閆悅,王崇文,楊磊,李文婷,時廣力,何傳宇,白靖平
(1新疆醫(yī)科大學附屬腫瘤醫(yī)院,烏魯木齊830011;2新疆醫(yī)科大學第一附屬醫(yī)院)
?
放射治療對兔肢體軟組織腫瘤血液供應及細胞增殖的影響
閆悅1,王崇文1,楊磊2,李文婷1,時廣力1,何傳宇1,白靖平1
(1新疆醫(yī)科大學附屬腫瘤醫(yī)院,烏魯木齊830011;2新疆醫(yī)科大學第一附屬醫(yī)院)
目的 探討放射治療對兔肢體軟組織腫瘤血液供應及細胞增殖的影響。方法 建立30只兔VX2肢體軟組織腫瘤模型,隨機分為對照組10只、調(diào)強放療(IMRT)組10只及容積弧形調(diào)強放療(VMAT)組10只,IMRT組、VMAT組分別進行IMRT、VMAT,放療后第7天行三維能量多普勒超聲血管成像(3D-PDA)檢查,記錄腫瘤血管分型及血管形成指數(shù)(VI)、血流指數(shù)(FI)、血管血流指數(shù)(VFI)。對照組不予處理,檢查方法及時間同VMAT組。3D-PDA檢查后處死動物取腫瘤組織,采用免疫組化SP法檢測Ki-67陽性表達率及微血管密度(MVD)。結果 IMRT組血管分型為Ⅰ型7例、Ⅱ型1例、Ⅲ型0例,VMAT組為10、0、0例,對照組為0、2、8例;IMRT組和VMAT組血管分型明顯優(yōu)于對照組(P均<0.01)。IMRT組和VMAT組VI、FI、VFI及Ki-67陽性表達率、MVD均低于對照組(P均<0.05),IMRT組和VMAT組上述指標比較差異無統(tǒng)計學意義(P均>0.05)。結論 IMRT、VMAT均可減少兔肢體軟組織腫瘤的血液供應并抑制腫瘤細胞增殖。
軟組織肉瘤;放射治療;三維能量多普勒超聲血管成像;Ki-67;微血管密度
軟組織肉瘤(STS)來源于中胚層的機體間充質(zhì)組織,手術是其首選治療方式,而輔助應用放射治療(放療)能夠顯著降低局部復發(fā)率[1,2]。新輔助放療可使原本不能切除的病灶縮小、臨床分期降低,從而提高根治性切除率[3]。腫瘤血供為其增殖、轉移提供營養(yǎng)物質(zhì),可作為評價放療療效的指標。兔VX2腫瘤是通用的腫瘤模型,其發(fā)生、發(fā)展及轉移等生物學行為與STS極其相似,即在局部呈浸潤性生長,突破間室[4]。2014年11月~2015年6月,我們建立兔VX2肢體軟組織腫瘤模型,并觀察了其血液供應及細胞增殖情況,現(xiàn)將結果報告如下。
1.1 材料 動物:純種新西蘭雄性大白兔39只,體質(zhì)量3.5~4 kg,6~8月齡,由新疆醫(yī)科大學動物中心提供(編號: SYXK2010-0002)。試劑及儀器:冰凍VX2腫瘤細胞懸液由新疆維吾爾自治區(qū)醫(yī)學影像研究所提供;Ki-67免疫組化試劑盒(美國Pierce公司),CD34血管內(nèi)皮標志物免疫組化試劑盒(武漢博士德生物工程有限公司);三維超聲GE LOGIQ E9型超聲診斷儀(美國GE公司),三維超聲探頭(探頭型號:RSP 6-16-D),VARIAN IX直線加速器(RapidArcTM),飛利浦MX800多層螺旋CT掃描機(荷蘭飛利浦公司)。
1.2 兔VX2肢體軟組織腫瘤模型制備 隨機選擇9只新西蘭雄性大白兔,用于VX2腫瘤細胞傳代。將冰凍VX2腫瘤細胞懸液按一般細胞培養(yǎng)技術復蘇,800 r/min離心5 min,去除上清液,加入PBS液后再離心5 min;棄上清液,加入PBS液并用玻璃棒攪勻;取懸液臺朌藍染色,計數(shù)活細胞和死細胞;將懸液調(diào)制成1×106活細胞密度。取0.5 mL細胞懸液接種于9只兔左后肢肌肉內(nèi),待腫瘤生長至直徑3.0~3.5 cm時切取腫瘤,切成大小約0.5 cm×0.5 cm的碎塊制備腫瘤細胞混懸液。剩余30只兔肌肉注射3%戊巴比妥鈉1.5 m/kg麻醉,B超引導下將0.5 mL腫瘤細胞混懸液注射入其左后肢毗鄰股骨約0.5 cm的肌肉內(nèi)。造模后2周B超檢查示左后肢腫瘤直徑為3.0~3.5cm,證實模型制備成功。
1.3 分組處理 采用隨機數(shù)字表法將30只VX2肢體軟組織腫瘤兔分為調(diào)強放療組(IMRT組)、容積弧形調(diào)強放療組(VMAT組)及對照組,每組10只。采用大孔徑增強CT掃描定位,將兔取俯臥位放置,熱塑體膜固定,并做體表擺位標記。經(jīng)耳緣靜脈快速推入對比造影劑碘帕醇2 mL/kg,掃描范圍為骨盆至膝關節(jié),掃描層厚為2.5 mm。CT影像通過Varis局域網(wǎng)傳輸?shù)絍arian Eclipse 10.0計算機平臺,由放療醫(yī)師勾畫靶區(qū)。VMAT組將腫瘤周邊毗鄰骨骼的區(qū)域作為腫瘤靶區(qū)推量(GTVboost),整個腫瘤作為腫瘤靶區(qū)(GTV);臨床靶區(qū)(CTV)在GTV基礎上X軸、Z軸外擴0.3~0.5 cm,Y軸外擴3 cm;計劃靶區(qū)(PTV)在CTV基礎上外擴0.3~0.5 cm;采用同步推量計劃:GTVboost:3 Gy/次,GTV:2.5 Gy/次,CTV:2.5 Gy/次,PTV:2.5 Gy/次,每周5次,共3周。IMRT組將腫瘤定義為GTV,依次勾畫CTV、PTV;采用常規(guī)分割PTV:2Gy/次,5野,每周5次,共5周。計劃完成前校對放療中心,采用Varian IX醫(yī)用直線加速器6 MV射線完成放療。對照組不予處理。
1.4 相關指標觀察
1.4.1 腫瘤組織血液供應 放療后第7天三組均行三維能量多普勒超聲血管成像(3D-PDA)檢查。采用GE LOGIQ E9彩超診斷儀聯(lián)合三維探頭,頻率7~12 MHz。探頭標記處與股骨長軸平行,動態(tài)三維容積探頭在儀器設置的muscle條件下,啟動三維成像程序,顯示X、Y、Z三個不同方向切面的能量多普勒圖像,進行存儲。調(diào)出三維數(shù)據(jù)庫中的3D-PDA容積資料,選用Vocal手動模式,旋轉角度15°。以A平面作為參考平面,緊貼骨面勾畫腫瘤邊緣顯示腫瘤立體血流,按照血管的分布與走行,參照Ohishi等[5]的方法將腫瘤血管分布分為Ⅰ、Ⅱ、Ⅲ型(Ⅰ型血供不豐富,Ⅲ型血供豐富,Ⅱ型血供介于二者之間)。通過計算機軟件自動計算并顯示血流和血管參數(shù),包括血管形成指數(shù)(Ⅵ)、血流指數(shù)(FI)、血管血流指數(shù)(VFI)。
1.4.2 腫瘤組織病理情況 3D-PDA檢查結束后處死三組動物,完整切取其左后肢腫瘤標本,選取腫瘤毗鄰股骨處的腫瘤組織進行標記、取材。中性甲醛溶液固定24 h,石蠟包埋、切片,行HE染色,100倍光鏡下觀察腫瘤組織病理情況。
1.4.3 腫瘤組織 Ki-67表達及微血管密度(MVD) Ki-67表達:采用免疫組化SP法,嚴格按照試劑盒說明書操作。選取有代表性的5個高倍視野,每個視野計數(shù)100個細胞,計算陽性細胞(細胞核呈棕黃色)所占的比例,其平均數(shù)記為Ki-67表達,可反映細胞增殖情況。MVD:經(jīng)CD34多克隆抗體標記微血管后,免疫組化染色顯示腫瘤血管呈棕黃色。先于40倍鏡下尋找切片MVD豐富區(qū)域,再于400倍視野下計數(shù)染成棕色并可與周圍血管、腫瘤及其他結締組織區(qū)分開的內(nèi)皮細胞或細胞簇數(shù)目。計數(shù)時將單一走行的血管記為1,如果血管走行中有分支則以最終的分支數(shù)為準;單個散在或聚集成簇尚未形成管腔的內(nèi)皮細胞亦計數(shù)為1。管腔橫截面中內(nèi)皮細胞總數(shù)>8的血管不是新生血管,不作計數(shù)。
IMRT組放療過程中2只死亡(一只死于麻醉過量,一只腫瘤破潰至皮膚予安樂死),最終存活8只;其余兩組均存活。
2.1 三組腫瘤組織血液供應情況 IMRT組腫瘤內(nèi)部未見血管分布,僅周邊可見點狀、線狀血管。VMAT組可見整個腫瘤血管結構明顯減少。對照組腫瘤實質(zhì)有部分樹枝狀血管存在,分支復雜,走行迂曲,周邊可見環(huán)繞的粗大血管。IMRT組血管分型為Ⅰ型7例、Ⅱ型1例、Ⅲ型0例,VMAT組為10、0、0例,對照組為0、2、8例;IMRT組和VMAT組血管分型明顯優(yōu)于對照組(P均<0.01)。IMRT組和VMAT組VI、FI、VFI均低于對照組(P均<0.05),IMRT組與VMAT組VI、FI、VFI比較差異無統(tǒng)計學意義(P均>0.05)。見表1。
表1 三組VI、FI、VFI比較
注:與對照組比較,*P<0.05。
2.2 三組腫瘤組織病理情況 IMRT組鏡下可見腫瘤實質(zhì)及腫瘤邊緣組織大片壞死細胞,伴有炎細胞浸潤及纖維組織增生;在其他視野仍可觀察到少許腫瘤細胞殘留。VMAT組GTVboost區(qū)域可見腫瘤細胞壞死明顯,纖維組織增生;纖維組織周圍有炎細胞浸潤,表現(xiàn)出壞死細胞逐漸被纖維細胞替代的演化改變;在其他視野仍可觀察到少許腫瘤細胞殘留。對照組鏡下可見腫瘤細胞侵犯橫紋肌,正常的細胞結構受到損害,細胞邊界與周圍組織不清。
2.3 三組腫瘤組織Ki-67陽性表達及MVD比較 IMRT組和VMAT組Ki-67陽性表達率、MVD均低于對照組(P均<0.05),IMRT組和VMAT組Ki-67陽性表達率、MVD比較差異無統(tǒng)計學意義(P均>0.05)。見表2。Pearson相關分析結果顯示,VI與MVD呈正相關(r=0.91,P<0.01)。
2.4 VI與MVD的關系 Pearson相關分析結果顯示,VI與MVD呈正相關(r=0.91,P<0.01)。
在臨床和實驗研究中, 放療對實體腫瘤治療效果的評估一直存在爭議。Le Grange等[6]研究認為,大多數(shù)STS患者新輔助放療后腫瘤體積會縮小,但仍有小部分的腫瘤體積會增大,并且進一步證實腫瘤體積的變化與手術切除后的局部控制率無相關性。研究顯示,腫瘤組織的內(nèi)部代謝和血供變化可更好地評估治療效果[7]。在腫瘤的生長和轉移中,血管生成起關鍵作用[8,9]。CT能夠通過病變區(qū)域的密度判斷腫瘤的存活或壞死,但對于表現(xiàn)為低密度且不能明顯增強的區(qū)域,可能還包括少量存在于纖維組織中的存活腫瘤細胞[10]。MRI在評價腫瘤治療效果方面有一定優(yōu)勢,壞死的組織表現(xiàn)為T1WI低信號和T2WI高信號,對比增強的T1WI無強化,同時殘留的腫瘤組織在增強MRI中表現(xiàn)為高信號,但在術后早期出現(xiàn)的炎癥區(qū)域也同樣表現(xiàn)為明顯強化[11]。
表2 三組Ki-67陽性表達率及MVD比較
注:與對照組比較,*P<0.05。
3D-PDA為觀察腫瘤內(nèi)部及周邊的血管結構提供了一種動態(tài)、立體及直觀的方式,能夠客觀顯示腫瘤的血液供應[12]。應用Vocal軟件對靶器官內(nèi)的血流信號進行自動分析計算出總的血流振幅與彩色值,從而生成VI、FI、VFI。VI表示整個感興趣容積內(nèi)血流信號所占的比例,F(xiàn)I表示整個感興趣容積內(nèi)血流信號的平均強度,VFI是血管數(shù)量與血流信號強度的結合[13]。研究顯示,VI、FI、VFI可全面、客觀、量化評估活體組織內(nèi)的血管密度和灌注情況[14]。本研究結果顯示,對照組腫瘤周邊有豐富的血管網(wǎng),而腫瘤實質(zhì)仍有部分樹枝狀的血管存在,但血管結構不是很豐富,可能與兔肢體軟組織腫瘤的生長速度以及發(fā)生凋亡、壞死的過程都明顯快于人體腫瘤有關;IMRT組和VMAT組血管分型明顯優(yōu)于對照組,VI、FI、VFI均低于對照組,而IMRT組和VMAT組之間無明顯差異,說明IMRT、VMAT均可降低兔肢體軟組織腫瘤的血管形成及血液供應。但因無法保證每次3D-PDA檢查是探頭的角度相同,且之后三維圖像生成的立體血流圖亦不相同,因此無法完全保證測量的真實性。
Ki-67陽性表達率與惡性腫瘤的發(fā)展、轉移、預后相關,可反映惡性腫瘤增殖率,是判斷腫瘤生物學行為的良好指標[15]。亦逐漸成為腫瘤放療療效的評價指標[16]。子宮頸鱗狀上皮細胞癌患者Ki-67陽性表達率從放療前的49.7%降低至放療后的24%,細胞增殖活性顯著降低[17]。經(jīng)CD34多克隆抗體標記微血管后,可以間接反映MVD,為腫物組織內(nèi)微血管進行定量研究提供依據(jù)[18]。本研究結果顯示,IMRT組和VMAT組Ki-67陽性表達率、MVD均明顯低于對照組,IMRT組和VMAT組Ki-67陽性表達率、MVD比較差異無統(tǒng)計學意義,表明放療可明顯抑制兔肢體軟組織腫瘤的血液供應及細胞增殖。本研究Pearson相關分析結果顯示,VI與MVD呈正相關。Hui等[19]應用3D-CPA檢測宮頸癌上皮內(nèi)瘤變的研究,也得到了與VI與MVD呈正相關的結果。
綜上所述,IMRT、VMAT均可減少兔肢體軟組織腫瘤的血液供應并抑制其細胞增殖。3D-PDA能夠從立體血供角度評價腫瘤的放療效果,可作為臨床評價軟組織肉瘤放療效果的新方法。但是本研究存在一定的局限性,由于動物存在腫瘤負荷,盡管加強護理,但每天接受放療及麻醉后已相當虛弱。因此放療后觀察時間較短,只能參照文獻[20]在放療后第7天記錄3D-PDA相關參數(shù),而對照組也選擇在周期較短的VMAT組放療完成后第7天采集資料,故缺少長期觀察的相關數(shù)據(jù)。
[1] Kim B, Chen YL, Kirsch DG, et al. An effective preoperative three-dimensional radiotherapy target volume for extremity soft tissue sarcoma and the effect of margin width on local control[J]. Int J Radiat Oncol Biol Phys, 2010,77(3):843-850.
[2] Sampath S, Schultheiss TE, Hitchcock YJ, et al. Preoperative versus postoperative radiotherapy in soft tissue sarcoma: multi-institutional analysis of 821 patients[J]. Int J Radiat Oncol Biol Phys, 2011,81(2):498-505.
[3] Dagan R, Indelicato DJ, McGee L, et al. The significance of a marginal excision after preoperative radiation therapy for soft tissue sarcoma of the extremity[J]. Cancer, 2012,118(12):3199-3207.
[4] Handal JA, Schulz JF, Florez GB, et al. Creation of rabbit bone and soft tissue tumor using cultured VX2 cells[J]. J Surg Res, 2013,179(1):127-132
[5] Ohishi H, Hirai T, Yamada R, et al. Three-dimensional power Doppler sonography of tumor vascularity[J]. J Ultrasound Med, 1998,17(10):619-622.
[6] Le Grange F, Cassoni AM, Seddon BM. Tumour volume changes following pre-operative radiotherapy in borderline resectable limb and trunk soft tissue sarcoma[J]. Eur J Surg Oncol, 2014,40(4):394-401.
[7] Huang YF, Cheng YM, Wu YP, et al. Three-dimensional power Doppler ultrasound in cervical carcinoma: monitoring treatment response to radiotherapy[J]. Ultrasound Obstet Gynecol, 2013,42(1):84-92.
[8] Huang SF, Chang RF, Moon WK, et al. Analysis of tumor vascularity using three-dimensional Power Doppler ultrasound images[J]. IEEE Trans Med Imaging, 2008,27(3):320-330.
[9] Deng J, Rhee TK, Sato KT, et al. In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla[J]. Invest Radiol, 2006,41(4):410-414.
[10] Yang WT, Johnson PJ. Monitoring response to treatment in liver tumours.Baillieres Best Pract Res Clin Gastroenterol. 1999 Dec;13(4):637-54.
[11] Li S, Xue H D, Wang X H, et al. MR diffusion weighted imaging for evaluation of radiotherapeutic effects on rabbit vx2 tumor modeL[J]. Chin Med Sci J, 2008,23(3):172-177.
[12] Alcázar JL, Jurado M, Lopez-Garcia G. Tumor vascularization in cervical cancer by 3-dimensional power Doppler angiography: correlation with tumor characteristics[J]. Int J Gynecol Cancer, 2010, 20(3):393-397.
[13] Pairleitner H, Steiner H, Hasenoehrl G, et al. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization[J]. Ultrasound Obstet Gynecol, 1999, 14(2):139-143.
[14] Kalmantis K, Rodolakis A, Daskalakis G, et al. Characterization of ovarian tumors and staging ovarian cancer with 3-Dimensional power doppler angiography: correlation with pathologic findings[J]. Int J Gynecol Cancer, 2013,23(3):469-474.
[15] Lala PK. Significance of nitric oxide in carcinogenesis, tumor progression and cancer therapy[J]. Cancer Metastasis Rev, 1998,17(1):1-6.
[16] Li R, Heydon K, Hammond ME, et al. Ki-67 staining index predicts distant metastasis and survival in locally advanced prostate cancer treated with radiotherapy: an analysis of patients in radiation therapy oncology group protocol[J]. Clin Cancer Res, 2004,10(12):4118-4124.
[17] Kuznetsova ME, Pozharisskiǐ KM, Vinokurova VL, et al. Ki-67 expression as a predictor of the effectiveness of radiotherapy and of outcome in locally advanced squamous cell carcinoma of the uterine cervix (immunohistochemical study)[J]. Vopr Onkol, 2007,53(2):175-180.
[18] Dall′Oglio MF, Ribeiro-Filho LA, Antunes AA, et al. Microvascular tumor invasion, tumor size and fuhrman grade: a pathological triad for prognostic evaluation of renal cell carcinoma[J]. J Urol, 2007,178(2):425-428.
[19] Hui L, Min F, Fu-Min L, et al. Transvaginal three-dimensional color power Doppler ultrasound and cervical MVD measurement in the detection ofcervical intraepithelial neoplasia[J]. Eur Rev Med Pharmacol Sci, 2014,18(14):1979-1984.
[20] Mardor Y, Pfeffer R, Spiegelmann R, et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging[J]. J Clin Oncol, 2003,21(6):1094-1100.
Effect of radiotherapy on blood supply and cell proliferation of rabbit limb soft-tissue tumor
YANYue1,WANGChongwen,YANGLei,LIWenting,SHIGuangli,HEChuanyu,BAIJingping
(1TheAffiliatedTumorHospitalofXinjiangMedicalUniversity,Urumqi830011,China)
Objective To investigate the effect of radiotherapy on blood supply and cell proliferation of rabbit limb soft-tissue tumor. Methods Thirty VX2 limb soft-tissue tumor models were established and were randomly divided into three groups: the control group (n=10), intensity modulated radiotherapy (IMRT) group (n=10) and volumetric modulated arc therapy (VMAT) group (n=10). IMRT group received IMRT and VMAT group received VMAT. Three-dimensional power Doppler angiography (3D-PDA) was performed on the first week after radiation. Types of tumor blood vessels were recorded. Vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated. The control group received the same examination at same time without any treatment. Animals were sacrificed and tumor tissues were sectioned after 3D-PDA, then the positive expression rate of Ki-67 and micro vessel density (MVD) was assessed by immunohistochemical SP method. Results Types of tumor blood vessels: in the IMRT group, there were 7 cases of typeⅠ, 1 case of type Ⅱ and 0 case of type Ⅲ; all were 0 in the VMAT group; and 0, 2 and 8 cases in the control group. The types of tumor blood vessels in the IMRT group and VMAT group were better than that of the control group (allP<0.01). VI, FI, VFI, positive expression rate of Ki-67 and MVD in the IMRT group and VMAT group were lower than those of the control group (allP<0.05). No significant difference was found in the above index between the IMRT group and VMAT group (allP>0.05). Conclusion IMRT and VMAT can reduce blood supply and inhibit tumor cell proliferation of rabbit limb soft-tissue tumor.
soft tissue sarcoma; radiotherapy; three-dimensional power Doppler angiography; Ki-67; microvessel density
新疆維吾爾自治區(qū)自然科學基金資助項目(2015211C114)。
閆悅(1988-),男,碩士研究生,研究方向為骨與軟組織腫瘤。E-mail: xjyanyue1988@163.com
簡介:白靖平(1958-),男,主任醫(yī)師,研究方向為骨與軟組織腫瘤。E-mail: xjbaijingping@163.com
10.3969/j.issn.1002-266X.2016.36.006
R738.6
A
1002-266X(2016)36-0020-04
2015-12-03)