• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrochemically Determining Dopamine and Uric Acid by Modified Glassy Carbon Electrode

    2016-12-12 00:35:01LinaAbdullahALSHAHRANILIXiNANJunminTANJuanjuanGUFenglong
    關(guān)鍵詞:單壁玻碳碳納米管

    Lina Abdullah ALSHAHRANI, LI Xi, NAN Junmin, TAN Juanjuan, GU Fenglong*

    (1.Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment,South China Normal University, Guangzhou 510006, China; 2. School of Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)

    ?

    Electrochemically Determining Dopamine and Uric Acid by Modified Glassy Carbon Electrode

    Lina Abdullah ALSHAHRANI1, LI Xi2, NAN Junmin1, TAN Juanjuan1, GU Fenglong1*

    (1.Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment,South China Normal University, Guangzhou 510006, China; 2. School of Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)

    [Cu(sal-β-Ala)(3,5-DMP2)] is modified on the surface of the single-walled carbon nanotubes (SWCNTs) of glass carbon electrode (GCE). The modified electrode shows impressive detection ability of dopamine (DA) and uric acid (UA). The modified electrode has a good electrocatalytic effect on DA and UA. The detection linear range of [Cu(sal-β-Ala)(3,5-DMP2)] to DA is 10.00 to 210 mmol/L and the detection limit is 7.29 μmol/L. While, the detection of [Cu(sal-β-Ala)(3,5-DMP2)] to UA has a good linear range from 1 to 86 mmol/L and the detection limit is 1.5 μmol/L. In this work Simultaneous Differential Pulse Voltammetric (DPV) is employed to determine DA and UA. The DPV method with [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE has a good sensitivity and resolution rate.

    copper (II) Schiff base complex; single-walled carbon nanotubes; modified electrode; dopamine; uric acid; electrochemical detection

    Chinese library classification:O646 Document code:A Article ID: 1000-5463(2016)06-0099-07

    1 Introduction

    Dopamine (DA) is a neurotransmitter in the central nervous system, and has important functions in cardiovascular, kidney, hormones, and other important systems. The abnormal metabolism of DA in the nervous system would lead to a variety of diseases such as epilepsy, aging, dementia, and Parkinson’s[1-3]. In addition, uric acid (UA) is the metabolite of purine and exists in biological fluids such as blood and urine. Monitoring of the DA and UA concentrations in blood or urine is important because these concentrations can be used as an effective early warning sign for central nervous system or kidney diseases. Generally, the DA concentration is very low (0.01~1 μmol/L) in human blood, while UA concentrations are 100~1 000 times higher than that of DA[4]. Sensitive techniques are needed for the simultaneous determination of DA and UA mixture. The conventional detection methods of DA and UA include titration[5], HPLC,[6]and UV[7]etc. All these methods have their own advantages, but also associated with some disadvantages such as expensive equipment, complicated process, and low sensitivity. It’s necessary to develop a quick, simple, and effective method for detecting these compounds.

    Due to the predominance such as low cost, easiness, real-time field investigation and high selectivity, electrochemical detection exhibits an important approach for detecting biomolecules. However, the conventional electrodes have the disadvantages of low sensitivity, easy to be contaminated by the oxidation products of DA and UA. In order to improve the detection sensitivity, many materials were used to modify the electrode, for examples, metal complexes, nanoparticles, carbon nanotubes, graphene, conductive polymer[8-10]. Therefore, carbon nanotubes (CNTs) modified electrode has become a hot research topic because of their large specific surface area, excellent electrochemical properties, and high stability[11-13]. The potential applications of CNTs in fabricating electrochemical sensors have been previously applied[14-15], and CNTs also have been applied for selective detection of DA and UA[16-17]. At the same time, the Schiff base complex has a very stable amino (RCN) structure, it can easily coordinate with transition metal to display a number of features, such as interaction with DNA, antibacterial and anticancer activity, ability of catalyzing the hydroquinone, sulfur cytosine, and ascorbic acid. When the electrode is modified by the transition metal complexes, the electron transfer rate can be increased, the oxidation potential will be reduced, and the peak current will be increased, thus improving the detection sensitivity, and acting as a catalyst in the electrode surface[18-20]. As a transition metal complex, Cu(sal-β-Ala)(3,5-DMP2) possesses unique composition and structure, and can be expected as a promising modifier for electrode. In this paper, [Cu(sal-β-Ala)(3,5-DMP2)] and SWCNTs modified glass carbon electrode (GCE) are prepared, which exhibits impressive sensitivity for simultaneously determining DA and UA.

    2 Experiments

    2.1 Materials and chemical reagents

    DA, UA, and Cu(sal-β-Ala) (3,5-DMP2) were bought from the Sigma Company (St. Louis, MO,USA). Other chemical reagents are analytical grade and directly used without further purification. The acetate buffer solution (ABS, pH6.0, 0.1 mol/L) was prepared with NaAc and HAc. All solutions were prepared with double distilled water. Single-walled carbon nanotubes (SWCNTs) were purchased form Shenzhen Nanotech Port Co., Ltd (Shenzhen, China). According to the literature’s method, a certain amount of SWCNTs was added in the mixed acidV(H2SO4)∶V(HNO3)=3∶1 and refluxed for 2 h. Then, the concentrated hydrochloric acid was added and refluxed for another hour. After the reaction completed, the product was filtered, and dried in an oven at 80 ℃. The as-prepared SWCNTs (10 mg) was dispersed in 100 mL H2O, and then ultrasonic treated for 10 min, and sealed for use.

    2.2 Preparation of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE

    GCE was polished to a mirror on the surface of Al2O3of 1.0 and 0.3 μm, and then ultrasonic treatment in acetone and water for 2 min. To constitute a three-electrode system, the GCE was used as the working electrode, Pt wire electrode as the counter electrode, and a saturated calomel electrode as the reference electrode. The Cyclic Voltammetry (CV) test was in 0.5 mol/L H2SO4solution, and the potential was -0.35~1.50 V, scanning at 100 mV/s. After the CV curves become stable, the pretreatment of GCE was completed. The GCE was placed in a DMSO solution and mixed with Cu(sal-β-Ala)(3,5 -DMP2) and 0.1 mol/L NaNO3, and then treated with CV experiment between -0.8~1.2 V. The electrode was washed with water for several times, and the modified electrode was thus obtained, marked as [Cu(sal-β-Ala) (3,5-DMP2)]/SWCNTs/GCE.

    2.3 Electrochemical measurements

    Electrochemical measurements were conducted using three-electrode system. The saturated calomel electrode was used as the reference electrode, a platinum electrode as the auxiliary electrode, and the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE as working electrode. All electrochemical experiments were carried out using the CHI660D Electrochemical workstation (Shanghai Chenhua China) electrochemical workstation. The electrochemical impedance spectroscopy (EIS) was carried in an equimolar amount of 5 mmol/L [Fe(CN)6]3-/ [Fe(CN)6]4-solution, using 0.1 mol/L KCl as supporting electrolyte, and the frequency sweep range is 0.01~103 kHz.

    3 Results and discussion

    3.1 Characterization of the modified electrode

    The surfaces of GCE, SWCNTs/GCE, and [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE were investigated by SEM (Figure 1). By the comparison of Figure 1A and 1B, it can be seen that the SWCNTs were distributed on the GC electrode. After Cu(sal-β-Ala) (3,5-DMP2) was electro-polymerized on the surface of SWCNTs/GCE, the image became cloudy because of the formation of [Cu(sal-β-Ala)(3,5-DMP2)] film (Figure 1C). It is indicated that the Cu(sal-β-Ala) (3,5-DMP2) film has been successfully grown on the electrode.

    Figure 1 SEM images of bare GCE (A), SWCNTs/GCE (B), and Cu(sal-β-Ala)(3,5-DMP2)/SWCNTs/GCE (C)

    3.2 Electrochemical behavior and detection of DA

    The electrocatalysis of DA on bare GCE, SWCNTs/GCE, and Cu(sal-β-Ala)(3,5-DMP2)/SW CNTs/GCE was firstly investigated in a buffer solution at pH 7.0, The cyclic voltammogram of DA at bare GCE shows an irreversible redox behavior with weak oxidation current (23.36A) atEpc=0.24 V. Whereas, with SWCNTs and [Cu(sal-β-Ala)(3,5-DMP2)] on the GCE, DA exhibits obviously enhanced voltammetric response (Figure 2,scan rate=100 mV/s). The results indicate that the electrocatalytic activity of the modified electrode can be applied to the determination of DA. The effects of scan rate on the peak current of DA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE are shown in Figure 3. The anodic peak current of DA is proportional to the square root of scan rate in the range of 10~300 mV/s, which indicates that the electrocatalytic oxidation of DA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE is a diffusion controlled process. The linear regression equations of modified electrode isIpa(μA) = -50.958+19.731U1/2(mV/s)1/2with the correlation coefficients (R2) of 0.998 (Figure 4).

    Figure 2 Cyclic voltammograms of 1 mmol/L DA at different electrodes in PBS solution (pH 7.0) containing 0.1 mol/L KCl supporting electrolyte

    Figure 3 Cyclic voltammograms of the [Cu(sal-b-Ala)(3,5-DMP2)]/SWCNTs/GCE at different scan rates (from 30 to 300 mV/s) in PBS solution (pH 7.0) containing 1 mmol/L DA

    Figure 4 Linear dependence of peak currents on the square root of the scan rate

    In the optimal experimental conditions, amperometric was used to determine the oxidation peak current and DA concentration relationship. A stirred solution of chronoamperometry contained 0.1 mol/L KCl in 0.2 mol/L of PBS (pH 7.0) was added to achieve different concentrations of DA, the voltage was fixed at 0.22 V, as shown in Figure 5.

    Figure 5 Amperometric response curves of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE when successive additions of different concentration DA. Inseted: calibration curve of amperometric response I vs. DA concentration.

    Amperometric tests demonstrate that the modified electrode has a relatively rapid response time and high sensitivity to DA. The oxidation current increases very fast with the increase of DA concentration and reached the steady-state. The amperometric response is found to be linear to the DA over the range of 10 to 210 μmol/L with the correlation coefficient ofR2=0.999 92. Linear regression equation isIpa=0.086 3+0.006 4c(μmol/L). The limit of detection (LOD), defined as a signal-to-noise ratio of 3∶1 is found to be 7.29 μmol/L . The results indicate that the modified electrode fabricated by the proposed procedure has a good accuracy for the determination of DA. On the other hand, this system is also optimized in the solution with some common ions and small biomolecules for DA determination interference. It was shown that the allowable error range of ±5%, 100 times K+, Na+, Cl-, ascorbic acid, citric acid, glucose, hardly interfere with the determination of DA, indicating that [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE determination of DA has high selectivity.

    3.3 Electrochemical behaviors and detection of UA

    Using the above optimal experimental conditions, the modified electrode was prepared and used to detect UA. The electrocatalysis of UA on bare GCE, SWCNTs/GCE, and [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE was also investigated in a buffer solution with pH 2.0. As shown in Figure 6~8, it can be seen that on bare GCE, the cyclic voltammogram of UA shows a irreversible redox behavior with weak oxidation current (23.36A) atEpc=0.24 V. When SWCNTs and [Cu(sal-β-Ala)(3,5-DMP2)] were modified on the GCE, UA exhibits obviously enhanced voltammetric response (Figure 6). The results indicate that the electrocatalytic activity of the modified electrode can be applied to the determination of UA. The effect of scan rate on the peak current of UA on the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE has been investigated. The results are shown in Figure 7. The anodic peak current of UA is proportional to the square root of scan rate in the range of 30~300 mV/s, which indicates that the electrocatalytic oxidation of UA at the [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE is a diffusion controlled process. The linear regression equations of modified electrode wasIpa(μA) = -22.533+12.585U1/2(mV/s)1/2with the correlation coefficients (R2) of 0.996 (Figure 8).

    Figure 6 Cyclic voltammograms of 2 mmol/L UA at different electrodes in PBS solution (pH 2.0) containing 0.1 mol/L KCl supporting electrolyte

    Figure 7 Cyclic voltammograms of the [Cu(sal-b-Ala)(3,5-DMP2)]/SWCNTs/GCE at different scan rates (from 30 to 300 mV/s) in PBS solution (pH 2.0) containing 2 mmol/L UA

    Figure 8 Linear dependence of peak currents on the square root of the scan rate

    Similarly, amperometric was used to determine the oxidation peak current and UA concentration relationship. A stirred solution of chronoamperometry contained 2 mol/L KCl in 0.2 mol/L of PBS (pH 6.0) was added to achieve different concentrations of UA, the voltage was fixed at 0.22 V. Amperometric tests demonstrate that the modified electrode has a relatively rapid response time and high sensitivity to UA (Figure 9). The oxidation current is increased very rapidly with the increase of UA concentration and reached the steady-state. The amperometric response is found to be linear to the UA over the range of 10 to 86 μmol/L with the correlation coefficient ofIpa=0.8743+613.82c(μmol/L) andR2=0.999 7. The limit of detection (LOD) defined as a signal-to-noise ratio of 3∶1, is found to 1.5 μmol/L. The results indicate that the modified electrode fabricated by using the proposed procedure has a good accuracy for the determination of UA.

    Figure 9 Amperometric response curves of [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/GCE when successive additions of different concentration UA. Inserted: calibration curve of amperometric response I vs.UA concentration

    3.4 Simultaneous determination of DA and UA

    In accordance with the best electrolyte analyses experimental conditions and instrument parameters, Differential Pulse voltammetry (DPV) experiments with different concentrations of DA and UA have be carried out.

    Figure 10 shows the typical CVs of DA and UA at the bare GCE, SWCNTs/GCE, and [Cu(sal-β-Ala) (3,5-DMP2)]/SWCNTs/GCE. At the bare GCE, DA and UA show broader oxidation peaks and overlapped. At the SWCNTs/GCE, the oxidation of DA and UA appears at 0.26 V and 0.39 V, respectively. After electrodeposited [Cu(sal-β-Ala)(3,5-DMP2)] on the electrode, the oxidation peaks current increased, and peak separation between DA and UA is 0.13 V, indicating that the simultaneous determination of the two species is feasible.

    Figure 10 CVs in 0.2 mol/L PBS (pH 6.0) containing 1.0 mmol/L DA and 0.2 mmol/L UA in each case

    DPV using [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/CCE as working electrode was used as a highly sensitive electrochemical method with very low detection limit to determine the trace of DA and UA. Figure 11 shows typical DPVs of different concentrations of DA in the existence of 0.1 mmol/L UA, using [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs/CCE as working electrode. The oxidation peak current of UA is positively proportional to its concentration (1.998~122.947 μmol/L), with theIpa(UA)=-0.006 8+0.038 9c(μmol/L) and the correlation coefficient ofR2=0.998. The limit of detection (LOD) is found to be 1.42 μmol/L (S/N=3), The results indicate that the modified electrode fabricated by the proposed procedure has a good accuracy for the determination of DA.

    Figure 11 DPV view of DA at different concentrations in the existence of 0.1 μmol/L UA

    Figure 12 shows that the peak current of UA is increased with an increase in UA concentration, when the solution contained constant 0.05 mmol/L of DA, The oxidation peak current of UA is positively proportional to its concentration; while the oxidation peak current of DA does not change. It is found to be linear to the UA over the range of 10.00 to 122.95 μmol/L with the correlation coefficient ofR2=0.998,Ipa(UA)=0.67+0.017 8c(μmol/L). The LOD is found to be 3.7 μmol/L. The results indicate that the modified electrode fabricated by using the proposed procedure has good accuracy for the determination of UA.

    Figure 12 DPA response curues of UA at different concentrations

    4 Conclusion

    The Cu(sal-β-Ala)(3,5-DMP2)/SWCNTs/GCE electrode was prepared and its electrochemical properties on DA and UA shows a good catalytic effect. The concentration of DA and UA and the peak current of oxidation are in linear relationship in some range. Its impressive catalytic properties indicate its potential use in the detection of DA and UA. The [Cu(sal-β-Ala)(3,5-DMP2)]/SWCNTs modified electrode shows good catalytic effect on DA and UA for cyclic voltammetry comparison purposes. DPV method is used as the simultaneous determination of DA and UA. In a mixed solution, when changing the concentration of a substance, the oxidation peak current showed a linear relationship with its concentration over a wide range, these results demonstrate that the modified electrode has high sensitivity.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (51273155), the Fundamental Research Funds for the Central Universities of China (2012-Ia-022 and 2014-Ia-030), and the Science and Technology Planning Project of Guangdong Province (2013B051000074). Thanks also to the Ministry of Higher Education of Saudi Arabia for the financial support to L.A.A.

    [1] SHANKARAN D R,IIMURA K,KATO T. Simultaneous determination of ascorbic acid and dopamine at a sol-gel composite electrode[J]. Sensors & Actuators B Chemical,2003,94(1):73-80.

    [2] WANG R,HONG Q L,LI N B. Simultaneous voltammetric measurement of ascorbic acid,epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid[J]. Biosensors & Bioelectronics,2006,21(7):1086-1092.

    [3] WIGHTMAN R M,MAY L J,MICHAEL A C. Detection of Dopamine Dynamics in the Brain[J]. Analytical Chemistry,1988,60(60):141-152.

    [4] MO J W,OGOREVC B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber[J]. Analytical Chemistry,2001,73(6):1196-1202.

    [5] DUTT V V,HA M. Determination of uric acid at the microgram level by a kinetic procedure based on a “pseudo-induction” period[J]. Analytical Chemistry,1974,46(12):1777-1781.

    [6] STAMFORD J A,JR J J. Probing brain chemistry[J]. Analytical Chemistry,1996,68(11):359A-363A.

    [7] KIRK S,SAWYER R. Pearson’s composition and analysis of foods[M]. Pearsons Composition & Analysis of Foods,Longman:Willey,1991:507-544.

    [8] WAGNER E S,LINDLEY B,COFFIN R D. High-performance liquid chromatographic determination of ascorbic acid in urine : Effect on urinary excretion profiles after oral and intravenous administration of vitamin C[J]. Journal of Chromatography A,1979,163(2):225-229.

    [9] KHAN A,KHAN M I,IQBAL Z,et al. A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection[J]. Talanta,2011,84(3):789-801.

    [10]ZENG W,MARTINUZZI F,MACGREGOR A. Development and application of a novel UV method for the analysis of ascorbic acid[J]. Journal of Pharmaceutical & Biomedical Analysis,2005,36(5):1107-1111.

    [11]LI J,LIN X. Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode[J]. Sensors & Actuators B Chemical,2007,124(2):486-493.

    [12]SHAKKTHIVEL P,CHEN S M. Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode[J]. Biosensors & Bioelectronics,2007,22(8):1680-1687.

    [13]HABIBI B,POURNAGHI-AZAR M H. Simultaneous determination of ascorbic acid,dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry[J]. Electrochimica Acta,2010,55(19):5492-5498.

    [14]WANG J. Carbon-nanotube based electrochemical biosensors:a review[J]. Electroanalysis, 2005,17(1):7-14.

    [15]WANG M,ZHAO F,LIU Y,et al. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes[J]. Biosensors & Bioelectronics,2005,21(1):159-166.

    [16]BRITTO P J,SANTHANAM K S V,ANGEL R,et al. Improved Charge Transfer at Carbon Nanotube Electrodes[J]. Advanced Materials,1999,11(11):154-157.

    [17]KONG J,FRANKLIN N R,ZHOU C,et al. Nanotube molecular wires as chemical sensors[J]. Science,2000,287(5453):622-625.

    [18]SHAHROKHIAN S,ZARE-MEHRJARDI H R. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid[J]. Electrochimica Acta,2007,52(22):6310-6317.

    [19]LIU X,PENG Y,QU X,et al. Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid[J]. Journal of Electroanalytical Chemistry,2011,654(S1/S2):72-78.

    [20]AMIRI S S M. Voltammetric determination of thiocytosine based on its electrocatalytic oxidation on the surface of carbon-paste electrode modified with cobalt Schiff base complexes[J].Journal of Solid State Electrochemistry. 2007,11,1133-1138.

    【中文責編:成文 英文責編:李海航】

    2016-09-12 《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n

    國家自然科學(xué)基金項目(21273081);廣東高校國際合作創(chuàng)新平臺項目(2013gjha0005)

    修飾玻碳電極對多巴胺和尿酸的電化學(xué)檢測

    Lina Abdullah ALSHAHRANI1, 李 曦2, 南俊民1, 譚娟娟1, 顧鳳龍1*

    (1. 華南師范大學(xué)化學(xué)與環(huán)境學(xué)院, 理論化學(xué)與環(huán)境教育部重點實驗室, 廣州 510631;2. 武漢理工大學(xué)化工與生命科學(xué)學(xué)院, 武漢 430070)

    在單壁碳納米管(SWCNT)表面修飾[Cu(sal-β-Ala)(3,5-DMP2)]玻碳電極(GCE),該修飾電極不僅對多巴胺(DA)和尿酸(UA)具有很好的電化學(xué)催化效果,而且對它們有很強的檢測能力. [Cu(sal-β-Ala)(3,5-DMP2)] 修飾電極對DA的檢測線性范圍為10~210 mmol/L,檢測極限為7.29 μmol/L;而對UA的檢測線性范圍為從1~86 mmol/L,檢測極限為1.5 μmol/L. 同時,利用微分脈沖伏安法(DPV)來測定DA和UA,相比之下,[Cu(sal-β-Ala)(3,5-DMP2)] 與單壁碳納米管及修飾玻碳電極結(jié)合具有良好的靈敏度和分辨率.

    Cu(II)希夫堿配合物; 單壁碳納米管; 修飾電極; 多巴胺; 尿酸; 電化學(xué)檢測

    *通訊作者:顧鳳龍,教授,珠江學(xué)者,Email: gu@scnu.edu.cn.

    猜你喜歡
    單壁玻碳碳納米管
    單壁碳納米管內(nèi)1,4-萘琨電池電極材料性能的研究
    云南化工(2021年7期)2021-12-21 07:27:38
    姜黃素在玻碳電極上的電化學(xué)行為研究
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    多巴胺和腎上腺素在單壁碳納米管修飾電極上的電化學(xué)行為
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    基于適配體的石墨烯修飾玻碳電極檢測卡那霉素
    玻碳修飾電極檢測食鹽中的碘含量
    拓撲缺陷對Armchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    單壁碳納米管對微穿孔板吸聲體吸聲性能的影響
    同位鍍鉍/過氧化聚乙酰苯胺/玻碳電極溶出伏安法測定食用鹽中痕量鎘和鉛
    女人被躁到高潮嗷嗷叫费观| 极品人妻少妇av视频| 99精国产麻豆久久婷婷| 在线观看免费日韩欧美大片| 老司机福利观看| 青春草亚洲视频在线观看| 国产1区2区3区精品| 欧美另类一区| 一级毛片精品| 久久久久久久久免费视频了| 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看 | 日韩 亚洲 欧美在线| 狂野欧美激情性bbbbbb| 久久久国产欧美日韩av| 99久久人妻综合| 91精品三级在线观看| 日韩欧美免费精品| 免费人妻精品一区二区三区视频| 精品欧美一区二区三区在线| 国产一区二区 视频在线| 在线观看免费高清a一片| 老司机亚洲免费影院| 天堂俺去俺来也www色官网| 成人av一区二区三区在线看 | 少妇人妻久久综合中文| www.熟女人妻精品国产| av一本久久久久| 精品国产乱子伦一区二区三区 | 考比视频在线观看| 亚洲av电影在线进入| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区| 手机成人av网站| 少妇精品久久久久久久| 欧美xxⅹ黑人| 亚洲一区二区三区欧美精品| bbb黄色大片| 国产精品一区二区在线不卡| 9热在线视频观看99| 黑人操中国人逼视频| 在线观看舔阴道视频| 黑人操中国人逼视频| 少妇 在线观看| www.自偷自拍.com| 日本精品一区二区三区蜜桃| 中文字幕人妻熟女乱码| 人妻久久中文字幕网| 成人影院久久| 亚洲成人手机| 岛国在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 宅男免费午夜| 国产一卡二卡三卡精品| 亚洲一区二区三区欧美精品| 精品欧美一区二区三区在线| 国产免费视频播放在线视频| 黄色 视频免费看| 亚洲av美国av| 母亲3免费完整高清在线观看| 免费看十八禁软件| 久久久久国产一级毛片高清牌| 精品高清国产在线一区| 亚洲中文日韩欧美视频| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩高清在线视频 | 丝袜美腿诱惑在线| 80岁老熟妇乱子伦牲交| 日韩大码丰满熟妇| 亚洲avbb在线观看| 天天躁日日躁夜夜躁夜夜| 国产1区2区3区精品| 亚洲全国av大片| 国产又爽黄色视频| 成年动漫av网址| 久久国产精品人妻蜜桃| 国产精品一区二区在线不卡| 亚洲精品国产av成人精品| 日日夜夜操网爽| 久久久精品94久久精品| 女人精品久久久久毛片| 在线观看免费午夜福利视频| 黄片大片在线免费观看| 另类精品久久| 王馨瑶露胸无遮挡在线观看| 精品国内亚洲2022精品成人 | 一本综合久久免费| 午夜福利在线免费观看网站| 人妻一区二区av| 两个人免费观看高清视频| 久久狼人影院| 亚洲全国av大片| 久久久久久久国产电影| 黄片播放在线免费| 久久久久久久久免费视频了| 亚洲av成人不卡在线观看播放网 | 午夜福利在线观看吧| 亚洲精品国产色婷婷电影| 久久人人爽人人片av| 国产野战对白在线观看| 人妻 亚洲 视频| 18禁国产床啪视频网站| 在线观看免费午夜福利视频| 9色porny在线观看| 三级毛片av免费| 伦理电影免费视频| 999精品在线视频| 欧美黑人欧美精品刺激| 电影成人av| 亚洲美女黄色视频免费看| 夫妻午夜视频| 曰老女人黄片| 乱人伦中国视频| 亚洲全国av大片| 午夜福利一区二区在线看| 国产精品一区二区在线观看99| 久久中文看片网| 亚洲色图 男人天堂 中文字幕| 国产91精品成人一区二区三区 | 丝袜在线中文字幕| 欧美日韩精品网址| 婷婷成人精品国产| √禁漫天堂资源中文www| 国产亚洲av高清不卡| 欧美亚洲日本最大视频资源| 国产三级黄色录像| 亚洲色图 男人天堂 中文字幕| 老司机午夜福利在线观看视频 | 久久性视频一级片| 亚洲av男天堂| 十八禁网站免费在线| 男女下面插进去视频免费观看| 69av精品久久久久久 | 色视频在线一区二区三区| 亚洲精品中文字幕在线视频| 欧美午夜高清在线| 人成视频在线观看免费观看| 日本av手机在线免费观看| 免费在线观看影片大全网站| 国产欧美日韩一区二区三 | 午夜激情久久久久久久| av不卡在线播放| 亚洲精品成人av观看孕妇| 久久久久久久大尺度免费视频| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 亚洲男人天堂网一区| 精品少妇一区二区三区视频日本电影| 老熟妇仑乱视频hdxx| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 久久精品aⅴ一区二区三区四区| 男女下面插进去视频免费观看| 亚洲欧美日韩高清在线视频 | 热re99久久国产66热| 久久久国产一区二区| 国产日韩欧美视频二区| 99国产精品99久久久久| 亚洲国产欧美网| 国产精品久久久av美女十八| 妹子高潮喷水视频| 波多野结衣av一区二区av| 午夜福利视频在线观看免费| 飞空精品影院首页| 久久青草综合色| 窝窝影院91人妻| 一级a爱视频在线免费观看| 亚洲国产欧美日韩在线播放| 一区二区三区激情视频| 香蕉国产在线看| 久久久久久久久久久久大奶| a级毛片在线看网站| 男女之事视频高清在线观看| 女性生殖器流出的白浆| 一本一本久久a久久精品综合妖精| 99热全是精品| av福利片在线| 欧美黄色淫秽网站| 精品久久蜜臀av无| bbb黄色大片| 纵有疾风起免费观看全集完整版| 亚洲精品美女久久av网站| 色94色欧美一区二区| 欧美精品亚洲一区二区| 亚洲成国产人片在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美在线黄色| 亚洲全国av大片| 麻豆乱淫一区二区| 老司机在亚洲福利影院| 欧美乱码精品一区二区三区| 亚洲国产精品一区三区| 91麻豆av在线| 成人手机av| 国产黄频视频在线观看| 久9热在线精品视频| 亚洲av成人不卡在线观看播放网 | 1024香蕉在线观看| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 亚洲av电影在线观看一区二区三区| 欧美精品啪啪一区二区三区 | 女性生殖器流出的白浆| 中亚洲国语对白在线视频| 成人免费观看视频高清| 老司机午夜福利在线观看视频 | 一级毛片精品| 日本欧美视频一区| 高清黄色对白视频在线免费看| 亚洲美女黄色视频免费看| 久久 成人 亚洲| 在线观看一区二区三区激情| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| av超薄肉色丝袜交足视频| 亚洲欧美日韩高清在线视频 | 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 又大又爽又粗| 亚洲精品国产色婷婷电影| www.自偷自拍.com| 人成视频在线观看免费观看| 亚洲欧美日韩高清在线视频 | 国产91精品成人一区二区三区 | 久久九九热精品免费| 欧美日韩一级在线毛片| 精品少妇久久久久久888优播| av天堂在线播放| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频 | 日日夜夜操网爽| 欧美少妇被猛烈插入视频| 9191精品国产免费久久| 一边摸一边做爽爽视频免费| 国产免费现黄频在线看| 亚洲成国产人片在线观看| 高清在线国产一区| 日韩制服丝袜自拍偷拍| 午夜福利在线观看吧| 男女国产视频网站| 亚洲熟女毛片儿| 久久亚洲国产成人精品v| 最新在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| 汤姆久久久久久久影院中文字幕| 中国国产av一级| 久久精品亚洲熟妇少妇任你| 国产欧美日韩精品亚洲av| 一级片免费观看大全| 中文字幕人妻熟女乱码| 国产主播在线观看一区二区| 国产亚洲av片在线观看秒播厂| 国产亚洲av高清不卡| 又黄又粗又硬又大视频| 午夜91福利影院| 91九色精品人成在线观看| 丝袜美足系列| 久久精品亚洲熟妇少妇任你| 纯流量卡能插随身wifi吗| 亚洲欧美色中文字幕在线| 国产有黄有色有爽视频| 制服诱惑二区| 亚洲欧洲日产国产| 亚洲午夜精品一区,二区,三区| 黑人欧美特级aaaaaa片| 搡老熟女国产l中国老女人| 大片电影免费在线观看免费| 国产亚洲午夜精品一区二区久久| 亚洲色图综合在线观看| 老汉色∧v一级毛片| 亚洲精品中文字幕在线视频| 亚洲国产毛片av蜜桃av| 考比视频在线观看| 日韩熟女老妇一区二区性免费视频| 叶爱在线成人免费视频播放| 国产黄色免费在线视频| 久久久国产成人免费| 亚洲国产av影院在线观看| www.熟女人妻精品国产| 亚洲成人手机| 亚洲va日本ⅴa欧美va伊人久久 | 人妻人人澡人人爽人人| avwww免费| 国产黄色免费在线视频| 久久热在线av| 欧美+亚洲+日韩+国产| 亚洲精品久久久久久婷婷小说| 中文字幕最新亚洲高清| 婷婷色av中文字幕| 51午夜福利影视在线观看| 亚洲精品久久午夜乱码| 亚洲专区国产一区二区| www.av在线官网国产| 亚洲人成电影免费在线| 国产精品国产三级国产专区5o| 欧美黄色片欧美黄色片| 欧美日韩成人在线一区二区| 大片免费播放器 马上看| 99精品欧美一区二区三区四区| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影 | 三级毛片av免费| 亚洲中文日韩欧美视频| 蜜桃在线观看..| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 欧美精品亚洲一区二区| 9191精品国产免费久久| 欧美黑人欧美精品刺激| 亚洲免费av在线视频| 亚洲全国av大片| 国产成人精品久久二区二区91| 男女国产视频网站| 久久国产亚洲av麻豆专区| 精品人妻在线不人妻| 最新的欧美精品一区二区| 欧美精品av麻豆av| 欧美午夜高清在线| 免费久久久久久久精品成人欧美视频| 999精品在线视频| 国产成人精品在线电影| 亚洲国产中文字幕在线视频| videos熟女内射| 捣出白浆h1v1| 久久青草综合色| 国产成人欧美| 一区二区三区精品91| 亚洲欧美日韩高清在线视频 | 超碰97精品在线观看| cao死你这个sao货| 99久久99久久久精品蜜桃| 亚洲欧美色中文字幕在线| 老司机午夜十八禁免费视频| 久热爱精品视频在线9| 欧美激情极品国产一区二区三区| 国产精品 欧美亚洲| 成人国产一区最新在线观看| 超色免费av| 日本av手机在线免费观看| 91精品三级在线观看| 在线 av 中文字幕| 日韩一区二区三区影片| 一本一本久久a久久精品综合妖精| 日韩欧美国产一区二区入口| 欧美精品一区二区大全| 亚洲国产av影院在线观看| www.精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 69av精品久久久久久 | 男人舔女人的私密视频| 欧美日韩亚洲高清精品| 人妻久久中文字幕网| 成在线人永久免费视频| 久久精品国产亚洲av高清一级| 国产高清国产精品国产三级| 少妇粗大呻吟视频| 成在线人永久免费视频| 亚洲国产成人一精品久久久| 曰老女人黄片| 他把我摸到了高潮在线观看 | 蜜桃在线观看..| 久久天躁狠狠躁夜夜2o2o| 最近最新免费中文字幕在线| 可以免费在线观看a视频的电影网站| 两人在一起打扑克的视频| 91麻豆av在线| www.999成人在线观看| 一级片免费观看大全| 日日爽夜夜爽网站| 精品一品国产午夜福利视频| 在线观看免费午夜福利视频| 在线 av 中文字幕| 欧美午夜高清在线| 国产成人av教育| 久久影院123| 日韩制服骚丝袜av| 麻豆乱淫一区二区| 大香蕉久久网| 一级毛片女人18水好多| 成年动漫av网址| 汤姆久久久久久久影院中文字幕| netflix在线观看网站| 亚洲成人免费av在线播放| 欧美亚洲日本最大视频资源| 亚洲性夜色夜夜综合| 久久午夜综合久久蜜桃| 一区福利在线观看| 国产熟女午夜一区二区三区| av电影中文网址| 国产在线一区二区三区精| 亚洲七黄色美女视频| 亚洲国产精品一区三区| 一个人免费看片子| 国产熟女午夜一区二区三区| 国产av国产精品国产| 波多野结衣av一区二区av| videosex国产| 久久久久久亚洲精品国产蜜桃av| 亚洲全国av大片| 久久久国产成人免费| 精品福利观看| 黑丝袜美女国产一区| 50天的宝宝边吃奶边哭怎么回事| 欧美激情 高清一区二区三区| 首页视频小说图片口味搜索| 成人av一区二区三区在线看 | 一本色道久久久久久精品综合| 亚洲精品成人av观看孕妇| 亚洲精华国产精华精| 亚洲精品av麻豆狂野| 国产真人三级小视频在线观看| 亚洲欧美成人综合另类久久久| 欧美精品av麻豆av| 欧美日韩精品网址| 性色av一级| 精品视频人人做人人爽| 一区福利在线观看| 欧美亚洲日本最大视频资源| 老熟妇仑乱视频hdxx| 狠狠婷婷综合久久久久久88av| 午夜福利,免费看| 这个男人来自地球电影免费观看| 脱女人内裤的视频| 色老头精品视频在线观看| 制服人妻中文乱码| 国产在线观看jvid| 成在线人永久免费视频| 久久精品国产亚洲av高清一级| 夫妻午夜视频| 久久久久精品国产欧美久久久 | 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 午夜精品久久久久久毛片777| 热99re8久久精品国产| 免费看十八禁软件| 欧美精品av麻豆av| 韩国高清视频一区二区三区| 最近中文字幕2019免费版| 男人操女人黄网站| 91老司机精品| 精品国产国语对白av| 亚洲中文日韩欧美视频| 亚洲 国产 在线| 欧美激情 高清一区二区三区| 香蕉国产在线看| 99国产精品99久久久久| 亚洲欧美色中文字幕在线| 人人妻人人澡人人看| 久久精品国产综合久久久| 中亚洲国语对白在线视频| 精品久久蜜臀av无| 丝瓜视频免费看黄片| 中亚洲国语对白在线视频| 视频在线观看一区二区三区| 国产欧美日韩一区二区三 | 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 一个人免费看片子| 精品免费久久久久久久清纯 | 亚洲av成人一区二区三| 亚洲精品国产av成人精品| 制服人妻中文乱码| 久久久久国产精品人妻一区二区| www.自偷自拍.com| 一级片免费观看大全| 亚洲中文字幕日韩| 如日韩欧美国产精品一区二区三区| 国产精品熟女久久久久浪| 久久狼人影院| 中国国产av一级| 女性被躁到高潮视频| 亚洲第一青青草原| 欧美另类亚洲清纯唯美| 国产在线观看jvid| 欧美少妇被猛烈插入视频| 十八禁高潮呻吟视频| 男人操女人黄网站| 啦啦啦啦在线视频资源| 亚洲国产av影院在线观看| 飞空精品影院首页| 最黄视频免费看| 亚洲少妇的诱惑av| 国产极品粉嫩免费观看在线| 黄色 视频免费看| 18在线观看网站| 老熟妇乱子伦视频在线观看 | 亚洲精品乱久久久久久| 他把我摸到了高潮在线观看 | 在线永久观看黄色视频| 老司机福利观看| 国产主播在线观看一区二区| 婷婷丁香在线五月| 色视频在线一区二区三区| 91麻豆精品激情在线观看国产 | 天天操日日干夜夜撸| 韩国高清视频一区二区三区| 男女边摸边吃奶| 色94色欧美一区二区| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 视频区图区小说| 大码成人一级视频| 国产欧美日韩一区二区三 | 一本综合久久免费| 精品国产乱码久久久久久男人| 免费日韩欧美在线观看| 日本黄色日本黄色录像| 亚洲专区字幕在线| 桃红色精品国产亚洲av| 亚洲精品一区蜜桃| 久久久精品94久久精品| 大香蕉久久网| 美女国产高潮福利片在线看| 男人操女人黄网站| 国产在线观看jvid| 人人澡人人妻人| 欧美午夜高清在线| 一本大道久久a久久精品| 男女高潮啪啪啪动态图| av国产精品久久久久影院| 久久国产精品人妻蜜桃| 一级毛片女人18水好多| 成年人午夜在线观看视频| 午夜福利,免费看| 国产精品欧美亚洲77777| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 国产一区二区三区av在线| 日韩大片免费观看网站| 99国产精品99久久久久| 欧美午夜高清在线| 国产精品免费大片| 搡老岳熟女国产| 日韩中文字幕视频在线看片| 精品亚洲成a人片在线观看| 黄色视频,在线免费观看| 高潮久久久久久久久久久不卡| 国产又爽黄色视频| 在线av久久热| 午夜福利视频在线观看免费| 操美女的视频在线观看| 欧美+亚洲+日韩+国产| 国产欧美日韩综合在线一区二区| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av高清一级| 亚洲欧美清纯卡通| 国产精品.久久久| 一级毛片女人18水好多| 精品乱码久久久久久99久播| av天堂久久9| 日韩欧美一区二区三区在线观看 | 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 久久久国产一区二区| 在线观看一区二区三区激情| 两人在一起打扑克的视频| 日韩制服丝袜自拍偷拍| 波多野结衣一区麻豆| 999精品在线视频| 精品国产乱码久久久久久小说| 精品国产超薄肉色丝袜足j| 亚洲激情五月婷婷啪啪| 欧美精品亚洲一区二区| 母亲3免费完整高清在线观看| 亚洲一区中文字幕在线| 国产免费福利视频在线观看| 人妻人人澡人人爽人人| 久久久国产精品麻豆| 在线观看免费高清a一片| 国产一区二区三区综合在线观看| xxxhd国产人妻xxx| 亚洲国产日韩一区二区| 一级毛片女人18水好多| 精品人妻熟女毛片av久久网站| 黄色怎么调成土黄色| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av香蕉五月 | 青春草视频在线免费观看| 大片电影免费在线观看免费| 国产xxxxx性猛交| 久久久国产一区二区| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 国产av一区二区精品久久| 国产片内射在线| 国产一卡二卡三卡精品| 黑人猛操日本美女一级片| 亚洲国产看品久久| 国产亚洲欧美精品永久| 国产精品香港三级国产av潘金莲| 亚洲综合色网址| 久久精品aⅴ一区二区三区四区| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区| 国产亚洲午夜精品一区二区久久| 国产主播在线观看一区二区| 欧美中文综合在线视频| 日韩精品免费视频一区二区三区| 久久久久国产一级毛片高清牌| 少妇精品久久久久久久| 老司机福利观看| 两个人免费观看高清视频| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 精品少妇久久久久久888优播| 19禁男女啪啪无遮挡网站| 在线观看免费高清a一片| 精品国产一区二区三区久久久樱花| 国产亚洲精品一区二区www | 国产精品一区二区在线不卡| 亚洲第一青青草原|