of the People's Republic of China. Chinese Standard Agriculture Department Public Announcement No. 1782-3-2012. Detection of Genetically Modified Plants and Derived Products. Qualitative PCR Method for the Regulatory Elements CaMV 35S Promoter, FMV 35S Promoter, NOS Promoter, NOS Terminator and CaMV 35S Terminator. Beijing: China Agriculture Press, 2012: 1-9 (in Chinese).中華人民共和國農(nóng)業(yè)部. 農(nóng)業(yè)部1782號公告-3-2012 轉基因植物及其產(chǎn)品成分檢測調控元件CaMV 35S啟動子、FMV 35S啟動子、NOS啟動子、NOS終止子和CaMV 35S終止子定性PCR方法. 北京: 中國農(nóng)業(yè)出版社, 2012: 1-9.

    [18] Ministry of Agriculture of the People's Republic of China. Chinese Standard Agriculture Department Public Announcement No. 869-9-2007. Detection of Genetically Modified Plants and Derived Products Qualitative PCR Method for Insect-Resistant Maize MON810 and Its Derivates. Beijing: China Agriculture Press, 2014: 69-74 (in Chinese).中華人民共和國農(nóng)業(yè)部. 農(nóng)業(yè)部869號公告-9-2007 轉基因植物及其產(chǎn)品成分檢測抗蟲玉米MON810及其衍生品種定性PCR方法. 北京: 中國農(nóng)業(yè)出版社, 2014: 69-74.

    [19] Ministry of Agriculture of the People's Republic of China. Chinese Standard Agriculture Department Public Announcement No. 1861-2-2012. Detection of Genetically Modified Plants and Derived Products. Qualitative PCR Method for Herbicide-Tolerant Soybean GTS 40-3-2 and Its Derivates. Beijing: China Agriculture Press, 2013: 1-5 (in Chinese).中華人民共和國農(nóng)業(yè)部. 農(nóng)業(yè)部1861號公告-2-2012轉基因植物及其產(chǎn)品成分檢測耐除草劑大豆GTS 40-3-2及其衍生品種定性PCR方法.北京: 中國農(nóng)業(yè)出版社, 2013: 1-5.

    [20] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. SN/T 1201-2003 Protocol of PCR for Detection of Genetically Modified Feed. Beijing: China Standards Press, 2004: 1-8 (in Chinese).中華人民共和國國家質量監(jiān)督檢驗檢疫總局. SN/T 1201-2003 植物性飼料中轉基因成分定性PCR檢測方法. 北京: 中國標準出版社, 2004: 1-8.

    [21] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. SN/T 1202-2003 Protocol of the Qualitative Polymerase Chain Reaction for Detecting Genetically Modified Plant Components in Food. Beijing: China Standards Press, 2004: 1-10 (in Chinese).中華人民共和國國家質量監(jiān)督檢驗檢疫總局. SN/T 1202-2003 食品中轉基因植物成分定性PCR檢測方法. 北京: 中國標準出版社, 2004: 1-10.

    [22] General Administration of Quality Supervision, Inspection and Quarantine. GB/T 19495.5-2004 Detection of Genetically Modified Organisms and Derived Products-quantitative Nucleic Acid Based Methods. Beijing: China Standards Press, 2007: 5-9 (in Chinese).國家質量監(jiān)督檢驗檢疫總局. GB/T 19495.5-2004轉基因產(chǎn)品檢測 核酸定量 PCR 檢測方法. 北京: 中國標準出版社, 2007: 5-9.

    (本文責編 陳宏宇)

    March 24, 2016; Accepted: May 3, 2016

    Jundong Wang. Tel: +86-354-6288206; Fax: +86-354-6222942; E-mail: wangjd53@outlook.com

    Detection of transgenic components in animal feeds on Shanxi markets

    Jianqin Yuan1, Hong Chang1, Jianghe Zhao1, Zhongwei Tang1, Zongyong Shi1, and Jundong Wang2
    1 College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China 2 College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China

    To assess the presence of genetically modified (GM) maize and soybean in a range of commercialized feed in Shanxi province of China in 2015, improved hexadecyltrimethy ammonium bromide (CTAB) method was used to extract DNA. The screening of packed feeds was carried out by qualitative PCR. Then positive feeds were unpacked and detected by the CaMV 35S promoter, NOS terminator, zSSIIb, Lectin and CryIA (b) genes. The identified maize and soybean events were confirmed by event-specific MON810 and GTS40-3-2. Results showed that 83.3% of the feeds was tested positive for GMOs, in which positive rates of maize, soybean, pig and layer feeds were 6.67%, 100%, 93.3% and 73.3%, respectively. The results of real-time PCR were consistent with qualitative PCR. These results indicated that commercialized GM feed had a wide positive product scope in Shanxi province of China. Further studies are necessary to study effects of feeding livestock and poultry with feed containing GM ingredients on animals and their products.

    commercialized layer feed, commercialized pig feed, genetically modified maize, genetically modified soybean, qualitative PCR, real-time PCR, event-specific MON810 and GTS40-3-2

    Supported by: Key Projects in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period of China (No. 2012BAD12B06-2), Science and Technology Key Program of Shanxi Province (No. 20140311025-3), Natural Science Foundation of Shanxi Province (No. 2013011028-2), Higher School Teaching Reform Project of Shanxi Province (No. J2012026).

    “十二五”國家科技支撐計劃子課題 (No. 2012BAD12B06-2),山西省科技攻關項目 (No. 20140311025-3),山西省自然科學基金 (No. 2013011028-2),山西省高等學校教學改革項目 (No. J2012026) 資助。

    網(wǎng)絡出版時間:2016-06-12 網(wǎng)絡出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20160612.1648.003.html

    猜你喜歡
    太谷定性農(nóng)業(yè)部
    分裂平衡問題的Levitin-Polyak適定性
    太谷任村鄉(xiāng):小蘿卜做成大產(chǎn)業(yè)
    鑫炳記太谷餅:老字號煥發(fā)新生機
    2020年中國鄉(xiāng)村振興(太谷)論壇成功舉辦
    太谷:挑起總書記惦念的“金扁擔”
    當歸和歐當歸的定性與定量鑒別
    中成藥(2018年12期)2018-12-29 12:25:44
    農(nóng)業(yè)部一號文件關于養(yǎng)豬都說了啥
    農(nóng)業(yè)部副部長余欣榮
    共同認識不明確的“碰瓷”行為的定性
    毆打后追趕致人摔成重傷的行為定性
    国内少妇人妻偷人精品xxx网站| 亚洲国产av新网站| 色哟哟·www| av国产久精品久网站免费入址| 亚洲人与动物交配视频| 国产日韩欧美在线精品| 高清黄色对白视频在线免费看 | 人人妻人人添人人爽欧美一区卜 | 夫妻性生交免费视频一级片| 99热国产这里只有精品6| 欧美国产精品一级二级三级 | 中文在线观看免费www的网站| 日韩,欧美,国产一区二区三区| 午夜日本视频在线| 国产精品免费大片| 午夜老司机福利剧场| 纯流量卡能插随身wifi吗| 欧美日本视频| 亚洲熟女精品中文字幕| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| 亚洲无线观看免费| 91午夜精品亚洲一区二区三区| 亚洲成人中文字幕在线播放| 亚洲美女黄色视频免费看| 51国产日韩欧美| 中文字幕精品免费在线观看视频 | 各种免费的搞黄视频| 日本猛色少妇xxxxx猛交久久| 五月玫瑰六月丁香| 自拍欧美九色日韩亚洲蝌蚪91 | 九色成人免费人妻av| 多毛熟女@视频| 一级二级三级毛片免费看| 多毛熟女@视频| 青春草亚洲视频在线观看| 日韩成人av中文字幕在线观看| 久久97久久精品| videossex国产| 99久国产av精品国产电影| 国产 精品1| 啦啦啦啦在线视频资源| 亚洲国产精品国产精品| 少妇高潮的动态图| 久久久成人免费电影| 日日摸夜夜添夜夜爱| 91精品国产九色| 麻豆成人av视频| 只有这里有精品99| 嫩草影院新地址| 啦啦啦啦在线视频资源| 亚洲中文av在线| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 久久久久久人妻| 看免费成人av毛片| 国产爱豆传媒在线观看| 肉色欧美久久久久久久蜜桃| 色视频在线一区二区三区| 亚洲一级一片aⅴ在线观看| 各种免费的搞黄视频| 精品午夜福利在线看| 成人影院久久| 丰满少妇做爰视频| 国产中年淑女户外野战色| 高清毛片免费看| av视频免费观看在线观看| 国产成人免费无遮挡视频| 免费播放大片免费观看视频在线观看| 搡老乐熟女国产| 男人和女人高潮做爰伦理| av女优亚洲男人天堂| 老师上课跳d突然被开到最大视频| 欧美高清成人免费视频www| 亚洲国产日韩一区二区| 波野结衣二区三区在线| 高清午夜精品一区二区三区| 国产亚洲5aaaaa淫片| 99久久中文字幕三级久久日本| 亚洲怡红院男人天堂| 欧美极品一区二区三区四区| 国产精品嫩草影院av在线观看| 日本爱情动作片www.在线观看| 日本爱情动作片www.在线观看| 久久国产亚洲av麻豆专区| 91精品伊人久久大香线蕉| 久久国产亚洲av麻豆专区| 99久国产av精品国产电影| 国产精品一区www在线观看| av不卡在线播放| 少妇 在线观看| 国产精品伦人一区二区| 欧美老熟妇乱子伦牲交| 91精品一卡2卡3卡4卡| 久久鲁丝午夜福利片| 久久久a久久爽久久v久久| av在线观看视频网站免费| 草草在线视频免费看| 欧美精品一区二区免费开放| 麻豆国产97在线/欧美| 国产成人免费无遮挡视频| a 毛片基地| 一本一本综合久久| 久久久久久人妻| 亚洲国产精品999| 亚洲精品久久久久久婷婷小说| 亚洲欧洲日产国产| 欧美成人a在线观看| 少妇人妻精品综合一区二区| 精品视频人人做人人爽| 国产有黄有色有爽视频| 一区二区av电影网| 卡戴珊不雅视频在线播放| 欧美 日韩 精品 国产| 秋霞伦理黄片| 日韩成人伦理影院| 日本免费在线观看一区| 日韩伦理黄色片| 青青草视频在线视频观看| 男男h啪啪无遮挡| 色婷婷久久久亚洲欧美| 午夜老司机福利剧场| 日韩一区二区三区影片| 国产乱人偷精品视频| 少妇的逼水好多| 五月开心婷婷网| 男人舔奶头视频| 一区二区av电影网| 舔av片在线| 国语对白做爰xxxⅹ性视频网站| 成年免费大片在线观看| 免费看日本二区| 欧美一级a爱片免费观看看| 色网站视频免费| 最近最新中文字幕免费大全7| 国产精品嫩草影院av在线观看| 午夜视频国产福利| 黄片wwwwww| 欧美成人一区二区免费高清观看| 国产在线男女| 少妇被粗大猛烈的视频| 在线免费十八禁| 日韩成人伦理影院| 日韩大片免费观看网站| 免费黄色在线免费观看| 看十八女毛片水多多多| xxx大片免费视频| 人妻少妇偷人精品九色| 看免费成人av毛片| 免费久久久久久久精品成人欧美视频 | 亚洲国产精品999| 男女下面进入的视频免费午夜| 天堂8中文在线网| 夜夜骑夜夜射夜夜干| av专区在线播放| 欧美高清成人免费视频www| 一级av片app| 又大又黄又爽视频免费| 久久99精品国语久久久| 美女国产视频在线观看| 亚洲欧洲日产国产| 久久青草综合色| 国产精品99久久99久久久不卡 | 国产伦理片在线播放av一区| 欧美+日韩+精品| 日本免费在线观看一区| 成人国产麻豆网| av国产精品久久久久影院| 99热这里只有是精品在线观看| 国产精品国产av在线观看| 亚洲欧美日韩无卡精品| 午夜老司机福利剧场| 在线观看免费视频网站a站| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 午夜免费男女啪啪视频观看| 精品一区二区免费观看| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 一级片'在线观看视频| 日本黄色片子视频| 国产高清不卡午夜福利| 18禁在线播放成人免费| 日本欧美视频一区| 亚洲欧美成人综合另类久久久| 国内精品宾馆在线| 不卡视频在线观看欧美| 高清av免费在线| 国产亚洲一区二区精品| 国产精品一区二区性色av| 青青草视频在线视频观看| 亚洲精品一区蜜桃| 日本av免费视频播放| 一区二区三区免费毛片| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 色婷婷久久久亚洲欧美| 不卡视频在线观看欧美| 少妇的逼好多水| 如何舔出高潮| 男女啪啪激烈高潮av片| 欧美成人一区二区免费高清观看| 欧美激情国产日韩精品一区| 国产精品三级大全| 成人二区视频| 男的添女的下面高潮视频| 日本av手机在线免费观看| 免费黄频网站在线观看国产| av免费观看日本| 91精品伊人久久大香线蕉| 男人添女人高潮全过程视频| 日韩伦理黄色片| 国产精品久久久久久精品电影小说 | 九九久久精品国产亚洲av麻豆| 亚洲精品日本国产第一区| 伦精品一区二区三区| 久久久久视频综合| 免费看av在线观看网站| 日韩欧美 国产精品| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 欧美日韩视频精品一区| 乱系列少妇在线播放| 国产精品.久久久| 九色成人免费人妻av| 欧美极品一区二区三区四区| 只有这里有精品99| 亚洲国产精品成人久久小说| 三级经典国产精品| 搡老乐熟女国产| 精品亚洲成a人片在线观看 | 又黄又爽又刺激的免费视频.| 日产精品乱码卡一卡2卡三| 天天躁日日操中文字幕| 久热这里只有精品99| 精品久久久久久久久亚洲| 一本一本综合久久| 大陆偷拍与自拍| 国产亚洲最大av| 精品亚洲乱码少妇综合久久| 观看av在线不卡| 男人爽女人下面视频在线观看| 内射极品少妇av片p| 在线观看三级黄色| 亚洲精品一区蜜桃| 3wmmmm亚洲av在线观看| 熟女人妻精品中文字幕| 日本-黄色视频高清免费观看| 在线观看美女被高潮喷水网站| 亚洲第一av免费看| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 80岁老熟妇乱子伦牲交| 免费观看的影片在线观看| 国产淫片久久久久久久久| 18禁动态无遮挡网站| 赤兔流量卡办理| 国产精品久久久久久久电影| 亚洲怡红院男人天堂| 一区二区三区免费毛片| 亚洲图色成人| av天堂中文字幕网| 久久久久久伊人网av| 午夜福利影视在线免费观看| 亚洲第一av免费看| 男的添女的下面高潮视频| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看 | 在线观看三级黄色| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 毛片一级片免费看久久久久| 国产免费又黄又爽又色| 男女边摸边吃奶| 国产亚洲最大av| 极品教师在线视频| 最近的中文字幕免费完整| 国产色爽女视频免费观看| 高清黄色对白视频在线免费看 | 国产精品秋霞免费鲁丝片| 97热精品久久久久久| 国产免费又黄又爽又色| 久久久亚洲精品成人影院| 深爱激情五月婷婷| 晚上一个人看的免费电影| 老司机影院毛片| 在线观看三级黄色| 秋霞在线观看毛片| 国产一区二区三区综合在线观看 | 亚洲aⅴ乱码一区二区在线播放| 精品亚洲乱码少妇综合久久| 永久免费av网站大全| 国产精品一区二区在线不卡| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 国产精品不卡视频一区二区| 精品一区二区免费观看| 亚洲精品乱码久久久v下载方式| 街头女战士在线观看网站| 九九在线视频观看精品| 日日摸夜夜添夜夜爱| 熟女av电影| 国产精品免费大片| 一级毛片aaaaaa免费看小| 国产成人免费观看mmmm| 免费黄网站久久成人精品| av在线观看视频网站免费| 简卡轻食公司| 我的老师免费观看完整版| 欧美成人一区二区免费高清观看| 久久女婷五月综合色啪小说| 午夜福利视频精品| 岛国毛片在线播放| 日本爱情动作片www.在线观看| 亚洲精品一二三| 一级片'在线观看视频| 中文在线观看免费www的网站| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 久久久午夜欧美精品| 五月天丁香电影| 国产高清不卡午夜福利| 成人无遮挡网站| 大香蕉久久网| 美女福利国产在线 | 97在线视频观看| 亚洲人成网站高清观看| 亚洲一级一片aⅴ在线观看| 国产深夜福利视频在线观看| 亚洲国产av新网站| 国产久久久一区二区三区| 黄片wwwwww| 美女视频免费永久观看网站| av免费观看日本| 黄色视频在线播放观看不卡| 永久免费av网站大全| 国产精品久久久久成人av| 久久久久久久久久久免费av| 在线观看免费高清a一片| 伦精品一区二区三区| 舔av片在线| 国产精品国产av在线观看| 国产男女内射视频| 一级毛片aaaaaa免费看小| 自拍欧美九色日韩亚洲蝌蚪91 | 人人妻人人澡人人爽人人夜夜| 久久精品久久精品一区二区三区| 中国美白少妇内射xxxbb| a级毛片免费高清观看在线播放| 欧美一级a爱片免费观看看| 18禁裸乳无遮挡动漫免费视频| 日日啪夜夜爽| 一本色道久久久久久精品综合| 亚洲图色成人| 一级毛片 在线播放| 亚洲国产精品国产精品| 国产成人91sexporn| 99久久人妻综合| 视频区图区小说| 亚洲国产成人一精品久久久| 黄片wwwwww| 中文字幕亚洲精品专区| 一区二区av电影网| 中文在线观看免费www的网站| 色婷婷av一区二区三区视频| 国产久久久一区二区三区| 精品国产三级普通话版| 亚洲精品一区蜜桃| 在线观看一区二区三区| 久久精品国产亚洲网站| 中文字幕av成人在线电影| 男人爽女人下面视频在线观看| 在线看a的网站| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 99热6这里只有精品| 久久久午夜欧美精品| 99热全是精品| 亚洲欧美精品专区久久| 嘟嘟电影网在线观看| 五月伊人婷婷丁香| 高清毛片免费看| 国产精品秋霞免费鲁丝片| 国产在线一区二区三区精| 免费观看a级毛片全部| 国产精品蜜桃在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲乱码少妇综合久久| 黑人高潮一二区| 国产成人a区在线观看| 亚州av有码| 一级爰片在线观看| 九色成人免费人妻av| 人妻 亚洲 视频| 成人影院久久| 日韩,欧美,国产一区二区三区| 啦啦啦视频在线资源免费观看| 大香蕉久久网| 插阴视频在线观看视频| av在线蜜桃| 国产人妻一区二区三区在| 边亲边吃奶的免费视频| 日韩一区二区三区影片| 精品久久久久久久久亚洲| 久久久久久人妻| 色婷婷av一区二区三区视频| 黄色欧美视频在线观看| 亚洲精品国产色婷婷电影| 日日摸夜夜添夜夜添av毛片| 亚洲,一卡二卡三卡| 性高湖久久久久久久久免费观看| 午夜老司机福利剧场| 久久人妻熟女aⅴ| 国产老妇伦熟女老妇高清| 边亲边吃奶的免费视频| 青春草国产在线视频| 91aial.com中文字幕在线观看| 晚上一个人看的免费电影| 搡女人真爽免费视频火全软件| 精品人妻一区二区三区麻豆| 视频区图区小说| 亚洲av不卡在线观看| freevideosex欧美| 国产 精品1| 少妇 在线观看| 国产色爽女视频免费观看| 看非洲黑人一级黄片| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 最近最新中文字幕免费大全7| 成年av动漫网址| 国产 一区精品| 亚洲精品第二区| 成年美女黄网站色视频大全免费 | 中文字幕亚洲精品专区| 97超碰精品成人国产| 七月丁香在线播放| 国产一级毛片在线| av网站免费在线观看视频| 97热精品久久久久久| 91狼人影院| 精品久久国产蜜桃| 亚洲第一av免费看| 日韩制服骚丝袜av| 如何舔出高潮| 亚洲欧美精品专区久久| 少妇 在线观看| 国产女主播在线喷水免费视频网站| 国模一区二区三区四区视频| 99re6热这里在线精品视频| 麻豆国产97在线/欧美| 亚洲不卡免费看| 少妇人妻一区二区三区视频| 黄色视频在线播放观看不卡| 免费观看在线日韩| 国产精品久久久久久av不卡| 蜜桃在线观看..| 国产精品秋霞免费鲁丝片| 狂野欧美激情性bbbbbb| 只有这里有精品99| 国产久久久一区二区三区| 日韩三级伦理在线观看| 美女中出高潮动态图| 日韩中文字幕视频在线看片 | 国产精品一区二区性色av| 欧美xxⅹ黑人| 欧美另类一区| 少妇精品久久久久久久| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 岛国毛片在线播放| 亚洲av电影在线观看一区二区三区| 青春草视频在线免费观看| 少妇人妻久久综合中文| 欧美日韩亚洲高清精品| 国产精品国产三级专区第一集| 丝袜脚勾引网站| 身体一侧抽搐| 亚洲欧美清纯卡通| 免费av不卡在线播放| 观看美女的网站| 国产毛片在线视频| 欧美国产精品一级二级三级 | 极品少妇高潮喷水抽搐| 99热国产这里只有精品6| 美女高潮的动态| 亚洲一区二区三区欧美精品| 下体分泌物呈黄色| av在线蜜桃| av不卡在线播放| 熟女电影av网| 久久午夜福利片| 国产精品一区二区在线观看99| 国产av国产精品国产| 日韩国内少妇激情av| 日本爱情动作片www.在线观看| 91精品一卡2卡3卡4卡| 美女国产视频在线观看| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃久久精品国产亚洲av| 久久久久久伊人网av| 国产亚洲av片在线观看秒播厂| 五月玫瑰六月丁香| 亚洲av成人精品一区久久| 一本色道久久久久久精品综合| 青春草国产在线视频| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 美女主播在线视频| 蜜桃久久精品国产亚洲av| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| 这个男人来自地球电影免费观看 | 久久婷婷青草| 97超视频在线观看视频| 涩涩av久久男人的天堂| 搡女人真爽免费视频火全软件| 欧美日韩亚洲高清精品| 日韩中字成人| 欧美 日韩 精品 国产| 观看av在线不卡| 女的被弄到高潮叫床怎么办| 成人黄色视频免费在线看| 男人狂女人下面高潮的视频| 亚洲欧美精品专区久久| 欧美3d第一页| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区激情| 又粗又硬又长又爽又黄的视频| 亚洲av成人精品一区久久| 精品午夜福利在线看| 亚洲第一av免费看| 国产亚洲91精品色在线| 在线观看免费视频网站a站| 国产精品三级大全| 少妇的逼水好多| 中国国产av一级| 亚洲国产精品999| 人人妻人人添人人爽欧美一区卜 | 日本wwww免费看| 欧美成人午夜免费资源| 亚洲伊人久久精品综合| 丝瓜视频免费看黄片| 亚洲伊人久久精品综合| 涩涩av久久男人的天堂| 啦啦啦在线观看免费高清www| 色5月婷婷丁香| 一区二区三区乱码不卡18| 2022亚洲国产成人精品| 极品少妇高潮喷水抽搐| 免费大片18禁| 免费观看av网站的网址| 国产精品久久久久久精品古装| 大码成人一级视频| 亚洲国产日韩一区二区| 久久久久精品性色| 草草在线视频免费看| 国产精品人妻久久久久久| 最后的刺客免费高清国语| 国产精品福利在线免费观看| 国产一区有黄有色的免费视频| 欧美一区二区亚洲| 免费观看av网站的网址| 如何舔出高潮| 国产亚洲午夜精品一区二区久久| 三级经典国产精品| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 国产成人freesex在线| 亚洲欧美中文字幕日韩二区| 亚洲欧洲国产日韩| 国产精品人妻久久久久久| 日韩免费高清中文字幕av| 欧美日韩视频精品一区| 亚洲丝袜综合中文字幕| 一区二区三区免费毛片| 国产午夜精品久久久久久一区二区三区| 成人美女网站在线观看视频| 啦啦啦视频在线资源免费观看| 久久精品人妻少妇| 老女人水多毛片| 色视频在线一区二区三区| 成人毛片60女人毛片免费| 狠狠精品人妻久久久久久综合| 男女国产视频网站| 肉色欧美久久久久久久蜜桃| 国产精品蜜桃在线观看| 激情五月婷婷亚洲| 精品国产一区二区三区久久久樱花 | 国产日韩欧美亚洲二区| 久久人人爽av亚洲精品天堂 | 欧美丝袜亚洲另类| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看| 最近的中文字幕免费完整| 最近最新中文字幕免费大全7| 国产在线视频一区二区| a 毛片基地| 一级毛片 在线播放| 国产成人freesex在线| 狂野欧美白嫩少妇大欣赏| 一本色道久久久久久精品综合| 九草在线视频观看| 免费在线观看成人毛片| 爱豆传媒免费全集在线观看| 亚洲中文av在线| 国产亚洲一区二区精品| 九色成人免费人妻av| 人体艺术视频欧美日本|