• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高強(qiáng)鋁合金中間相Al2Cu,Al2CuMg和MgZn2性能的第一性原理計(jì)算

    2016-12-08 05:31:28范世通鄧運(yùn)來
    航空材料學(xué)報(bào) 2016年6期
    關(guān)鍵詞:結(jié)合能高強(qiáng)模量

    廖 飛,范世通,鄧運(yùn)來,2,張 勁

    (1.中南大學(xué) 材料科學(xué)與工程學(xué)院,長沙 410083;2.中南大學(xué) 有色金屬材料科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,長沙 410083;3.中南大學(xué) 輕合金研究院,長沙 410083)

    ?

    高強(qiáng)鋁合金中間相Al2Cu,Al2CuMg和MgZn2性能的第一性原理計(jì)算

    廖 飛1,范世通1,鄧運(yùn)來1,2,張 勁3

    (1.中南大學(xué) 材料科學(xué)與工程學(xué)院,長沙 410083;2.中南大學(xué) 有色金屬材料科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,長沙 410083;3.中南大學(xué) 輕合金研究院,長沙 410083)

    采用第一性原理平面波贗勢(shì)方法,計(jì)算Al-Zn-Mg-Cu系高強(qiáng)鋁合金主要中間相Al2Cu,Al2CuMg和MgZn2的結(jié)合能、形成焓、彈性常數(shù)及態(tài)密度。計(jì)算結(jié)果表明:3相結(jié)合能按MgZn2>Al2CuMg>Al2Cu順序遞減;形成焓按MgZn2>Al2Cu>Al2CuMg順序遞減;Al2Cu具有很高的彈性模量,同時(shí)具有一定的塑性,可以作為合金的強(qiáng)化相;Al2CuMg是典型的脆性相,并表現(xiàn)出明顯的各向異性,容易誘導(dǎo)產(chǎn)生裂紋;MgZn2具有良好的塑性,同時(shí)熔點(diǎn)較低,是合金的主要強(qiáng)化相;3相中均存在離子鍵的相互作用,提高了結(jié)構(gòu)穩(wěn)定性;通過適當(dāng)降低Cu,Mg含量,提高Zn的含量,有利于生成MgZn2相,進(jìn)一步提高合金的綜合性能。

    高強(qiáng)鋁合金;中間相;第一性原理;力學(xué)性能

    Al-Zn-Mg-Cu系高強(qiáng)鋁合金由于高的比強(qiáng)度、比模量和良好的斷裂韌性、抗疲勞、耐腐蝕等性能,一直作為主要的結(jié)構(gòu)材料應(yīng)用于航空航天領(lǐng)域[1-2]。Zn,Mg,Cu作為主合金元素,既可溶解于鋁基體中形成固溶體,也可與鋁元素形成中間相,是影響合金性能的關(guān)鍵因素之一。如何優(yōu)化合金的成分設(shè)計(jì),是眾多學(xué)者一直關(guān)心的問題。第一性原理方法通過求解量子力學(xué)方程計(jì)算出材料的各種性質(zhì),不依賴任何經(jīng)驗(yàn)參數(shù),為研究鋁合金的主合金成分元素總量及其配比提供了方便[3],是材料設(shè)計(jì)領(lǐng)域的一個(gè)新興方向。

    θ相(Al2Cu)、S相(Al2CuMg)和η相(MgZn2)是Al-Zn-Mg-Cu系鋁合金中主合金元素形成的常見中間相。研究表明:θ相(Al2Cu)作為時(shí)效強(qiáng)化相,具有一定的塑性[4];S相(Al2CuMg)是一種脆性相[5];η相(MgZn2)分布彌散,是高強(qiáng)鋁合金的主要強(qiáng)化相[6]。全面了解3相的特性對(duì)于優(yōu)化成分設(shè)計(jì)、挖掘合金潛力具有重要的意義。本工作結(jié)合第一性原理,通過計(jì)算θ相(Al2Cu)、S相(Al2CuMg)和η相(MgZn2)的結(jié)合能、形成焓、彈性常數(shù)、態(tài)密度和Bader電荷,對(duì)3種中間相的結(jié)構(gòu)穩(wěn)定性、力學(xué)性質(zhì)和電子特性進(jìn)行理論研究,為Al-Zn-Mg-Cu系鋁合金主合金成分設(shè)計(jì)提供理論依據(jù)。

    1 計(jì)算模型與參數(shù)

    所有的計(jì)算均是基于密度泛函理論的第一性原理平面波贗勢(shì)方法,采用VASP[7](Vienna Ab-inito Simulation Package) 總能計(jì)算程序進(jìn)行。電子-離子間的相互作用采用投影綴加波方法(PAW)[8]來精確描述,電子之間的交換關(guān)聯(lián)勢(shì)采用廣義梯度近似(GGA)下的PBE[9]方法來處理。各元素的價(jià)電子為Al-3s23p1,Mg-3s2,Cu-3d104s1,Zn-3d104s2,其余電子作為芯電子。晶胞模型的簡(jiǎn)約布里淵區(qū)K點(diǎn)采用Monkhorst-Pack[10]方法劃分,Al2Cu,Al2CuMg和MgZn2單胞網(wǎng)格數(shù)分別為12×12×15,14×6×8和16×16×10;電子Kohn-Sham波函數(shù)用平面波基組展開,經(jīng)過收斂性測(cè)試,平面波截?cái)嗄芫?00 eV。采用Blocked Davidson + RMM-DIIS的組合算法進(jìn)行電子優(yōu)化,同時(shí)總能的計(jì)算基于一階Methfessel-Paxton方法,直到體系總能收斂于1×10-5eV/atom,每個(gè)原子的受力小于0.1 eV/nm。Al2Cu,Al2CuMg和MgZn23相的晶胞模型見圖1。

    圖1 Al2Cu(a),Al2CuMg(b)和MgZn2(c)的晶胞模型Fig.1 Unit cells of the phases Al2Cu(a), Al2CuMg(b) and MgZn2 (c)

    2 結(jié)果與分析

    2.1 形成焓和結(jié)合能

    表1為計(jì)算得到的Al2Cu,Al2CuMg和MgZn23相的晶格參數(shù)。與文獻(xiàn)中實(shí)驗(yàn)值和計(jì)算值比較,相對(duì)誤差都在1%以內(nèi),理論結(jié)果與實(shí)驗(yàn)結(jié)果符合較好,說明采用的晶胞模型和計(jì)算方法是準(zhǔn)確可行的。

    結(jié)合能(Ecoh)是原子由自由狀態(tài)結(jié)合為晶體化合物的過程中所釋放的能量,也即晶體分解成單個(gè)原子時(shí)外界所做的功,可以表征原子鍵合作用強(qiáng)度,是描述相結(jié)構(gòu)穩(wěn)定的條件之一。當(dāng)結(jié)合能為負(fù)值時(shí),其絕對(duì)值越大,代表形成的晶體越穩(wěn)定。形成焓(ΔH)用來表征物質(zhì)由單質(zhì)狀態(tài)生成晶體化合物的過程中所吸收或釋放的能量,反映了合金相形成的難易程度,形成焓的絕對(duì)值越大表明合金化能力越強(qiáng)。它們可以分別通過公式(1)和(2)求得。

    表1 Al2Cu,Al2CuMg和MgZn2三相的空間群、晶格參數(shù)、結(jié)合能及形成焓

    (1)

    (2)

    計(jì)算表明,Al2Cu與Al2CuMg比MgZn2結(jié)合能的絕對(duì)值大,說明Al2Cu和Al2CuMg比MgZn2熔點(diǎn)更高,相更穩(wěn)定,即需要更多的能量才能將其分解。由表1可知,Al2CuMg的形成焓絕對(duì)值最高,Al2Cu次之,MgZn2最小,表明Al2CuMg和Al2Cu較MgZn2更易形成,這與劉俊濤等[17]通過實(shí)驗(yàn)與相圖方法得出的結(jié)論一致。

    2.2 力學(xué)性能

    彈性常數(shù)描述了晶體對(duì)外加應(yīng)變?chǔ)诺捻憫?yīng)的剛度,在應(yīng)變很小的情況下,體系的內(nèi)能與應(yīng)變的大小存在二次線性關(guān)系?;谶@種能量-應(yīng)變關(guān)系,對(duì)體系施加不同方向和大小的應(yīng)變,可以得到晶體的某個(gè)彈性常數(shù)或彈性常數(shù)的組合,最終得出晶體的彈性常數(shù)矩陣。Al2Cu,Al2CuMg和MgZn23相彈性常數(shù)的具體的計(jì)算結(jié)果見表2。

    基于計(jì)算得到的二次彈性系數(shù)矩陣,應(yīng)用Voigt-Reuss-Hill近似[18],可以得到不同晶系的多晶彈性性質(zhì)。對(duì)于四方晶系(Al2Cu),它具有六個(gè)獨(dú)立彈性常數(shù)(C11,C12,C13,C33,C44和C66),Voigt邊界值和Reuss邊界值由下列公式計(jì)算得出[19]:

    (3)

    (4)

    (5)

    (6)

    對(duì)于六方晶系(MgZn2),它具有五個(gè)獨(dú)立彈性常數(shù)(C11,C12,C13,C33和C44),Voigt邊界值和Reuss邊界值由下列公式計(jì)算得出[19]:

    (7)

    (8)

    (9)

    (10)

    對(duì)于正交晶系(Al2CuMg),它具有八個(gè)獨(dú)立彈性常數(shù)(C11,C12,C13,C23,C33,C44,C55和C66),Voigt邊界值和Reuss邊界值由下列公式計(jì)算得出[20]:

    (11)

    (12)

    (13)

    (14)

    式中:Sij為彈性柔順常數(shù),是彈性常數(shù)Cij矩陣的逆矩陣。其中:

    材料的穩(wěn)定性不僅包括能量的穩(wěn)定性,還包括力學(xué)穩(wěn)定性,經(jīng)驗(yàn)證Al2Cu,Al2CuMg和MgZn23相分別滿足下列Born-Huang穩(wěn)定性判據(jù)[21]。

    (1)對(duì)四方晶系而言C11>0,C33>0,C44>0,C66>0,(C11-C12)>0,(C11+C33-2C13)>0,[2(C11+C12)+C33+4C13]>0

    (2)對(duì)正交晶系而言Cii>0 (i=1 to 6),C11+C22-2C12>0,C22+C33-2C23>0,C11+C33-2C13>0,C11+C22+C33+2C12+2C13+2C23>0

    力學(xué)性能的計(jì)算結(jié)果列于表3。一般而言,體彈模量定義為抵抗外界壓力而導(dǎo)致體積變化的能力,其值越大則不可壓縮性越好;剪切模量表征材料抵抗切應(yīng)變的能力,模量越大,則表示材料的剛性越強(qiáng)。從表3可以看出Al2Cu的體彈模量最高,而Al2CuMg的剪切模量最大,MgZn2無論是體彈模量還是剪切模量均是三者最低的,表明Al2Cu和Al2CuMg的抗壓縮能力和抗剪切能力分別最好。高的體彈模量和剪切模量在一定程度上也反映了晶體原子間具有較強(qiáng)的鍵合作用。泊松比(ν)也可以用來表征材料的抗剪切能力,其值一般在-1到0.5之間,泊松比越小表示抗剪切能力越強(qiáng),計(jì)算結(jié)果表明Al2CuMg的抗剪切能力最好,與剪切模量(G)的結(jié)果是一致的。

    Pugh[24]引入了一個(gè)一般性準(zhǔn)則來預(yù)測(cè)材料的延展性和塑性行為:體彈模量(B)與剪切模量(G)的比值B/G>1.75時(shí),材料表現(xiàn)為塑性,否則為脆性;比值越大,塑性越好。從表3可以看出Al2Cu和MgZn2均為塑性相,Al2CuMg為脆性相。此外,C11-C12也是評(píng)估材料力學(xué)性能的一個(gè)重要參數(shù):C11-C12的值越小,材料的塑性越好。從表3可以看出MgZn2的塑性最好,Al2Cu次之,Al2CuMg最差。

    表2 Al2Cu,Al2CuMg和MgZn2的彈性常數(shù)

    表3 Al2Cu,Al2CuMg和MgZn2力學(xué)性能參數(shù)

    Note:B—bulk modulus;G—shear modulus;E—elastic modulus;B/G—modulus′ proportion;C11-C12—elastic constants′ difference;ν—Poisson′s ratio;Au—universal elastic anisotropy index.

    彈性模量(E)反映了材料產(chǎn)生彈性形變的難易程度,Al2Cu的彈性模量值最大,表明發(fā)生一定彈性變形的應(yīng)力最大,即材料剛度最大。Al2Cu和Al2CuMg較MgZn2具有更高的彈性模量,可以作為基體的強(qiáng)化相而存在,但是Al2CuMg作為脆性相,在合金變形時(shí)容易成為裂紋的萌生點(diǎn),這也可以從材料的彈性各向異性值A(chǔ)U看出,其計(jì)算公式如下[25]:

    (15)

    式中:GV和GR分別為Voiget和Reuss的剪切模量值;BV和BR分別為Voiget和Reuss的體彈模量值。當(dāng)AU為0時(shí)表示彈性各向同性,偏離0值越多表示各向異性越嚴(yán)重。從表3可以看出MgZn2的各向同性最好,有利于變形鋁合金的加工;Al2CuMg表現(xiàn)出較強(qiáng)的各向異性,容易誘發(fā)微裂紋。

    2.3 電子結(jié)構(gòu)

    為了揭示Al2Cu,Al2CuMg和Al2Cu的成鍵特性,進(jìn)一步了解3相的結(jié)構(gòu)穩(wěn)定性差別,分別計(jì)算了它們的分波態(tài)密度(PDOS)和總態(tài)密度(TDOS),如圖2所示,虛線表示費(fèi)米能級(jí)。從圖2可以看出,3相的一個(gè)共同特征是總態(tài)密度上均存在一個(gè)特別尖銳的峰,分別位于-3.99 eV,-3.85 eV和-7.34 eV附近,這是過渡金屬的典型特征,由Cu和Zn的d電子軌道引起的,說明d電子相對(duì)比較局域。Al2Cu的波峰主要集中在-9~6 eV之間,電子之間的雜化作用并不明顯,費(fèi)米能級(jí)附近的自由電子主要來自于Al 3p態(tài)電子的貢獻(xiàn);Al2CuMg的波峰主要集中在-8~4 eV之間,在費(fèi)米能級(jí)附近,Al的3s 3p軌道與Cu的3p 4s軌道形狀相似,出現(xiàn)一定的雜化,使得Al2CuMg帶有一定的共價(jià)鍵特征;MgZn2波峰位置較寬,費(fèi)米能級(jí)附近的電子主要來自Mg的3s 3p態(tài)電子和Zn的3p態(tài)電子。由于大量的價(jià)電子出現(xiàn)在費(fèi)米能級(jí)附近,因此Al2Cu,Al2CuMg和MgZn23相均存在金屬導(dǎo)電性。

    圖2 Al2Cu,Al2CuMg和MgZn2相的態(tài)密度Fig.2 Graphs of density of states of Al2Cu, Al2CuMg and MgZn2(dashed lines represent Fermi level)(a) Al2Cu; (b) Al2CuMg; (c) MgZn2

    Bader電荷分析[26]可以更精確地得出電荷轉(zhuǎn)移情況,如表4所示。Bader電荷計(jì)算結(jié)果給出了不同原子的總價(jià)電子分布和體積。每個(gè)原子的電子數(shù)與所選取的贗勢(shì)有關(guān),原子電荷定義為晶體結(jié)構(gòu)中原子周圍價(jià)電子總和與孤立原子對(duì)應(yīng)價(jià)電子之間的差別。Al2Cu中每個(gè)Cu原子得到1.67個(gè)電子,每個(gè)Al原子約失去0.83個(gè)電子;Al2CuMg中每個(gè)Al原子失去約0.51個(gè)電子,每個(gè)Mg原子失去1.48個(gè)電子,每個(gè)Cu原子得到2.50個(gè)電子;MgZn2中每個(gè)Mg原子失去1.44電子,不同位置的Zn原子分別得到0.70和0.78個(gè)電子。從結(jié)果可以看出,Al2Cu,Al2CuMg和MgZn23相均出現(xiàn)了電荷轉(zhuǎn)移,原子之間除了金屬鍵之外還存在著離子鍵,特別是對(duì)于Al2Cu和Al2CuMg而言,電荷發(fā)生了明顯轉(zhuǎn)移,表現(xiàn)出強(qiáng)離子相互作用,因此其結(jié)構(gòu)很穩(wěn)定,與之前結(jié)合能的計(jì)算結(jié)果及力學(xué)分析結(jié)果是相一致的。

    表4 Al2Cu,Al2CuMg和MgZn2 3相的Bader電荷

    3 分析與討論

    Al-Zn-Mg-Cu系高強(qiáng)鋁合金的力學(xué)性能主要取決于Zn,Mg的含量,Zn和Mg在合金中形成主要強(qiáng)化相MgZn2相,隨著Zn,Mg元素含量的增加,合金強(qiáng)度顯著地提高。從第一性原理的計(jì)算結(jié)果可以看出,MgZn2結(jié)合能較高(Ecoh_η=-132.628 kJ/mol),同時(shí)電子結(jié)構(gòu)分析也清楚地表明MgZn2的電子軌道共價(jià)雜化主要是較弱的Mg s-Zn s雜化,說明原子之間的鍵合作用不強(qiáng),MgZn2可以很好地固溶到Al基體中。實(shí)際上,Al-Zn-Mg-Cu高強(qiáng)鋁合金具有很強(qiáng)的時(shí)效硬化能力,其中一個(gè)重要原因就是MgZn2在合金中的溶解度會(huì)隨著溫度上升急劇升高[27]。相反地,Al2Cu與Al2CuMg結(jié)合能更低(Ecoh_θ=-353.181 kJ/mol,Ecoh_S=-307.587 kJ/mol),原子間鍵合作用較強(qiáng),與MgZn2相比固溶將更加困難。Li等[28]通過實(shí)驗(yàn)手段研究了Al-Zn-Mg-Cu系高強(qiáng)鋁合金在熱處理過程中第二相的變化情況,發(fā)現(xiàn)在二級(jí)固溶制度(470 ℃/4 h+485 ℃/0.5 h)下,合金中仍然有殘留的Al2CuMg相,從側(cè)面驗(yàn)證了本工作計(jì)算結(jié)果的合理性。

    此外,中間相的力學(xué)性能對(duì)Al-Zn-Mg-Cu系高強(qiáng)鋁合金也有著重要的影響。計(jì)算結(jié)果表明,Al2Cu和Al2CuMg具有很高的彈性模量(Eθ=117.88 GPa,ES=113.96 GPa),可以作為合金的強(qiáng)化相,這也是合金中加入Cu元素的重要目的之一。樊喜剛[29]研究了Cu含量對(duì)Al-Zn-Mg-Cu系高強(qiáng)鋁合金的組織性能的影響,發(fā)現(xiàn)合金強(qiáng)度隨著Cu含量的提高而升高,但伸長率會(huì)降低(見圖3)。本工作的計(jì)算結(jié)果很好地解釋了這種現(xiàn)象:提高合金中的Cu含量可以增加合金中的Al2Cu和Al2CuMg相,使合金的強(qiáng)度升高;但是Al2CuMg相具有很高的體模量與剪切模量,相結(jié)構(gòu)特別穩(wěn)定,容易引起合金中存在粗大(>1 μm)第二相,導(dǎo)致合金的韌性下降,伸長率降低。與此同時(shí),各向異性值A(chǔ)U也反映出Al2CuMg相具有很強(qiáng)的各向異性,很容易成為裂紋的萌生點(diǎn),進(jìn)一步降低了材料的伸長率。

    Al2Cu,Al2CuMg和MgZn23相穩(wěn)定性上的差異,與它們的電子結(jié)構(gòu)有直接的關(guān)系。原子軌道雜化提高了相的穩(wěn)定性,同時(shí)原子之間的電荷轉(zhuǎn)移使得3相金屬鍵與離子鍵共存,特別是Al2CuMg電荷轉(zhuǎn)移最為明顯,Al2Cu次之,表現(xiàn)出很強(qiáng)的離子鍵特性,這也可以從Bader電荷計(jì)算中明顯反映出來:Al2CuMg中的每個(gè)Al原子和Mg原子分別轉(zhuǎn)移了約0.51個(gè)電子和1.48個(gè)電子給Cu原子,Cu原子與Mg原子之間具有很強(qiáng)的離子鍵;Al2Cu中的每個(gè)Al原子轉(zhuǎn)移了約0.85個(gè)電子給Cu原子,Cu原子與Al原子之間也具有較強(qiáng)的離子鍵;MgZn2中每個(gè)Zn原子得到約0.70個(gè)來自Mg原子的電子,與Al2CuMg和Al2Cu相比離子鍵作用相對(duì)更弱一些。由于離子鍵的鍵能較大,這種電子結(jié)構(gòu)上的差別,造成了它們結(jié)合能、彈性常數(shù)和熔點(diǎn)上的差異。此外,也有學(xué)者認(rèn)為[30]MgZn2相中可以溶入少量的Al和Cu。Xu等[31]詳細(xì)研究了Al和Cu對(duì)MgZn2相穩(wěn)定性的影響,發(fā)現(xiàn)當(dāng)Al與Cu以一定的比例溶入到MgZn2中時(shí),相的形成焓會(huì)進(jìn)一步降低,能夠提高相的穩(wěn)定性。

    從3相對(duì)合金性能的影響可以看出,合理設(shè)計(jì)Zn,Mg,Cu元素的含量對(duì)于改善Al-Zn-Mg-Cu系高強(qiáng)鋁合金的性能具有重要的意義。Al2Cu的彈性模量值很高,同時(shí)具有一定的塑性,可以作為基體的強(qiáng)化相而存在;Al2CuMg相雖然可以提高合金強(qiáng)度,但是容易導(dǎo)致合金在變形中產(chǎn)生裂紋,降低合金的伸長率和疲勞性能,應(yīng)該通過合理的成分設(shè)計(jì)和熱處理制度[32]降低它在合金中的數(shù)量;從相結(jié)構(gòu)的穩(wěn)定性和力學(xué)性能來看,MgZn2都是三者之中最好的強(qiáng)化相,應(yīng)該努力促進(jìn)它的析出。提高Zn含量可以促進(jìn)MgZn2相的生成,同時(shí)導(dǎo)致Al基體中Mg含量下降,從而進(jìn)一步抑制Al2CuMg相的生成。由于Cu不僅可以生成Al2Cu和Al2CuMg相,也可以降低晶界和晶內(nèi)的電位差,提高合金的抗腐蝕性能。因此,在保證防腐蝕性能的基礎(chǔ)上,通過適當(dāng)降低Cu,Mg含量,提高Zn的含量,可以使合金獲得更好的綜合性能。

    圖3 不同Cu含量的Al-Zn-Mg-Cu系高強(qiáng)鋁合金力學(xué)性能[29]Fig.3 Mechanical properties of Al-Zn-Mg-Cu high strength aluminum alloys with different Cu contents

    4 結(jié) 論

    (1)結(jié)構(gòu)優(yōu)化計(jì)算得到的Al2Cu,Al2CuMg和MgZn23相的晶格參數(shù)與實(shí)驗(yàn)值符合較好。能量計(jì)算表明3相均是穩(wěn)定存在的,結(jié)合能按以下順序遞減:MgZn2>Al2CuMg>Al2Cu;形成焓按以下順序遞減:MgZn2>Al2Cu>Al2CuMg;說明Al2Cu相最穩(wěn)定,而Al2CuMg相最容易形成。

    (2)根據(jù)Pugh的一般性準(zhǔn)則和C11-C12的值,MgZn2和Al2Cu為塑性相,而Al2CuMg是典型的脆性相。結(jié)合體模量(B)、剪切模量(G)與能量計(jì)算,發(fā)現(xiàn)Al2Cu具有很高的彈性模量,可以作為合金的強(qiáng)化相;Al2CuMg表現(xiàn)出明顯的各向異性,容易誘導(dǎo)產(chǎn)生裂紋,從而降低合金的伸長率和疲勞性能,需要控制它在合金中的數(shù)量;MgZn2是合金的主要強(qiáng)化相,應(yīng)該努力促進(jìn)它的析出。

    (3)3種合金相中除了金屬鍵之外,原子間還存在電荷轉(zhuǎn)移,具有一定的離子鍵作用,提高了相結(jié)構(gòu)的穩(wěn)定性。通過適當(dāng)降低Cu,Mg含量,提高Zn的含量,有利于生成MgZn2相,進(jìn)一步提高合金的綜合性能。

    [1] 方華嬋, 陳康華, 巢宏, 等. Al-Zn-Mg-Cu系超強(qiáng)鋁合金的研究現(xiàn)狀與展望[J]. 粉末冶金材料科學(xué)與工程, 2009, 14(6):351-358.

    (FANG H C, CHEN K H, CHAO H,etal. Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6):351-358.)

    [2] 王祝堂, 田榮璋. 鋁合金及其加工手冊(cè)[M]. 長沙:中南工業(yè)大學(xué)出版社, 2000:262-264.

    [3] 張新明, 鄧運(yùn)來, 張勇. 高強(qiáng)鋁合金的發(fā)展及其材料的制備加工技術(shù)[J]. 金屬學(xué)報(bào), 2015, 51(3):257-271.

    (ZHANG X M, DENG Y L, ZHANG Y. Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metallurgica Sinica, 2015, 51(3):257-271.)

    [4] 楊修波. Al-Zn-Mg(Cu)合金的熱處理、微觀結(jié)構(gòu)與性能研究[D]. 長沙:湖南大學(xué), 2014.

    (YANG X B. Research on microstructures and properties of Al-Zn-Mg (Cu) alloy after different heat treatment[D]. Changsha:Hunan University, 2014.)

    [5] ZHANG J, HUANG Y N, MAO C,etal. Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al-Cu-Mg series alloys:First-principles calculations[J]. Solid State Communications, 2012, 152(23):2100-2104.

    [6] 韓逸, 李煉, 鄧楨楨, 等. 熱力學(xué)計(jì)算優(yōu)化Al-Zn-Mg-Cu合金成分[J]. 中國有色金屬學(xué)報(bào), 2011, 21(1):179-184.

    (HAN Y, LI L, DENG Z Z,etal. Constituent optimization of Al-Zn-Mg-Cu alloy based on thermodynamic calculation method[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1):179-184.)

    [7] FURTHMüLLER J, KRESSE G. Efficient iterative schemes forabinitiototal-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.

    [8] JOUBERT D, KRESSE G. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3):1758-1775.

    [9] BURKE K, ERNZERHOF M, PERDEW J P. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.

    [10] PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192.

    [11] GRIN Y, WAGNER F R, ARMBRüSTER M,etal. CuAl2revisited:composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy[J]. Journal of Solid State Chemistry, 2006, 179(6):1707-1719.

    [12] CHEN H, YANG L, LONG J. First-principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds[J]. Superlattices and Microstructures, 2015, 79(2):156-165.

    [13] CALVERT L D, VILLARS P. Pearson’s handbook of crystallographic data for intermetallic phases[M]. OH:ASM, Materials Park, 1991.

    [14] HEYING B, HOFFMANN R D, POETTGEN R. Structure refinement of the S-phase precipitate MgCuAl2[J]. Chem Inform, 2005, 36(33):491-494.

    [15] YANG J, WANG J L, WU Y M,etal. Extended application of edge-to-edge matching model to HCP/HCP (α-Mg/MgZn2) system in magnesium alloys[J]. Materials Science and Engineering:A, 2007, 460/461(5):296-300.

    [16] KOMURA Y, TOKUNAGA K. Structural studies of stacking variants in Mg-base Friauf-Laves phases[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry, 1980, 36(7):1548-1554.

    [17] 劉俊濤, 張永安, 李錫武, 等. Al-9.5 Zn-2.0 Mg-1.7 Cu 合金的熱力學(xué)計(jì)算[J]. 航空材料學(xué)報(bào), 2013, 33(6):1-7.

    (LIU J T, ZHANG Y A, LI X W,etal. Thermodynamic calculation of Al-9.5Zn-2.0Mg-1.7Cu alloy[J]. Journal of Aeronautical Materials, 2013, 33(6):1-7.)

    [18] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society A, 1952, 65(5):349-357.

    [19] WATT J P, PESELNICK L. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries[J]. Journal of Applied Physics, 1980, 51(3):1525-1531.

    [20] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry[J]. Journal of Applied Physics, 1979, 50(10):6290-6295.

    [21] BORN M, HUANG K. Dynamical theory of crystal lattices[M]. Oxford :Oxford University Press, 1998.

    [22] ESHELMAN F R, SMITH J F. Single-crystal elastic constants of Al2Cu[J]. Journal of Applied Physics, 1978, 49(6):3284-3288.

    [23] SEIDENKRANZ T, HEGENBARTH E. Single-crystal elastic constants of MgZn2in the temperature range from 4.2 to 300 K[J]. Physica Status Solidi A, 1976, 33(1):205-210.

    [24] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367):823-843.

    [25] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5):055504.

    [26] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias[J]. Journal of Physics:Condensed Matter, 2009, 21(8):84204-84211.

    [27] 劉曉濤, 崔建忠. Al-Zn-Mg-Cu 系超高強(qiáng)鋁合金的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2005, 19(3):47-51.

    (LIU X T, CUI J Z. Progress in research on ultra high strength Al-Zn-Mg-Cu alloy[J]. Materials Review, 2005, 19(3):47-51.)

    [28] LI C M, CHEN Z Q, ZENG S M,etal. Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys[J]. Science China Technological Sciences, 2013, 56(11):2827-2838.

    [29] 樊喜剛, 蔣大鳴, 單長智, 等. Cu含量對(duì)Al-Zn-Mg-Cu合金的組織性能和斷裂行為的影響[J]. 輕合金加工技術(shù), 2006, 34(2):31-35.

    (FAN X G, JIANG D M, SHAN C Z,etal. Effect of copper content on the properties and fracture behavior in Al-Zn-Mg-Cu alloys[J]. Light Alloy Fabrication Technology, 2006, 34(2):31-35.)

    [30] MARLAUD T, DDESCHAMPS A, BLEY F,etal. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2010, 58(1):248-260.

    [31] FANG X, SONG M, LI K,etal. Effects of Cu and Al on the crystal structure and composition of η (MgZn2) phase in over-aged Al-Zn-Mg-Cu alloys[J]. Journal of Materials Science, 2012, 47(14):5419-5427.

    [32] CHEN K, LIU H, ZHANG Z,etal. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments[J]. Journal of Materials Processing Technology, 2003, 142(1):190-196.

    (責(zé)任編輯:徐永祥)

    First-principle Calculations of Mechanical Properties of Al2Cu,Al2CuMg and MgZn2Intermetallics in High Strength Aluminum Alloys

    LIAO Fei1,FAN Shitong1,DENG Yunlai1,2,ZHANG Jin3

    (1.School of Materials Science and Engineering, Central South University, Changsha 410083, China;2.Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China;3.Light Alloy Research Institute, Central South University, Changsha 410083, China)

    Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh) decreases in the order MgZn2> Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH) decreases in the order MgZn2> Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young’s modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys’ performance further, the generation of MgZn2phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

    high strength aluminum alloy; intermetallics; first-principles; mechanical properties

    2015-12-31;

    2016-03-16

    國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃資助項(xiàng)目(2012CB619505)

    范世通(1985—),男,博士,主要從事高性能鋁合金材料性能研究,(E-mail) fanstone95@163.com。

    10.11868/j.issn.1005-5053.2016.6.001

    TG146.2

    A

    1005-5053(2016)06-0001-08

    猜你喜歡
    結(jié)合能高強(qiáng)模量
    高強(qiáng)
    文史月刊(2023年10期)2023-11-22 07:57:14
    晶體結(jié)合能對(duì)晶格動(dòng)力學(xué)性質(zhì)的影響
    高勁度模量瀝青混合料在京臺(tái)高速車轍維修段的應(yīng)用
    借鑒躍遷能級(jí)圖示助力比結(jié)合能理解*
    室內(nèi)回彈模量和回彈再壓縮模量試驗(yàn)參數(shù)探討
    山西建筑(2020年11期)2020-06-04 00:09:48
    看誰法力更高強(qiáng)
    童話世界(2018年8期)2018-05-19 01:59:17
    關(guān)于現(xiàn)行規(guī)范路基頂面回彈模量的理解和應(yīng)用
    上海公路(2018年4期)2018-03-21 05:57:24
    ε-CL-20/F2311 PBXs力學(xué)性能和結(jié)合能的分子動(dòng)力學(xué)模擬
    對(duì)“結(jié)合能、比結(jié)合能、質(zhì)能方程、質(zhì)量虧損”的正確認(rèn)識(shí)
    鋼纖維高強(qiáng)混凝土墻基于CONWEP的爆炸響應(yīng)
    免费无遮挡裸体视频| 久久精品亚洲精品国产色婷小说| 一级黄色大片毛片| 搡老岳熟女国产| 国产三级黄色录像| 国产淫片久久久久久久久 | av片东京热男人的天堂| 亚洲国产欧美网| 免费在线观看影片大全网站| 国产精品三级大全| 一进一出抽搐动态| 久久国产精品人妻蜜桃| 变态另类成人亚洲欧美熟女| 国产91精品成人一区二区三区| 免费人成视频x8x8入口观看| 内地一区二区视频在线| av天堂中文字幕网| 久久精品国产亚洲av香蕉五月| 日日干狠狠操夜夜爽| 最新在线观看一区二区三区| 韩国av一区二区三区四区| 日本免费一区二区三区高清不卡| 亚洲内射少妇av| 毛片女人毛片| 成人一区二区视频在线观看| 此物有八面人人有两片| 偷拍熟女少妇极品色| 少妇人妻精品综合一区二区 | 亚洲人成网站在线播| 国产伦在线观看视频一区| 欧美又色又爽又黄视频| 丰满的人妻完整版| 欧美+日韩+精品| 啦啦啦观看免费观看视频高清| 国产成人啪精品午夜网站| 国产精品久久电影中文字幕| a级一级毛片免费在线观看| 亚洲不卡免费看| www.熟女人妻精品国产| 99久久99久久久精品蜜桃| 黄片大片在线免费观看| 国产成人啪精品午夜网站| 成年版毛片免费区| 男女下面进入的视频免费午夜| 俄罗斯特黄特色一大片| 国产成人欧美在线观看| 欧美激情久久久久久爽电影| 国产免费av片在线观看野外av| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆 | 国产精品一区二区三区四区久久| 亚洲人成电影免费在线| 久久久久久久久中文| 日韩免费av在线播放| 亚洲精品美女久久久久99蜜臀| 久久久久九九精品影院| 国产激情欧美一区二区| 日本与韩国留学比较| 欧美性猛交╳xxx乱大交人| 很黄的视频免费| 看黄色毛片网站| 伊人久久大香线蕉亚洲五| 九九热线精品视视频播放| bbb黄色大片| 午夜视频国产福利| 午夜福利在线在线| 18禁美女被吸乳视频| 久久久久性生活片| 婷婷亚洲欧美| 91麻豆精品激情在线观看国产| www.www免费av| 黄色丝袜av网址大全| 日本成人三级电影网站| 免费电影在线观看免费观看| 在线观看免费午夜福利视频| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 69人妻影院| 亚洲第一欧美日韩一区二区三区| 麻豆成人av在线观看| 91麻豆精品激情在线观看国产| 日本一二三区视频观看| 久久久久久久久中文| 女人高潮潮喷娇喘18禁视频| 亚洲黑人精品在线| 久久久久久久亚洲中文字幕 | 亚洲熟妇熟女久久| 日韩高清综合在线| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 国产极品精品免费视频能看的| 午夜福利高清视频| 欧美日韩乱码在线| svipshipincom国产片| 波野结衣二区三区在线 | 性色avwww在线观看| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 麻豆国产97在线/欧美| 国产成人aa在线观看| 日韩欧美在线乱码| 国产一区二区在线观看日韩 | 国产免费男女视频| 99热只有精品国产| bbb黄色大片| 亚洲一区二区三区不卡视频| 精华霜和精华液先用哪个| 欧美成人性av电影在线观看| 日韩欧美国产在线观看| 国内少妇人妻偷人精品xxx网站| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 内射极品少妇av片p| 色噜噜av男人的天堂激情| 日本 欧美在线| 国产高清三级在线| 国产男靠女视频免费网站| 国产伦人伦偷精品视频| svipshipincom国产片| 精品国产亚洲在线| 香蕉丝袜av| 欧美日韩亚洲国产一区二区在线观看| 精品国产超薄肉色丝袜足j| 国产国拍精品亚洲av在线观看 | 国内精品美女久久久久久| 丰满乱子伦码专区| 午夜福利成人在线免费观看| 成人av一区二区三区在线看| 91在线精品国自产拍蜜月 | 19禁男女啪啪无遮挡网站| 国产中年淑女户外野战色| 国产亚洲精品一区二区www| 午夜福利欧美成人| 国产欧美日韩一区二区精品| 在线播放无遮挡| 啦啦啦免费观看视频1| 色精品久久人妻99蜜桃| 在线播放无遮挡| 男人舔女人下体高潮全视频| 99精品久久久久人妻精品| 亚洲国产欧美网| 久久精品国产自在天天线| 国产精品久久视频播放| 真人做人爱边吃奶动态| 丰满的人妻完整版| 桃色一区二区三区在线观看| 国产精品98久久久久久宅男小说| 久久久久久大精品| 精品久久久久久久久久久久久| 两个人的视频大全免费| 舔av片在线| 婷婷丁香在线五月| 国产爱豆传媒在线观看| 亚洲av熟女| 久久人妻av系列| 1000部很黄的大片| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 亚洲自拍偷在线| 中亚洲国语对白在线视频| 国内精品久久久久精免费| 国产av在哪里看| 母亲3免费完整高清在线观看| 亚洲人成网站高清观看| 免费看a级黄色片| 免费搜索国产男女视频| 免费观看精品视频网站| 在线观看一区二区三区| 中文字幕精品亚洲无线码一区| 日韩国内少妇激情av| 精品国产美女av久久久久小说| 99国产精品一区二区蜜桃av| 国产不卡一卡二| 在线观看一区二区三区| 久久久久国内视频| 麻豆久久精品国产亚洲av| 十八禁网站免费在线| 亚洲人与动物交配视频| 一本综合久久免费| av欧美777| 免费观看的影片在线观看| 亚洲av成人精品一区久久| 波野结衣二区三区在线 | 精品久久久久久,| 久久99热这里只有精品18| 成人特级av手机在线观看| 嫩草影院入口| av片东京热男人的天堂| 天堂av国产一区二区熟女人妻| 精品国产超薄肉色丝袜足j| 丰满的人妻完整版| 欧美成人a在线观看| 日韩欧美在线二视频| 成人高潮视频无遮挡免费网站| 日本五十路高清| 国产成人福利小说| 99精品久久久久人妻精品| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 一个人免费在线观看的高清视频| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影| 精品一区二区三区视频在线 | www.www免费av| netflix在线观看网站| 色综合亚洲欧美另类图片| 久9热在线精品视频| 日本熟妇午夜| 露出奶头的视频| 国产久久久一区二区三区| 国产乱人视频| 免费观看的影片在线观看| 无限看片的www在线观看| 日韩欧美三级三区| 成人亚洲精品av一区二区| 麻豆久久精品国产亚洲av| 精品免费久久久久久久清纯| 精品国内亚洲2022精品成人| 久久99热这里只有精品18| 国内精品久久久久久久电影| 三级国产精品欧美在线观看| 一区二区三区免费毛片| 日本熟妇午夜| 国产精品精品国产色婷婷| 午夜久久久久精精品| 人人妻,人人澡人人爽秒播| 精品免费久久久久久久清纯| 蜜桃亚洲精品一区二区三区| 男女之事视频高清在线观看| 亚洲五月天丁香| 欧美极品一区二区三区四区| 国产亚洲精品av在线| 嫩草影视91久久| 国产精品爽爽va在线观看网站| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 香蕉丝袜av| 亚洲第一欧美日韩一区二区三区| 757午夜福利合集在线观看| 午夜福利欧美成人| 夜夜爽天天搞| 尤物成人国产欧美一区二区三区| 久久香蕉精品热| 老汉色av国产亚洲站长工具| x7x7x7水蜜桃| 久久精品国产亚洲av涩爱 | 成年女人看的毛片在线观看| 免费搜索国产男女视频| 亚洲最大成人中文| 中文字幕熟女人妻在线| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 很黄的视频免费| 精品一区二区三区视频在线观看免费| 久久亚洲真实| 伊人久久精品亚洲午夜| 嫩草影院精品99| 男女那种视频在线观看| 国产免费av片在线观看野外av| 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 男插女下体视频免费在线播放| 亚洲最大成人中文| 欧美日韩乱码在线| 看片在线看免费视频| 久久久成人免费电影| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 日韩av在线大香蕉| 国产免费男女视频| 超碰av人人做人人爽久久 | 国产精品一及| 日本三级黄在线观看| 国产野战对白在线观看| 可以在线观看的亚洲视频| 精品不卡国产一区二区三区| 久久亚洲真实| 少妇高潮的动态图| 国产高清有码在线观看视频| 欧美乱色亚洲激情| av在线天堂中文字幕| 免费人成在线观看视频色| 久久这里只有精品中国| 精品午夜福利视频在线观看一区| 久久人人精品亚洲av| 99精品久久久久人妻精品| 三级男女做爰猛烈吃奶摸视频| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 精品人妻1区二区| 性色avwww在线观看| 在线播放无遮挡| 麻豆国产97在线/欧美| 国产精品一区二区免费欧美| 在线免费观看的www视频| 午夜福利成人在线免费观看| 国产真实伦视频高清在线观看 | 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 九九热线精品视视频播放| 男女那种视频在线观看| 久久久久久久久久黄片| 久久国产精品人妻蜜桃| 18禁国产床啪视频网站| 中文字幕人妻熟人妻熟丝袜美 | 一本精品99久久精品77| 国产主播在线观看一区二区| 精品99又大又爽又粗少妇毛片 | 在线观看av片永久免费下载| tocl精华| 不卡一级毛片| 午夜免费激情av| 婷婷精品国产亚洲av| 制服丝袜大香蕉在线| 精品久久久久久久人妻蜜臀av| 亚洲国产欧洲综合997久久,| 国产色爽女视频免费观看| 国产高清激情床上av| 美女高潮的动态| 国产精品久久久久久亚洲av鲁大| 三级毛片av免费| 综合色av麻豆| 国产伦精品一区二区三区四那| 国产精品,欧美在线| 人妻久久中文字幕网| 午夜影院日韩av| 无人区码免费观看不卡| 久久精品人妻少妇| 少妇人妻精品综合一区二区 | 黄色日韩在线| 亚洲国产精品sss在线观看| 十八禁人妻一区二区| 国产精品电影一区二区三区| 成人国产一区最新在线观看| 天堂√8在线中文| 狂野欧美激情性xxxx| 午夜福利在线观看免费完整高清在 | tocl精华| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 国产精品亚洲一级av第二区| 日韩高清综合在线| 在线观看66精品国产| 欧美性猛交╳xxx乱大交人| 亚洲中文日韩欧美视频| 亚洲国产欧美人成| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 啦啦啦观看免费观看视频高清| 丰满的人妻完整版| 午夜久久久久精精品| 一进一出好大好爽视频| 黄色丝袜av网址大全| 精品国产三级普通话版| 国内久久婷婷六月综合欲色啪| 日韩成人在线观看一区二区三区| 美女高潮的动态| 色在线成人网| 亚洲一区高清亚洲精品| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 最好的美女福利视频网| 国产亚洲欧美98| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 婷婷精品国产亚洲av在线| 国产淫片久久久久久久久 | 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区| 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品久久久久久毛片| 免费高清视频大片| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 国产精品一区二区三区四区久久| 亚洲国产精品成人综合色| 日韩欧美三级三区| 青草久久国产| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 国产精品 国内视频| 99久久精品一区二区三区| 亚洲美女黄片视频| 日韩高清综合在线| 看黄色毛片网站| 搡女人真爽免费视频火全软件 | 我要搜黄色片| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 日韩国内少妇激情av| 亚洲av第一区精品v没综合| 熟妇人妻久久中文字幕3abv| 亚洲av第一区精品v没综合| 无限看片的www在线观看| 亚洲七黄色美女视频| 一本综合久久免费| 国产黄色小视频在线观看| 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 欧美日韩瑟瑟在线播放| 嫩草影院入口| 国内精品美女久久久久久| 欧美乱妇无乱码| 久久精品91蜜桃| 久9热在线精品视频| 三级国产精品欧美在线观看| 别揉我奶头~嗯~啊~动态视频| 日本免费一区二区三区高清不卡| 美女 人体艺术 gogo| 91字幕亚洲| 亚洲成a人片在线一区二区| 免费看a级黄色片| e午夜精品久久久久久久| 久久国产乱子伦精品免费另类| 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 国产精品久久电影中文字幕| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 国产私拍福利视频在线观看| 男女那种视频在线观看| 国产国拍精品亚洲av在线观看 | 亚洲精品色激情综合| 国产成人a区在线观看| 波多野结衣高清作品| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 韩国av一区二区三区四区| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 国产97色在线日韩免费| 日本黄色视频三级网站网址| 丝袜美腿在线中文| 亚洲va日本ⅴa欧美va伊人久久| 欧美性感艳星| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说| 国产99白浆流出| 欧美日韩一级在线毛片| av天堂在线播放| 欧美中文日本在线观看视频| 一进一出好大好爽视频| 国产成人av激情在线播放| 久久久久久久午夜电影| 搡老熟女国产l中国老女人| 制服丝袜大香蕉在线| 亚洲av二区三区四区| 欧美成人一区二区免费高清观看| 日本成人三级电影网站| 久久久国产成人免费| 婷婷精品国产亚洲av在线| 欧美丝袜亚洲另类 | 日本黄大片高清| 国产真实乱freesex| 人人妻,人人澡人人爽秒播| 老司机福利观看| 午夜a级毛片| 国产色爽女视频免费观看| 欧美日韩中文字幕国产精品一区二区三区| 在线国产一区二区在线| 亚洲欧美日韩卡通动漫| 999久久久精品免费观看国产| tocl精华| 国产三级在线视频| svipshipincom国产片| 国产精品免费一区二区三区在线| 国产激情偷乱视频一区二区| 一个人免费在线观看电影| 久久久久国产精品人妻aⅴ院| 午夜免费激情av| 国内少妇人妻偷人精品xxx网站| 精品无人区乱码1区二区| 欧美bdsm另类| 久久国产精品人妻蜜桃| 国产精品日韩av在线免费观看| 香蕉久久夜色| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久久久毛片| 亚洲人与动物交配视频| 18禁黄网站禁片免费观看直播| 天天一区二区日本电影三级| 最近最新免费中文字幕在线| 成人av一区二区三区在线看| 91麻豆av在线| 99热只有精品国产| 好看av亚洲va欧美ⅴa在| 欧美激情在线99| 亚洲电影在线观看av| 一本久久中文字幕| 12—13女人毛片做爰片一| 夜夜夜夜夜久久久久| 免费av毛片视频| 午夜精品一区二区三区免费看| 舔av片在线| 黄色日韩在线| 久久久国产成人免费| 亚洲国产精品999在线| 日本三级黄在线观看| 88av欧美| 欧美绝顶高潮抽搐喷水| 一区二区三区免费毛片| 国产精品久久久久久亚洲av鲁大| 人妻久久中文字幕网| 国产伦精品一区二区三区视频9 | 免费电影在线观看免费观看| 免费一级毛片在线播放高清视频| 欧美成人性av电影在线观看| 精品一区二区三区视频在线观看免费| 热99re8久久精品国产| 97碰自拍视频| 日韩有码中文字幕| 老司机午夜十八禁免费视频| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 国产高清videossex| 男女做爰动态图高潮gif福利片| 亚洲男人的天堂狠狠| 丰满的人妻完整版| 级片在线观看| 变态另类丝袜制服| 国产欧美日韩精品一区二区| 久久精品国产亚洲av香蕉五月| 成年女人毛片免费观看观看9| 亚洲 欧美 日韩 在线 免费| 天天躁日日操中文字幕| 久久久久国产精品人妻aⅴ院| 色播亚洲综合网| 人妻夜夜爽99麻豆av| 性欧美人与动物交配| 丰满的人妻完整版| 在线观看舔阴道视频| 国产精品 国内视频| 悠悠久久av| 亚洲avbb在线观看| 久久精品影院6| 久久精品国产亚洲av涩爱 | 午夜激情欧美在线| 少妇丰满av| 国产精品电影一区二区三区| 免费搜索国产男女视频| 两个人的视频大全免费| 亚洲欧美精品综合久久99| 亚洲18禁久久av| 在线观看舔阴道视频| 嫩草影院入口| 女人高潮潮喷娇喘18禁视频| 丰满人妻熟妇乱又伦精品不卡| 欧美性猛交黑人性爽| 网址你懂的国产日韩在线| 久9热在线精品视频| avwww免费| 成人欧美大片| 亚洲七黄色美女视频| 91久久精品电影网| 亚洲男人的天堂狠狠| 麻豆国产97在线/欧美| 99久久九九国产精品国产免费| 久久午夜亚洲精品久久| 国产精品综合久久久久久久免费| 最近在线观看免费完整版| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 超碰av人人做人人爽久久 | 国产午夜福利久久久久久| 成年免费大片在线观看| 高清日韩中文字幕在线| 欧美+日韩+精品| 久久午夜亚洲精品久久| 日韩欧美精品v在线| 欧美最黄视频在线播放免费| 亚洲av第一区精品v没综合| 1000部很黄的大片| 欧美日韩亚洲国产一区二区在线观看| 长腿黑丝高跟| 白带黄色成豆腐渣| 操出白浆在线播放| 3wmmmm亚洲av在线观看| a级一级毛片免费在线观看| 亚洲五月天丁香| 欧美+亚洲+日韩+国产| www.熟女人妻精品国产| 香蕉丝袜av| 久久精品91蜜桃| 亚洲avbb在线观看| 亚洲国产欧美人成| 亚洲专区国产一区二区| 国产69精品久久久久777片| 五月玫瑰六月丁香| 欧美激情久久久久久爽电影| 成人性生交大片免费视频hd| 99久久精品热视频| 亚洲成av人片在线播放无| 日本一二三区视频观看| 男女下面进入的视频免费午夜| 丁香六月欧美| 桃红色精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久 | 亚洲中文日韩欧美视频| 精品免费久久久久久久清纯| 亚洲av二区三区四区| 毛片女人毛片| 国产av在哪里看| 亚洲精品乱码久久久v下载方式 | 黄色丝袜av网址大全| 中文字幕熟女人妻在线| 午夜福利在线观看免费完整高清在 |