• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COMPLETE MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF DEPENDENT RANDOM VARIABLES

    2016-12-07 08:58:49GUOMingleDAIYuZHANGLijun
    數(shù)學(xué)雜志 2016年6期
    關(guān)鍵詞:安徽師范大學(xué)相依收斂性

    GUO Ming-le,DAI Yu,ZHANG Li-jun

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

    COMPLETE MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF DEPENDENT RANDOM VARIABLES

    GUO Ming-le,DAI Yu,ZHANG Li-jun

    (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

    In this paper,the complete moment convergence of weighted sums for sequences of dependent random variables is investigated.By applying moment inequality and truncation methods,some sufficient conditions of complete moment convergence of weighted sums for sequences of dependent random variables are established.We extend the results of Volodin et al.(2004) and Chen et al.(2006)for independent random variables to negatively associated and negatively dependent random variables,which improve and generalize the results of Sung(2011),Wu(2012) and Guo and Zhu(2012).

    negatively associated;negatively dependent;ρ?-mixing;complete moment convergence;complete convergence

    2010 MR Subject Classification:60F15

    Document code:AArticle ID:0255-7797(2016)06-1120-13

    1 Introduction

    Hsu and Robbins[1]introduced the concept of complete convergence of{Xn}.A sequence{Xn,n=1,2,···}is said to converge completely to a constant C if

    Moreover,they proved that the sequence of arithmetic means of independent identically distributed(i.i.d.)random variables converge completely to the expected value if the variance of the summands is finite.The converse theorem was proved by Erds[2].In view of the Borel-Cantelli lemma,the complete convergence implies that almost sure convergence. Therefore the complete convergence is very important tool in establishing almost sure convergence.The result of Hsu-Robbins-Erds is a fundamental theorem in probability theory and was generalized and extended in several directions by many authors.

    We recall that the array{Xni,i≥1,n≥1}of random variables is said to be stochastically dominated by a random variable X if there exists a positive constant C,such that P{|Xni|>x}≤CP{|X|>x}for all x≥0,i≥1 and n≥1.

    Volodin et al.[3]and Chen et al.[4](β>-1 and β=-1,respectively)obtained complete convergence for weighted sums of arrays of rowwise independent Banach-spacevalued random elements.

    Theorem 1.1[3,4]Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise independent random elements in a real separable Banach space which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying

    and

    for some 0<θ≤2 andμsuch that θ+μ/r<2 and 1+μ+β>0.If E|X|θ+(1+μ+β)/r<∞Xni→0 in probability,then

    If β<-1,then(1.3)is immediate.Hence Theorem 1.1 is of interest only for β≥-1.

    Recently,Sung[5]extended Theorem 1.1 to negatively associated and negatively dependent random variables when θ=1.Moreover,similar results for sequences of φ-mixing and ρ?-mixing random variables are also established.

    Theorem 1.2[5]Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and

    If EXni=0 for all i≥1,n≥1 and

    then

    Guo and Zhu[6]extended Theorem 1.2 to complete moment convergence of the supremum of partial sums for arrays of negatively associated random variables when β>-1. However,the proof of Guo and Zhu[6]does not work for the case of β=-1.

    Theorem 1.3[6]Under the conditions of Theorem 1.2.If β>-1,then

    Wu[7]extended Theorem 1.1 to negatively dependent random variables when β>-1. Wu[7]also considered the case of 1+μ+β=0(β>-1).However,the proof of Wu[7]does not work for the case of β=-1.

    Theorem 1.4[7]Suppose that β>-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively dependent random variables which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(1.2)for some θ andμsuch thatμ<2r and 0<θ<min{2,2-μ/r}.Furthermore,assume that EXni=0 for all i≥1 and n≥1 if θ+(1+μ+β)/r≥1.If

    then

    In this paper,We deal with more general weights and establish some weaker sufficient conditions for complete moment convergence of weighted sums for arrays of negatively associated and negatively dependent random variables.Similar results for sequences of ρ?-mixing random variables are also obtained.The results of Volodin et al.[3],Chen et al.[4],Sung [5],Wu[7]and Guo and Zhu[6]are improved and generalized.

    For the proofs of the main results,we need to restate a few lemmas for easy reference. Throughout this paper,the symbol C denotes a positive constant which is not necessarily the same one in each appearance,I(A)denotes the indicator function of A.For a finite set B,the symbol#B denotes the number of elements in the set B.Let an?bndenote that there exists a constant C>0 such that an≤Cbnfor sufficiently large n.Also,let logx denote lnmax(e,x).

    Lemma 1.1[5]Let the sequence{Xn,n≥1}of random variables be stochastically dominated by a random variable X.Then for any p>0,x>0,

    The following lemma is well known,and its proof is standard.

    Lemma 1.2 Let X be a random variable.For any α>0,r>0,the following statements hold:

    One of the most interesting inequalities to probability theory is the Rosenthal-type inequality.The Rosenthal-type inequality plays an important role in establishing complete convergence.The Rosenthal-type inequalities for sequences of dependent random variables were established by many authors.

    The concept of negatively associated random variables was introduced by Alam and Saxena[8]and was carefully studied by Joag-Dev and Proschan[9].A finite family of random variables{Xi,1≤i≤n}is said to be negatively associated,if for every pair disjoint subset A and B of{1,2,···,n}and any real nondecreasing coordinate-wise functions f1on RAand f2on RB,

    whenever the covariance exists.An infinite family of random variables{Xi,-∞<i<∞} is negatively associated if every finite subfamily is negatively associated.

    The following lemma is a Rosenthal-type inequality for negatively associated random variables.

    Lemma 1.3[10]Let{Xn,n≥1}be a sequence of negatively associated random variables with EXn=0 and E|Xn|p<∞for any n≥1,p≥1.Then there exist constants Cp>0 and Dp>0 depending only on p such that,

    and

    The concept of negatively dependent random variables was given by Lehmann[11].A finite family of random variables{Xi,1≤i≤n}is said to be negatively dependent(or negatively orthant dependent)if for all real numbers x1,x2,···,xn,

    An infinite family of random variables is negatively dependent if every finite subfamily is negatively dependent.

    Obviously,negatively associated implies negatively dependent from the definition of negatively associated and negatively dependent.But negatively dependent does not imply negatively associated,so negatively dependent is much weaker than negatively associated.The following lemma is a Rosenthal-type inequality for negatively dependent random variables.

    Lemma 1.4[12]Let{Xn,n≥1}be a sequence of negatively dependent random variables with EXn=0 and E|Xn|p<∞for any n≥1,p≥1.Then there exist constants Cp>0 and Dp>0 depending only on p such that,

    and

    Let{Xn,n≥1}be a sequence of random variables defined on probability space (Ω,F,P).For any S?N,letFS=σ(Xk,k∈S).Define the ρ?-mixing coefficients by

    where S,T are the finite subsets of positive integers such that dist(S,T)≥k.We call {Xn,n≥1}a ρ?-mixing sequence if there exists k≥1 such that ρ?(k)<1.

    Note that if{Xn,n≥1}is a sequence of independent random variables,then ρ?(n)=0 for all n≥1.

    The following lemma is a Rosenthal-type inequality for ρ?-mixing random variables.

    Lemma 1.5[13,14]Let{Xn,n≥1}be a sequence of ρ?-mixing random variables, Yn∈σ(Xn),EYn=0,E|Yn|p<∞,n≥1,p≥1.Then there exist constants Cp>0 and Dp>0 depending only on p,k and ρ?(k)where ρ?(k)<1 such that,

    and

    2 Main Results

    Theorem 2.1 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X satisfying E|X|p<∞for some p>1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and

    Furthermore,assume that

    if p≥2.Let EXni=0 for all i≥1 and n≥1.Then

    Proof Without loss of generality,we can assume that ani>0,1≤i≤n,n≥1 (otherwise,we useandinstead of ani,resp.,and note that ani=(1.1)and(2.1),without loss of generality,we can assume that

    For any i≥1,n≥1,let

    Noting that EXni=0,>1)for any i≥1,n≥1,we have

    Therefore

    Hence,in order to prove(2.3),it suffices to prove that I1<∞and I2<∞.Take δ>0 suchthat p-δ>max(1,q).By Lemma 1.1,Lemma 1.2 and(2.4),we get that

    Next,we will prove I1<∞.Noting that p>1,for any M≥p,we obtain by Markov's inequality that

    Case 1(1<p<2).Taking δ>0 such that p+δ<2,we get by Lemma 1.1,Lemma 1.3,Crinequality,(2.5)and(2.6)that

    Set Inj={i,(n(j+1))-r<ani≤(nj)-r},j=1,2,···.Then∪j≥1Inj={1,2,···,}.Note also that for all k≥1,n≥1,M≥q,

    Hence we have

    Note that for any p>1,δ>0,

    By Lemma 1.2 and(2.8),we obtain that

    By(2.8),

    By(2.9),(2.10)and(2.11),for any p>1,δ>0,we have

    Combining with(2.7),we get that I1<∞.

    Case 2(p≥2).Taking sufficient large δ>0 such that β-α(p+δ)/2<-1,we get by Lemma 1.3,(2.6)and Crinequality that

    From the proof of(2.7)and(2.12),we see that I11<∞.Since E|X|p<∞,p≥2 implies EX2<∞,by(2.2),we obtain that

    Thus I1<∞.

    Remark 2.1 As in Remark 2.3 of Guo and Zhu[6],(2.3)implies(1.7).Hence,when θ+(1+μ+β)/r>1,Theorem 1.1 follows from Theorem 2.1 by taking p=θ+(1+μ+β)/r,q= θ,since

    Hence conditions(1.1)and(2.1)are weaker than conditions(1.1)and(1.2).Theorem 2.1 not only extends the result of Volodin et al.[3]and Chen et al.[4]for independent random variables to negatively associated case,but also obtains the weaker sufficient condition of complete moment convergence of the supremum of partial sums for arrays of negatively associated random variables.

    Remark 2.2 If 1+μ+β>0,Theorem 1.2,Theorem 1.3 follow from Theorem 2.1 by taking p=1+(1+μ+β)/r,q=1.Theorem 2.1 extends the result of Sung[5]and Guo and Zhu[6].Moreover,the method used for proving our main results is different from that of Sung[5].Our method can be used efficiently to the field of the complete moment convergence for sequences of dependent random variables.

    Note that conditions(1.1)and(2.1)together imply

    The following theorem shows that if the moment condition of Theorem 2.1 is replaced by a stronger condition E|X|plog|X|<∞,then condition(2.1)can be replaced by the weaker condition(2.13).

    Theorem 2.2 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X satisfying E|X|plog|X|<∞for some p≥1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.13).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXni=0 for all i≥1 and n≥1.Then(2.3)holds.

    Proof Applying the same notation and method of Theorem 2.1,we need only to give the different parts.Noting that?logk and p≥1,we have

    Set Inj={i,(n(j+1))-r<ani≤(nj)-r},j=1,2,···.Note that for all k≥1,n≥1,M≥p,

    The rest of the proof is the same as that of Theorem 2.1 and is omitted.

    Corollary 2.1 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively associated random variables which are stochastically dominated by a random variable X.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(1.2)for some θ andμsuch thatμ<2r and 1≤θ<min{2,2-μ/r}.Furthermore,assume that EXni=0 for all i≥1 and n≥1.If

    then(2.3)holds.

    Proof If 1+μ+β=0,we take p=θ in Theorem 2.2.If 1+μ+β>0,we take p=θ+(1+μ+β)/r,q=θ in Theorem 2.1.Hence(2.3)holds by Theorem 2.1 and Theorem 2.2.

    Remark 2.3 Corollary 2.1 extends the result of Sung[5]and Guo and Zhu[6]for θ=1 to 1≤θ<2.

    The following theorems extend Theorem 1.1 to negatively dependent random variables. The proof is the same as that of Theorem 2.1 and Theorem 2.2 except that we use Lemma 1.4 instead of Lemma 1.3.

    Theorem 2.3 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively dependent random variables which are stochastically dominated by a random variable X satisfying E|X|p<∞for some p>1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.1).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXni=0 for all i≥1 and n≥1.Then

    Theorem 2.4 Suppose that β≥-1.Let{Xni,i≥1,n≥1}be an array of rowwise negatively dependent random variables which are stochastically dominated by a random variable X satisfying E|X|plog|X|<∞for some p≥1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.13).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXni=0 for all i≥1 and n≥1.Then(2.16)holds.

    Remark 2.4 If 1+μ+β=0,we take p=θ in Theorem 2.4.If 1+μ+β>0,we take p=θ+(1+μ+β)/r,q=θ in Theorem 2.3.Therefore Theorem 1.4 follows from Theorem 2.3 and Theorem 2.4.However,Theorem 1.4 does not deal with the case of β=-1.Our result covers the case of β=-1.

    If the array{Xni,i≥1,n≥1}in Theorem 2.1 and Theorem 2.2 is replaced by the sequence{Xn,n≥1}then we can extend Theorem 1.1 to ρ?-mixing random variables.

    Theorem 2.5 Suppose that β≥-1.Let{Xi,i≥1}be a sequence of rowwise ρ?-mixing random variables which are stochastically dominated by a random variable Xsatisfying E|X|p<∞for some p>1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.1).Furthermore,assume that(2.2)holds for some α>0 if p≥2. Let EXi=0 for all i≥1.Then

    Proof For any i≥1,n≥1,let Xni=XiI(|aniXi|≤1).Note that

    The rest of the proof is the same as that of Theorem 2.1 except that we use Lemma 1.5 instead of Lemma 1.3 and it is omitted.

    Theorem 2.6 Suppose that β≥-1.Let{Xi,i≥1}be a sequence of rowwise ρ?-mixing random variables which are stochastically dominated by a random variable X satisfying E|X|plog|X|<∞for some p≥1.Let{ani,i≥1,n≥1}be an array of constants satisfying(1.1)and(2.13).Furthermore,assume that(2.2)holds for some α>0 if p≥2.Let EXi=0 for all i≥1.Then(2.17)holds.

    Proof For any i≥1,n≥1,let Xni=XiI(|aniXi|≤1).Note that

    The rest of the proof is the same as that of Theorem 2.2 except that we use Lemma 1.5 instead of Lemma 1.3 and it is omitted.

    Remark 2.5 As in Remark 3.7 of Sung[5],Theorem 2.5 and Theorem 2.6 can not be extended to the array{Xni,i≥1,n≥1}of rowwise ρ?-mixing random variables by using the method of the proof of Theorem 2.1 and Theorem 2.2.

    References

    [1]Hsu P L,Robbins H.Complete convergence and the law of large numbers[J].Proc.Nat.Acad.Sci. USA,1947,33:25-31.

    [3]Volodin A,Giuliano Antonini R,Hu T C.A note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements[J].Lobachevskii J.Math.,2004,15:21-33.

    [4]Chen P,Sung S H,Volodin A I.Rate of complete convergence for arrays of Banach space valued random elements[J].Sib.Adv.Math.,2006,16:1-14.

    [5]Sung S H.On complete convergence for weighted sums of arrays of dependent random variables[J]. Abstr.Appl.Anal.,2011,2011:11.

    [6]Guo Mingle,Zhu Dongjin.On complete moment convergence of weighted sums for arrays of rowwise negatively associated random variables[J].J.Prob.Stat.,2012,2012:12.

    [7]Wu,Qunying.A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables[J].J.Inequ.Appl.,2012,2012:50.

    [8]Alam K.,Saxena K M L.Positive dependence in multivariate distributions[J].Comm.Stat.The. Meth.A,1981,10:1183-1196.

    [9]Joag-Dev K,Proschan F.Negative association of random variables with applications[J].Ann.Stat., 1983,11:286-295.

    [10]Shao Qiman.A comparison theorem on moment inequalities between negatively associated and independent random variables[J].J.Theoret.Prob.,2000,13:343-356.

    [11]Lehmann E L.Some concepts of dependence[J].Ann.Math.Stat.,1966,37:1137-1153.

    [12]Asadian Fakoor N V,Bozorgnia A.Rosenthal’s type inequalities for negatively orthant dependent random variables[J].J.Iranian Stat.Soc.,2006,5:66-75.

    [13]Yang Sanchao.Some moment inequalities for partial sums of random variables and their applications[J].Chinese Sci.Bull.,1998,43:1823-1827.

    [14]Utev S,Peligrad M.Maximal inequalities and an invariance principle for a class of weakly dependent random variables[J].J.Theoret.Prob.,2003,16:101-115.

    相依隨機變量陣列加權(quán)和的矩完全收斂性

    郭明樂,戴鈺,張立君

    (安徽師范大學(xué)數(shù)學(xué)計算機科學(xué)學(xué)院,安徽蕪湖241003)

    本文研究了相依隨機變量陣列加權(quán)和的矩完全收斂性.利用矩不等式和截尾法,建立了相依隨機變量陣列加權(quán)和的矩完全收斂性的充分條件.將Volodin等(2004)及陳平炎等(2006)的關(guān)于獨立隨機變量陣列的結(jié)果推廣到了負(fù)相協(xié)和負(fù)相依隨機變量陣列的情形,推廣并完善了Sung(2011),吳群英(2012)及郭明樂和祝東進(jìn)(2012)的結(jié)果.

    負(fù)相協(xié);負(fù)相依;ρ?混合;矩完全收斂性;完全收斂性

    MR(2010)主題分類號:60F15O211.4

    ?date:2013-12-16Accepted date:2014-09-10

    Supported by the National Natural Science Foundation of China(11271020; 11201004);the Key Project of Chinese Ministry of Education(211077);the Natural Science Foundation for Colleges and Universities in Anhui Province(KJ2014A083);the Anhui Provincial Natural Science Foundation(1508085MA11).

    Biography:Guo Mingle(1978-),male,born at Fengyang,Anhui,associated professor,major in probability limit theory.

    猜你喜歡
    安徽師范大學(xué)相依收斂性
    Lp-混合陣列的Lr收斂性
    家國兩相依
    相守相依
    《安徽師范大學(xué)學(xué)報》(人文社會科學(xué)版)第47卷總目次
    END隨機變量序列Sung型加權(quán)和的矩完全收斂性
    Hemingway’s Marriage in Cat in the Rain
    相依相隨
    特別文摘(2016年18期)2016-09-26 16:43:49
    相依相伴
    特別文摘(2016年15期)2016-08-15 22:11:53
    《安徽師范大學(xué)學(xué)報( 自然科學(xué)版) 》2016 年總目次
    行為ND隨機變量陣列加權(quán)和的完全收斂性
    亚洲人成电影免费在线| 亚洲中文字幕一区二区三区有码在线看| 国产伦在线观看视频一区| 免费av不卡在线播放| 免费在线观看影片大全网站| 国产高清激情床上av| 97超视频在线观看视频| 一夜夜www| 午夜精品在线福利| 国产精品美女特级片免费视频播放器| 亚洲人成电影免费在线| 少妇的丰满在线观看| 人妻丰满熟妇av一区二区三区| 午夜精品一区二区三区免费看| 男女那种视频在线观看| 熟女少妇亚洲综合色aaa.| 国产精品永久免费网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品影视一区二区三区av| 欧美色欧美亚洲另类二区| 成人一区二区视频在线观看| 中文字幕av成人在线电影| 美女黄网站色视频| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 久久久久久久精品吃奶| 亚洲人成电影免费在线| 亚洲内射少妇av| netflix在线观看网站| 午夜久久久久精精品| 深爱激情五月婷婷| 日本免费a在线| 欧美zozozo另类| 五月玫瑰六月丁香| 天堂√8在线中文| 俄罗斯特黄特色一大片| 欧美在线一区亚洲| 国模一区二区三区四区视频| 在线观看免费午夜福利视频| 国产高清三级在线| 精品人妻偷拍中文字幕| 亚洲性夜色夜夜综合| 99热6这里只有精品| 99久久精品一区二区三区| 12—13女人毛片做爰片一| 亚洲熟妇中文字幕五十中出| 亚洲七黄色美女视频| 国产精品久久久久久人妻精品电影| 国产精华一区二区三区| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 国产精品99久久99久久久不卡| 精品人妻1区二区| 99精品欧美一区二区三区四区| 搡老妇女老女人老熟妇| 亚洲国产色片| 熟女少妇亚洲综合色aaa.| 国产亚洲精品综合一区在线观看| 成人高潮视频无遮挡免费网站| 天美传媒精品一区二区| 极品教师在线免费播放| 99在线人妻在线中文字幕| 偷拍熟女少妇极品色| 午夜精品在线福利| 成人无遮挡网站| 日本精品一区二区三区蜜桃| 国内少妇人妻偷人精品xxx网站| 一区福利在线观看| 亚洲内射少妇av| 男插女下体视频免费在线播放| 操出白浆在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲aⅴ乱码一区二区在线播放| 别揉我奶头~嗯~啊~动态视频| 国产 一区 欧美 日韩| 欧美日本视频| 免费在线观看影片大全网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲性夜色夜夜综合| 久久精品91无色码中文字幕| 色播亚洲综合网| 好男人在线观看高清免费视频| 久久久久国内视频| 欧美一区二区精品小视频在线| 人妻夜夜爽99麻豆av| 精品人妻偷拍中文字幕| 一级黄片播放器| 亚洲av电影不卡..在线观看| 精品国内亚洲2022精品成人| 一个人看视频在线观看www免费 | 亚洲精品成人久久久久久| 搡老岳熟女国产| 亚洲精品亚洲一区二区| 欧美最新免费一区二区三区 | 中文字幕av在线有码专区| 国产精品1区2区在线观看.| av片东京热男人的天堂| 听说在线观看完整版免费高清| 久久久色成人| 国产av一区在线观看免费| 小蜜桃在线观看免费完整版高清| 一个人看的www免费观看视频| 久久精品人妻少妇| 亚洲精品日韩av片在线观看 | 天天躁日日操中文字幕| 婷婷丁香在线五月| 欧美乱码精品一区二区三区| 热99在线观看视频| 日日干狠狠操夜夜爽| 国产美女午夜福利| 国产成人a区在线观看| 色老头精品视频在线观看| 久久精品人妻少妇| 国产私拍福利视频在线观看| 精品免费久久久久久久清纯| 嫩草影院精品99| 在线观看一区二区三区| 久久久久久久午夜电影| 免费看十八禁软件| 精品欧美国产一区二区三| 少妇人妻精品综合一区二区 | 一级毛片女人18水好多| 成人高潮视频无遮挡免费网站| 麻豆久久精品国产亚洲av| 久久香蕉国产精品| 国产精品 国内视频| 国产亚洲欧美98| 国产真实乱freesex| 97人妻精品一区二区三区麻豆| 国产三级中文精品| 久久精品国产清高在天天线| 高清日韩中文字幕在线| 亚洲人成网站在线播放欧美日韩| 91在线观看av| 亚洲av成人精品一区久久| 亚洲av中文字字幕乱码综合| 在线观看舔阴道视频| 国产美女午夜福利| 老司机午夜福利在线观看视频| 最新在线观看一区二区三区| 成人18禁在线播放| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 99国产精品一区二区三区| 国产爱豆传媒在线观看| 97碰自拍视频| 少妇的逼水好多| 欧美精品啪啪一区二区三区| 精品不卡国产一区二区三区| 亚洲真实伦在线观看| 我要搜黄色片| 免费在线观看日本一区| 亚洲专区中文字幕在线| 亚洲七黄色美女视频| 亚洲天堂国产精品一区在线| 人人妻,人人澡人人爽秒播| 成人午夜高清在线视频| 成人精品一区二区免费| 婷婷六月久久综合丁香| 精品无人区乱码1区二区| 亚洲国产精品合色在线| 国产成年人精品一区二区| 精品一区二区三区视频在线 | 国产精品一区二区三区四区免费观看 | 精品不卡国产一区二区三区| 波多野结衣高清无吗| 在线观看一区二区三区| 成年版毛片免费区| 精品一区二区三区人妻视频| 亚洲 国产 在线| 日韩欧美三级三区| 欧美zozozo另类| 精品久久久久久久久久免费视频| 美女大奶头视频| 国产精品久久视频播放| 好看av亚洲va欧美ⅴa在| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看 | 精品无人区乱码1区二区| 国产精品一区二区三区四区免费观看 | 久久精品国产99精品国产亚洲性色| 日本成人三级电影网站| 免费观看人在逋| 欧美大码av| 国产精品影院久久| 午夜福利视频1000在线观看| 亚洲最大成人中文| 国产精品三级大全| 天堂影院成人在线观看| 亚洲国产精品999在线| 嫁个100分男人电影在线观看| 免费av观看视频| 亚洲美女视频黄频| 首页视频小说图片口味搜索| 精品国产亚洲在线| 亚洲黑人精品在线| 免费av观看视频| 色综合亚洲欧美另类图片| 狂野欧美白嫩少妇大欣赏| 亚洲av二区三区四区| 国产黄a三级三级三级人| 久久草成人影院| 国产一区二区三区视频了| 午夜亚洲福利在线播放| 男女那种视频在线观看| 丁香欧美五月| 日本一二三区视频观看| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看| 男人的好看免费观看在线视频| 在线观看舔阴道视频| 高清日韩中文字幕在线| 色av中文字幕| 婷婷精品国产亚洲av在线| 久久精品91无色码中文字幕| 伊人久久精品亚洲午夜| 成人特级av手机在线观看| 国产久久久一区二区三区| 午夜两性在线视频| АⅤ资源中文在线天堂| 亚洲精华国产精华精| 国产v大片淫在线免费观看| 人人妻人人看人人澡| 国产亚洲精品久久久久久毛片| 精品久久久久久,| АⅤ资源中文在线天堂| 日韩欧美免费精品| 我要搜黄色片| 少妇人妻精品综合一区二区 | 免费搜索国产男女视频| 久久伊人香网站| 波野结衣二区三区在线 | 最新美女视频免费是黄的| 村上凉子中文字幕在线| 一进一出抽搐动态| 搡老熟女国产l中国老女人| 欧美在线黄色| 亚洲在线自拍视频| 色老头精品视频在线观看| 中文字幕av成人在线电影| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 90打野战视频偷拍视频| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 亚洲成人中文字幕在线播放| 亚洲七黄色美女视频| 亚洲五月婷婷丁香| 美女大奶头视频| 岛国视频午夜一区免费看| 天天躁日日操中文字幕| 热99re8久久精品国产| 淫秽高清视频在线观看| 18禁黄网站禁片午夜丰满| 又爽又黄无遮挡网站| 99久久成人亚洲精品观看| 欧美日韩瑟瑟在线播放| 国产不卡一卡二| 欧美性猛交黑人性爽| 91av网一区二区| 91在线精品国自产拍蜜月 | 少妇熟女aⅴ在线视频| 色噜噜av男人的天堂激情| 成人无遮挡网站| 看黄色毛片网站| 亚洲成人中文字幕在线播放| 91麻豆精品激情在线观看国产| 91久久精品电影网| 久久这里只有精品中国| 99riav亚洲国产免费| 精品一区二区三区av网在线观看| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清| 日日干狠狠操夜夜爽| 欧美激情在线99| 国产精品久久久久久久久免 | 国产高清视频在线观看网站| 国产乱人视频| 综合色av麻豆| 最新在线观看一区二区三区| 午夜日韩欧美国产| 免费看a级黄色片| 国产精品爽爽va在线观看网站| 一个人免费在线观看电影| 日韩欧美精品免费久久 | 在线免费观看不下载黄p国产 | 国内精品久久久久精免费| 男女下面进入的视频免费午夜| 国内精品久久久久久久电影| 又粗又爽又猛毛片免费看| 亚洲五月婷婷丁香| 国产亚洲精品久久久久久毛片| 亚洲aⅴ乱码一区二区在线播放| 韩国av一区二区三区四区| 亚洲av成人av| 欧美一级a爱片免费观看看| 国产精品久久久人人做人人爽| 亚洲第一欧美日韩一区二区三区| 亚洲美女黄片视频| xxxwww97欧美| 国产三级在线视频| 国产69精品久久久久777片| 亚洲精品亚洲一区二区| 少妇人妻精品综合一区二区 | 人人妻人人澡欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 久久精品国产亚洲av香蕉五月| 国产精品av视频在线免费观看| 亚洲五月婷婷丁香| 波多野结衣巨乳人妻| 午夜福利18| 免费大片18禁| 欧美性猛交黑人性爽| 色综合欧美亚洲国产小说| 精品一区二区三区人妻视频| 搡老妇女老女人老熟妇| 中文在线观看免费www的网站| 嫩草影视91久久| 黄片大片在线免费观看| 久久精品国产亚洲av涩爱 | 国内精品一区二区在线观看| 天堂√8在线中文| 亚洲人成网站在线播| 国产一级毛片七仙女欲春2| 国产av不卡久久| 久久久久性生活片| 手机成人av网站| 亚洲精品粉嫩美女一区| 99热6这里只有精品| 欧美区成人在线视频| 免费高清视频大片| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 国产精品久久久人人做人人爽| 男人的好看免费观看在线视频| 免费一级毛片在线播放高清视频| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 精品久久久久久成人av| 又紧又爽又黄一区二区| 久久久久久大精品| 一本精品99久久精品77| 久久欧美精品欧美久久欧美| 69av精品久久久久久| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 免费搜索国产男女视频| 午夜精品一区二区三区免费看| 国产午夜精品久久久久久一区二区三区 | 欧美高清成人免费视频www| 97人妻精品一区二区三区麻豆| 桃红色精品国产亚洲av| 国产伦精品一区二区三区四那| 国产精品香港三级国产av潘金莲| 在线观看日韩欧美| 日韩国内少妇激情av| 国产av不卡久久| 欧美中文综合在线视频| 日韩免费av在线播放| av在线天堂中文字幕| 国产精品久久电影中文字幕| 嫩草影视91久久| 午夜精品在线福利| 757午夜福利合集在线观看| 女生性感内裤真人,穿戴方法视频| svipshipincom国产片| 一二三四社区在线视频社区8| 99久久精品国产亚洲精品| 又紧又爽又黄一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲国产中文字幕在线视频| 男人舔奶头视频| 免费大片18禁| 午夜亚洲福利在线播放| 尤物成人国产欧美一区二区三区| 国内少妇人妻偷人精品xxx网站| av视频在线观看入口| 婷婷丁香在线五月| 精品日产1卡2卡| 国产老妇女一区| 欧美日韩乱码在线| 成人鲁丝片一二三区免费| 亚洲欧美精品综合久久99| 中文字幕高清在线视频| 国产精品永久免费网站| av福利片在线观看| 哪里可以看免费的av片| 搡老妇女老女人老熟妇| 国产真实乱freesex| 99久久九九国产精品国产免费| 久久香蕉国产精品| 国产精品美女特级片免费视频播放器| 精品福利观看| 97超视频在线观看视频| 两人在一起打扑克的视频| 日本黄色视频三级网站网址| 亚洲七黄色美女视频| 久久久久久久久中文| 日韩欧美一区二区三区在线观看| 久9热在线精品视频| 欧美绝顶高潮抽搐喷水| 国产精品一及| 一进一出抽搐动态| 在线观看66精品国产| 琪琪午夜伦伦电影理论片6080| 91麻豆av在线| 一区二区三区激情视频| 欧美性猛交黑人性爽| 亚洲在线自拍视频| 国产一区二区在线观看日韩 | 69人妻影院| 真实男女啪啪啪动态图| 2021天堂中文幕一二区在线观| 欧美乱妇无乱码| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 国产精品 欧美亚洲| 最好的美女福利视频网| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看| 亚洲无线在线观看| 99久久成人亚洲精品观看| 国产精品影院久久| 国模一区二区三区四区视频| 在线国产一区二区在线| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| av福利片在线观看| 一夜夜www| 18+在线观看网站| 国产高清激情床上av| 午夜激情欧美在线| 在线十欧美十亚洲十日本专区| 露出奶头的视频| 日韩大尺度精品在线看网址| 精华霜和精华液先用哪个| 白带黄色成豆腐渣| 亚洲av免费在线观看| 精品一区二区三区视频在线 | a级毛片a级免费在线| www.熟女人妻精品国产| 一级a爱片免费观看的视频| 在线观看午夜福利视频| 成人精品一区二区免费| 精品国产美女av久久久久小说| 在线看三级毛片| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 国产精品 欧美亚洲| 国产乱人视频| 老鸭窝网址在线观看| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av香蕉五月| 成人av在线播放网站| 成人高潮视频无遮挡免费网站| 五月玫瑰六月丁香| 色视频www国产| 神马国产精品三级电影在线观看| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 午夜福利免费观看在线| 最新美女视频免费是黄的| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 欧美极品一区二区三区四区| 欧美av亚洲av综合av国产av| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免 | 手机成人av网站| 日日干狠狠操夜夜爽| 欧美绝顶高潮抽搐喷水| 叶爱在线成人免费视频播放| 丁香六月欧美| 国产成年人精品一区二区| 精品日产1卡2卡| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 波野结衣二区三区在线 | 在线播放国产精品三级| 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| 日韩欧美精品v在线| x7x7x7水蜜桃| 久久久久久人人人人人| 免费观看的影片在线观看| 变态另类成人亚洲欧美熟女| 日本 欧美在线| 日韩国内少妇激情av| 床上黄色一级片| 高潮久久久久久久久久久不卡| 国产精品av视频在线免费观看| 国产中年淑女户外野战色| 成年免费大片在线观看| 国产精品乱码一区二三区的特点| 床上黄色一级片| 国产精品野战在线观看| 天堂√8在线中文| 人人妻人人看人人澡| 偷拍熟女少妇极品色| 亚洲va日本ⅴa欧美va伊人久久| 51午夜福利影视在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲七黄色美女视频| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 99久久九九国产精品国产免费| 免费观看人在逋| 波多野结衣巨乳人妻| 国产精品免费一区二区三区在线| 精品久久久久久久久久免费视频| 国产黄a三级三级三级人| 中文字幕av在线有码专区| 18禁在线播放成人免费| 亚洲无线观看免费| 两个人视频免费观看高清| 成年版毛片免费区| 日韩高清综合在线| 日本成人三级电影网站| 嫁个100分男人电影在线观看| 亚洲精品在线美女| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在 | 亚洲中文字幕一区二区三区有码在线看| 青草久久国产| 日本黄大片高清| 亚洲人与动物交配视频| 婷婷精品国产亚洲av在线| 久久草成人影院| eeuss影院久久| 国产久久久一区二区三区| avwww免费| 高清在线国产一区| 日本精品一区二区三区蜜桃| 国产激情偷乱视频一区二区| 深爱激情五月婷婷| 老司机在亚洲福利影院| 男人的好看免费观看在线视频| 99久久久亚洲精品蜜臀av| 国产精品久久久久久人妻精品电影| www日本在线高清视频| 母亲3免费完整高清在线观看| 国产乱人伦免费视频| 欧美乱妇无乱码| 亚洲av成人不卡在线观看播放网| 首页视频小说图片口味搜索| 婷婷精品国产亚洲av在线| 亚洲第一欧美日韩一区二区三区| 久久国产乱子伦精品免费另类| 99热这里只有精品一区| 色综合亚洲欧美另类图片| 国产成人a区在线观看| 琪琪午夜伦伦电影理论片6080| 国产高清三级在线| 91麻豆精品激情在线观看国产| 亚洲人成网站高清观看| 九色成人免费人妻av| 亚洲av中文字字幕乱码综合| 亚洲性夜色夜夜综合| 国产免费男女视频| 69人妻影院| 国产成+人综合+亚洲专区| 国产精品久久久久久人妻精品电影| 成人高潮视频无遮挡免费网站| 18美女黄网站色大片免费观看| 亚洲精品一区av在线观看| 久久久久久久亚洲中文字幕 | 欧美3d第一页| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 国产精品美女特级片免费视频播放器| 久久99热这里只有精品18| 91九色精品人成在线观看| 欧美乱妇无乱码| 一a级毛片在线观看| 中文字幕av在线有码专区| 俺也久久电影网| 丁香欧美五月| 真人做人爱边吃奶动态| 日韩高清综合在线| 97人妻精品一区二区三区麻豆| 成熟少妇高潮喷水视频| 国产精品免费一区二区三区在线| 两性午夜刺激爽爽歪歪视频在线观看| 久久久国产成人免费| 婷婷六月久久综合丁香| 在线观看舔阴道视频| 国产精品嫩草影院av在线观看 | 久久精品国产综合久久久| 日韩欧美免费精品| 精品不卡国产一区二区三区| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 99riav亚洲国产免费| 午夜福利高清视频| 中出人妻视频一区二区| 欧美在线黄色| 欧美中文综合在线视频| 亚洲美女黄片视频| 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看| 欧美成人a在线观看| 每晚都被弄得嗷嗷叫到高潮| 中出人妻视频一区二区| 国产91精品成人一区二区三区| 精品99又大又爽又粗少妇毛片 |