• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    原位水解沉積制備高效氮化鉭微球太陽能分解水光陽極

    2016-12-05 11:49:24楊立恒羅文俊李明雪鄒志剛
    無機(jī)化學(xué)學(xué)報 2016年10期
    關(guān)鍵詞:南京大學(xué)原位微球

    楊立恒 羅文俊 李明雪 鄒志剛

    (1南京大學(xué)現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院,南京210093)

    (2江蘇省柔性電子重點(diǎn)實(shí)驗(yàn)室,先進(jìn)材料研究院,江蘇先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,南京工業(yè)大學(xué),南京211816)

    (3南京大學(xué)環(huán)境材料與再生能源研究中心,固體微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)物理學(xué)院,南京210093)

    (4中國礦業(yè)大學(xué)物理學(xué)院,徐州221116)

    原位水解沉積制備高效氮化鉭微球太陽能分解水光陽極

    楊立恒1羅文俊*,2,3李明雪4鄒志剛*,3

    (1南京大學(xué)現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院,南京210093)

    (2江蘇省柔性電子重點(diǎn)實(shí)驗(yàn)室,先進(jìn)材料研究院,江蘇先進(jìn)生物與化學(xué)制造協(xié)同創(chuàng)新中心,南京工業(yè)大學(xué),南京211816)

    (3南京大學(xué)環(huán)境材料與再生能源研究中心,固體微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,南京大學(xué)物理學(xué)院,南京210093)

    (4中國礦業(yè)大學(xué)物理學(xué)院,徐州221116)

    利用一種新的原位水解沉積方法,以在高濕度空氣中老化的甲醇中作為溶劑,通過乙醇鉭水解而成前驅(qū)體微球顆粒沉積,制備出了高效的Ta3N5微球光電極,其1.6 V(vs RHE)電極電位下的光電流值達(dá)到了6.6 mA·cm-2。相反地,在新鮮的甲醇溶液中沒有鉭前驅(qū)體微球顆粒沉積。這表明甲醇中水的含量對Ta3N5微球光電極的形成十分重要。另外,本制備方法也能方便地在其他透明導(dǎo)電襯底上制備出Ta3N5。

    太陽能水分解;Ta3N5光陽極;微球;原位沉積;濕度

    (3Eco-materials and Renewable Energy Research Center(ERERC),National Laboratory of Solid State(Microstructures,Colledge of Physics,Nanjing University,Nanjing 210093,China)

    (4Department of Physics,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China)

    0 Introduction

    Since a TiO2-based photoelectrochemical(PEC) cell was reported to split water into H2and O2under illumination,solar water splitting has been considered to be a promising technology to produce H2on a large scale[1].Ta3N5is regarded as one of themost promising candidates due to its high theoretical energy conversion efficiency(15.9%)and suitable band positions[2-3].Many preparation methods,such as thermal oxidation and nitridation of Ta foil,throughmask anodization,anodization combined with hydrothermalmethod,electrophoretic deposition,dropcasting andmagnetron sputtering,havebeen reported to prepare Ta3N5[4-9].However,p-n tandem photoelectrochemical cell requires efficient and translucent/ transparent Ta3N5photoanode,which still remains unfulfilled.Therefore,it isstilldesirable toexplorenew preparation methods of Ta3N5films.In addition, spherical structure can lead to efficient light absorption and improve performance of a photoelectrode[10-11]. However,current preparation methods for spheres are often in the assistance of additional reagents,which increasespreparation cost[12-13].

    Herein,an efficient microsphere Ta3N5photoanode was prepared by a new in situ hydrolysis deposition method without any additional reagents. Microsphere precursor films were firstly deposited on substrates in tantalum ethoxide(Ta(OEt)5)solution of aged methanol.After oxidation and nitridation, microsphere Ta3N5films were obtained.A 6.6 mA· cm-2photocurrent was achieved at 1.6 V vs RHE.In this context,exploration of new preparation method and the synthesis mechanism of Ta3N5film are our research focus and we hope it can give some hints for preparation of efficient and translucent/transparent Ta3N5.

    1 Experimental

    1.1 Preparation of Ta3N5m icrosphere photoanodes

    A typical preparation procedure of Ta3N5microsphere photoanode is as follows.Firstly, methanol(Purity≥99.5%,Nanjing Chemical Reagent Co.,Ltd.)was aged in airwith 7%relative humidity at 25℃for 4 h before use.Secondly,10 mmol·L-1precursor solution of tantalum ethoxide(Purity≥99.95%,Zhuzhou Cemented Carbide Group Corp., Ltd)was prepared with aged methanol.Then,Ta foils (Purity≥99.95%,Zhongnuo Advanced Material Technology Co.,Ltd)were immersed in Ta(OEt)5methanol solution and films were deposited at 7℃for 48 h.Next,the obtained films were rinsed with deionized water and dried in air at room temperature, followed by calcination in air at250℃for 30minutes. Finally,Ta3N5microsphere photoanodes were obtained by nitridation of oxidized samples in a horizontal tube furnace at 850℃for 500 min under 800 mL·min-1NH3flow(Referred as Ta3N5/aged and Ta3N5/aged/Co-Pi for pristine and Co-Pi loaded samples, respectively).In order to investigate the effect of aging methanol,a reference sample was prepared in fresh methanol as solvent under the same conditions (Referred as Ta3N5/fresh and Ta3N5/fresh/Co-Pi for pristine and Co-Pi loaded samples,respectively).

    1.2 Photo-assisted electrodeposition of Co-Pi co-catalyst

    Following previous studies,Co-Pi co-catalyst was electrodeposited on Ta3N5film by chronopotentiometry under illumination with constant current of 50μA for 4 min[5].The electrodeposition was conducted in a three-electrode cell,with the solution of 0.5 mmol·L-1Co(NO3)2·6H2O(Purity≥99.0%,Shanghai Zhenxin Reagent Factory)and 0.1 mol·L-1K2HPO4·3H2O (Purity≥99.0%,Shanghai Lingfeng Chemical Reagent Co.,Ltd.)buffer at pH=7 as electrolyte.Ta3N5was used as working electrode,Pt foil as counter electrode and saturated calomel electrode(SCE)as reference electrode.An AM 1.5G-simulated sunlight simulator (Oriel 92251A-1000,light intensity=100 mW·cm-2) wasused as light source.During the deposition process, Co2+was oxidized into Co3+[14-15].The total amount of charge was about20mC·cm-2.Assuming that Faradaic efficiency was 100%,the amount of deposited Co was calculated as follow:

    Where NCois the amount of Co-Pi deposited on Ta3N5per square centimeter.96 485(C·mol-1)is the Faradaic constant.

    After Co-Pi deposition,the electrode was rinsed with deionized water and dried in air for use.

    1.3 Characterization of sam p les

    The crystal structures of samples were determined by an X-ray diffractometer(XRD,Rigaku UltimaⅢ)with Cu Kαray(λ=0.154 3 nm)at 40 kV and 40 mA.The range is from 10°to 80°. Morphologies of electrodes were observed on a field emission scanning electron microscope(SEM,Zeiss, Ultra 55-44-08)at an accelerating voltage of 15 kV. Water content of methanol was measured on a moisture analyzer(Metrohm,KF787 Titrino). Absorption spectra were investigated on a UV-vis spectrophotometer(Shimadzu,UV-2550).FTIR spectra were obtained on a Nexus870 spectrophotometer in the range of 4 000~400 cm-1.Thermogravimetric analysis was carried out in air with a Netzsch STA 449F3 instrument by increasing temperature from 30 to 600℃with 5℃·min-1.

    1.4 Photoelectrochem icalmeasurements

    Photoelectrochemical performance was measured in a three-electrode cell using an electrochemical analyzer(CHI-633C,Shanghai Chenhua).Ta3N5microsphere electrode was used as working electrode, Pt foil as counter electrode and saturated calomel electrode(SCE)as reference electrode.Aqueous solution of 1 mol·L-1NaOH was employed as electrolyte.A commercial AM 1.5G-simulated sunlight simulator(Oriel 92251A-1000,light intensity=100 mW·cm-2)was used as light source.Current-potential curveswere recorded at a scan rate of 10mV·s-1.The potential of working electrode versus SCE was converted into RHE(reversible hydrogen electrode) potential scale according to the following formula:

    where VRHEis the potential versus RHE(V),VSCEis the potential versus SCE(V),and pH is the pH value of electrolyte.The incident photon-to-current efficiency (IPCE)was determined under the irradiation of differentwavelength light generated bymonochromatic filters according to the following formula:

    where Iphis the photocurrent density(μA·cm-2),P and λare the incident light intensity(μW·cm-2)and wavelength(nm),respectively.The incident light intensity wasmeasured by a photometer(Newport,84 0-C,USA).

    Fig.1 Photographs of precursor solution of(a)fresh and(b)aged methanol before and after deposition

    2 Results and discussion

    Fig.1 shows photographs of Ta(OEt)5solution of fresh and aged methanol before and after deposition, respectively.Both solutions are transparent at the beginning.After depositing at 7℃for 48 h,solution of aged methanol became white(Fig.1(b)).However, solution of fresh methanolwas still transparent.White films were deposited on substrates in solution of aged methanol,whereas there were no samples on substrates in solution of fresh methanol.The results suggest that film deposition comes from hydrolysis of Ta(OEt)5in aged methanol.Since the only difference between the two kinds ofmethanol was the methanol whether exposed in moist air or not,little water in methanol was essential for the formation of films.The water content was measured about 0.15%(w/w)by a moisture analyzer.The detail effect of water will be

    discussed below.

    Fig.2 XRD patterns of Ta3N5/fresh and Ta3N5/aged

    Fig.3 High magnification SEM images of Ta3N5/fresh(a)and Ta3N5/aged(b);Cross-sectional images of Ta3N5/fresh(d)and Ta3N5/aged(d)

    XRD patterns were measured to determine phases and crystal structures of the two samples,as shown in Fig.2.Orthorhombic phase Ta3N5(PDF No. 19-1291)was obtained for Ta3N5/aged.In contrast, Ta3N5/fresh shows no peaks of Ta3N5.Fig.3 shows scanning electron microscopy(SEM)images of Ta3N5/ fresh and Ta3N5/aged.Surface and cross-sectional SEM images in Fig.3(a,c)indicate that Ta3N5/fresh shows only morphology of Ta substrate and no Ta3N5is observed.The result is in agreement with the XRD data.However,Fig.3(b)shows that Ta3N5/aged is composed of spherical particles,with the diameter around 1μm.Discernible roughness,many nanopores and cracks are observed on the surface,which come from volume shrinkage from transition of Ta2O5into Ta3N5and the decomposition of residual organics (Fig.4)during nitridation[12].High magnification SEM image of precursor is displayed in the inset picture of Fig.3(b).The result suggests that microspheres are formed during precipitation.Fig.3(d)is the crosssectional image of Ta3N5/aged.It shows that Ta3N5film electrode is composed of microsphere particles and the thickness is about 7.5μm.From the inset in Fig.3 (d),Ta3N5microsphere is solid and composed of smaller particles,which suggests that Ta3N5microsphere originates from the agglomeration of nanoparticles.

    Spherical structure is one of favorable microstructures in both photoelectrochemical and solar cells[10-11].Usually,spherical Ta3N5particles obtained by solution methods are assisted with additional agents[12-13].Though the distribution size of Ta3N5spheres can be narrowed,introduction of additional reagents actually increases the possibility of inclusion of impurities,as well as experimental difficulties and preparation cost.In our study,however,Ta3N5microsphere was prepared in a more simple way, without any additional agents,and thus those shortcomings are avoided.

    FTIR spectra were used to investigate formation process of microsphere,and the results are shown in Fig.4.Peaks below 1 000 cm-1are attributed to stretching,bending and torsion modes of Ta-O[16-17].

    The broad absorption between 800 and 1 000 cm-1corresponds to the presence of Ta suboxides[18].A peak at~3 342 cm-1is assigned to OH stretching modes, and peak at~1 626 cm-1is associated with OH bending modes[17,19].Both of them are weakened after calcination at 250℃.The existence of-OH group confirms that microsphere is from the hydrolysis of tantalum ethoxide.

    Fig.4 FTIR spectra ofmicrosphere precursor before and after calcined at250℃for 30min in air

    Fig.5 Thermogravimetric spectrum ofmicrosphere precursor

    Fig.6 Schematic illustration of formation process of Ta3N5m icrosphere film

    In order to further investigate composition of asdeposited microsphere precursor before calcination, thermogravimetric(TG)ismeasured and the result is shown in Fig.5.The endothermic peak under 100℃comes from evaporation of adsorbed water.Weight loss with exothermic peak ended at around 500℃arises from the decomposition of organics in microsphere, which comes from the organic group-CH2CH3of Ta (OEt)5[16-17].However,organic compounds cannot be removed completely when calcined at 250℃and thus lead to the formation of Ta suboxides.

    According to the above discussion,formation process of Ta3N5microsphere can be concluded as followswith the simplified chemical reactions[20-21]:

    Hydrolysis:

    Polycondensation:

    Water content in methanol is a key factor to trigger the whole reaction.Actually,the two reactions proceed simultaneously once the hydrolysiscondensation reaction is triggered.As long as a critical radius is reached,nucleation will take place. And nanocrystalline will agglomerate into spherical particle due to its lowest surface energy.Finally,when the spherical particles are big enough,sedimentation happens and a film is deposited on the substrate. After oxidation and nitridation,Ta3N5microsphere film is obtained.A schematic diagram of formation process of Ta3N5microsphere is illustrated in Fig.6.

    Fig.7 indicates UV-Vis absorption spectrum of Ta3N5microsphere photoanode.The Ta3N5microsphere film shows a high absorption,which comes from light scattering ofmicrospheres.Contribution from substrate is excluded through the absorption spectrum of Ta3N5/ fresh.Ambiguous ERERC can be identified through the Ta3N5microsphere film on quartz substrate in the inset(II)of Fig.7,which suggests that in situ hydrolysis deposition method can be used to prepare a translucent Ta3N5microsphere electrode.

    Photoelectrochemical properties of Ta3N5micro-

    sphere photonodes weremeasured and the results are shown in Fig.8.In order to exclude contribution of Ta substrate on photocurrent,Ta3N5/fresh was also measured as a reference.Dark currents of both electrodes are negligible.The photocurrent of Ta3N5/ fresh and Ta3N5/fresh/Co-Pi ismuch lower than that of a Ta3N5microsphere photonode.Therefore, photocurrents of Ta3N5/aged and Ta3N5/aged/Co-Pi entirely come from Ta3N5microsphere,rather than from substrate.Generally,a bare Ta3N5photoanode suffers from severe photo-corrosion in aqueous solution and surface combination,which can be remarkably suspressed by depositing a co-catalyst. Among different co-catalysts,Co-Pi is low-cost and operable undermild conditions[14,22].Therefore,in this study,Co-Pi(2μmol·cm-2)was electrodeposited on the Ta3N5film to improve the performance of the Ta3N5microsphere electrode.After deposition of Co-Pi,the photocurrent of Ta3N5/aged/Co-Pi is about 3 times as high as that of Ta3N5/aged.Current density of Ta3N5microsphere electrode by in situ hydrolysis deposition method is~2.34 mA·cm-2at 1.23 V vs RHE,and~6.6 mA·cm-2at 1.6 V vs RHE.A Ta3N5photoanode prepared by EPD indicated 3.18 mA·cm-2photocurrent at 1.23 V vs RHE and about 6 mA·cm-2at 1.6 V vs RHE[23].High photocurrents of 5.5 mA· cm-2and 6.7 mA·cm-2at 1.23 V vs RHE have been achieved by direct oxidation and nitridation of Ta foil[4-5].The photocurrent in this study is comparable to samples by EPD and oxidation and nitridation of Ta foil,butmuch lower than 12.1 mA·cm-2obtained by Ta3N5with integration of hole-storage layer,coupled molecular catalysts and TiOxblocking layer[6]. However,in this study,preparation conditions and cocatalysts have not yet been optimized.And thus it is promising to further improve Ta3N5microsphere photoanode by in situ hydrolysis deposition method in future work.

    Fig.8(a)Current-potential curves of Ta3N5/fresh,Ta3N5/fresh/Co-Pi,Ta3N5/aged and Ta3N5/aged/Co-Pi in the dark(dash lines) and under AM 1.5G simulated sunlight irradiation(100mW·cm-2)(solid lines),respectively;(b)IPCE curves of Ta3N5/ fresh/Co-Piand Ta3N5/aged/Co-Piat 1.23 V vs RHE

    Fig.8(b)is the incident photon-to-current efficiency(IPCE)of Ta3N5/fresh/Co-Pi and Ta3N5/aged/ Co-Pi.The IPCE of Ta3N5/fresh/Co-Pi is nearly zero in the spectrum range from 350 to 610 nm,which further excludes contribution of substrate on photocurrent. The IPCE of Ta3N5/aged/Co-Pi is~26%at 400 nm, but decreases at longer wavelength[24].The integrated

    photocurrent(~2.35 mA·cm-2)shown in Fig.9 is very close to themeasured value(~2.34 mA·cm-2),which suggests that the measured photocurrent is reliable. The photocurrent response of Ta3N5/aged/Co-Pi in IPCE also agrees well with the absorption edge, suggesting that the photocurrent originates from the band gap transition of Ta3N5.The stability of Ta3N5/ aged and Ta3N5/aged/Co-Piwas alsomeasured and the result is shown in Fig.10.As we can see,the photocurrent of Ta3N5/aged declines over 50%after only 3~4 s under illumination,but the time was extended to about 2 000 s for Ta3N5/aged/Co-Pi. Though photocurrent of Ta3N5/aged/Co-Pi decreases obviously,nonzero photocurrent can still be observed. The stability of Ta3N5microsphere electrode should be further improved in future.

    Fig.9 Integrated solar photocurrent at 1.23 V vs RHE from the standard solar spectrum

    Fig.10 Current-time curves of Ta3N5/aged and Ta3N5/ aged/Co-Pimeasured at 1.23 V vs RHE

    3 Conclusions

    In summary,we synthesized an efficient Ta3N5microsphere photoanode by a new and facile in situ hydrolysis deposition method.A Ta3N5microsphere film was formed on Ta substrate in Ta(OEt)5solution of aged methanol.The microsphere is formed by hydrolysis of Ta(OEt)5and subsequentagglomeration of nanoparticles.Water content in solvent was indispensable to in situ deposition of Ta3N5film.High photocurrent density was obtained on the Ta3N5microsphere electrode,~2.34 mA·cm-2at 1.23 V vs RHE and~6.6 mA·cm-2at 1.6 V vs RHE under AM 1.5G simulated sunlight irradiation(100 mW·cm-2).In addition,in situ hydrolysis deposition method is a promising method to prepare efficient Ta3N5photoanodes on other transparent conducting substr ates.

    [1]Fujishima A,Honda K.Nature,1972,238:37-38

    [2]Wang L,Zhou X,Nguyen N T,et al.Adv.Mater.,2016,28 (12):2432-2438

    [3]Fu G,Yan S,Yu T,et al.Appl.Phys.Lett.,2015,107(17): 171902

    [4]LiM,LuoW,Cao D,etal.Angew.Chem.Int.Ed.,2013,52 (42):11016-11020

    [5]Li Y,Zhang L,Torres-Pardo A,et al.Nat.Commun.,2013, 4:2566

    [6]Liu G,Ye S,Yan P,et al.Energy Environ.Sci.,2016,9: 1327-1334

    [7]Khan S,Zapata M JM,Pereira M B,et al.Phys.Chem. Chem.Phys.,2015,17:23952-23962

    [8]Wang Z,Qi Y,Ding C,et al.Chem.Sci.,2016,7(7):4391-4399

    [9]Cong Y,Park H S,Dang H X,et al.Chem.Mater.,2012,24 (3):579-586

    [10]Pan JH,Wang Q,Bahnemann D W.Catal.Today,2014, 230:197-204

    [11]Deepak T G,Anjusree G S,Thomas S,et al.RSC Adv., 2014,4(34):17615-17638

    [12]Cao J,Ren L,Li N,et al.Chem.Eur.J.,2013,19(38): 12619-12623

    [13]Liu X,Zhao L,Domen K,et al.Mater.Res.Bull.,2014,49: 58-65

    [14]Kanan M W,Nocera D G.Science,2008,321(5892):1072-1075

    [15]Lutterman D A,Surendranath Y,Nocera D G.J.Am.Chem. Soc.,2009,131(11):3838-3839

    [16]Ndiege N,Subramanian TW V,Shannon M A,et al.Chem. Mater.,2007,19(13):3155-3161

    [17]Zhao D,Jiang H,Gong H,et al.Transition Met.Chem., 2010,36(1):119-123

    [18]Fang Q,Zhang J Y,Wang Z,et al.Thin Solid Films, 2003,428(1):248-252

    [19]Antonelli D M,Ying JY.Chem.Mater.,1996,8(4):874-881

    [20]Sun Y,Sermon P,Vong M.Thin Solid Films,1996,278(1): 135-139

    [21]Wolf C,Rüssel C.J.Mater.Sci.,1992,27(14):3749-3755

    [22]Pramanik M,LiC,Imura M,etal.Small,2016,12(13):1709-1715

    [23]Liao M,Feng J,Luo W,et al.Adv.Funct.Mater.,2012,22 (14):3066-3074

    [24]Hisatomi T,Kubota J,Domen K.Chem.Soc.Rev.,2014,43 (22):7520-7535

    In Situ Hydrolysis Deposition of an Efficient Ta3N5M icrosphere Photoanode for Solar W ater Sp litting

    YANG Li-Heng1LUOWen-Jun*,2,3LIMing-Xue4ZOU Zhi-Gang*,3

    (1College of Engineering and Applied Science,Nanjing University,Nanjing 210093,China)

    (2Key Laboratory of Flexible Electronics&Institute of Advanced Materials,Jiangsu National Synergetic Innovation

    Center for Advanced Materials,Nanjing Tech University,Nanjing 211816,China)

    A new in situ hydrolysis deposition method was used to prepare a Ta3N5microsphere photoanode, which indicates a high photocurrent of 6.6 mA·cm-2at1.6 V vs RHE.Microsphere precursor films are formed by hydrolysis of Ta(OEt)5and subsequent deposition on substrates,which is achieved by aging methanol solvent in air with high humidity.In contrast,no precursor films were obtained on substrates with fresh methanol.The results suggest thatwater in solvent is very essential to in situ depositing Ta3N5photoanode.In addition,the facile method can be used to deposit Ta3N5on other transparent conducting substrates.

    solarwater splitting;Ta3N5photoanodes;microsphere;in situ deposition;humidity

    O614.51+3

    A

    1001-4861(2016)10-1839-08

    10.11862/CJIC.2016.330

    2016-04-26。收修改稿日期:2016-08-18。

    國家重點(diǎn)基礎(chǔ)研究發(fā)展計劃(973計劃,No.2013CB632404,2014CB239303)、江蘇省自然科學(xué)基金(No.15KJB150010,BK20140197)、南京大學(xué)納米技術(shù)江蘇省重點(diǎn)實(shí)驗(yàn)室開放研究基金資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:iamwjluo@njtech.edu.cn,zgzou@nju.edu.cn

    猜你喜歡
    南京大學(xué)原位微球
    物歸原位
    幼兒100(2024年19期)2024-05-29 07:43:34
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    《南京大學(xué)學(xué)報數(shù)學(xué)半年刊》征稿簡則
    懸浮聚合法制備窄尺寸分布聚甲基丙烯酸甲酯高分子微球
    未培養(yǎng)微生物原位培養(yǎng)技術(shù)研究進(jìn)展
    TiO2/PPy復(fù)合導(dǎo)電微球的制備
    Comprendre et s'entendre
    échange humain sous le contexte de la mondialisation
    可吸收止血微球在肝臟部分切除術(shù)中的應(yīng)用
    復(fù)凝法制備明膠微球
    河南科技(2014年22期)2014-02-27 14:18:07
    免费看十八禁软件| 亚洲性夜色夜夜综合| 亚洲 国产 在线| 精品少妇内射三级| 日本wwww免费看| 精品国产乱码久久久久久男人| 亚洲精品粉嫩美女一区| 99re6热这里在线精品视频| 成年av动漫网址| 老司机影院成人| 中国国产av一级| 日韩制服骚丝袜av| 男女之事视频高清在线观看| 午夜福利一区二区在线看| 免费在线观看影片大全网站| 丰满少妇做爰视频| 多毛熟女@视频| 精品熟女少妇八av免费久了| av网站免费在线观看视频| 在线精品无人区一区二区三| 亚洲 国产 在线| 老司机影院成人| 黑人欧美特级aaaaaa片| bbb黄色大片| 国产熟女午夜一区二区三区| 精品久久久久久久毛片微露脸 | av在线老鸭窝| 老熟女久久久| 又紧又爽又黄一区二区| 王馨瑶露胸无遮挡在线观看| 国产人伦9x9x在线观看| 高清在线国产一区| 99九九在线精品视频| 麻豆乱淫一区二区| 男人添女人高潮全过程视频| 性高湖久久久久久久久免费观看| 国产伦人伦偷精品视频| 日本一区二区免费在线视频| 女人精品久久久久毛片| 欧美另类一区| 高清欧美精品videossex| 美女视频免费永久观看网站| 久久国产精品男人的天堂亚洲| 国产精品二区激情视频| 黄色视频,在线免费观看| 国产精品 国内视频| 久久精品久久久久久噜噜老黄| 精品国产一区二区久久| 欧美在线一区亚洲| 一进一出抽搐动态| 一级片'在线观看视频| 少妇的丰满在线观看| 日韩中文字幕视频在线看片| 一进一出抽搐动态| 日本a在线网址| 午夜福利,免费看| 男女午夜视频在线观看| 亚洲精品成人av观看孕妇| 真人做人爱边吃奶动态| 欧美日韩亚洲国产一区二区在线观看 | a级毛片黄视频| 一级毛片女人18水好多| 精品久久蜜臀av无| 制服诱惑二区| 国产免费福利视频在线观看| 欧美黑人欧美精品刺激| 精品亚洲成a人片在线观看| 黑人巨大精品欧美一区二区mp4| 热re99久久国产66热| 久久久精品94久久精品| 妹子高潮喷水视频| 国产精品一区二区在线不卡| 国产极品粉嫩免费观看在线| 大型av网站在线播放| 亚洲精品国产精品久久久不卡| 久久狼人影院| 99精品欧美一区二区三区四区| 久久久久精品人妻al黑| 五月开心婷婷网| 人成视频在线观看免费观看| 少妇裸体淫交视频免费看高清 | 亚洲va日本ⅴa欧美va伊人久久 | 啦啦啦免费观看视频1| 曰老女人黄片| 91大片在线观看| 日韩一卡2卡3卡4卡2021年| 黄频高清免费视频| 19禁男女啪啪无遮挡网站| av天堂在线播放| av在线老鸭窝| 视频区欧美日本亚洲| 亚洲精品自拍成人| 中文精品一卡2卡3卡4更新| 亚洲精品国产av成人精品| 精品亚洲成国产av| www.999成人在线观看| 亚洲一码二码三码区别大吗| 99re6热这里在线精品视频| 涩涩av久久男人的天堂| 少妇 在线观看| 真人做人爱边吃奶动态| 多毛熟女@视频| 久久久精品国产亚洲av高清涩受| 69av精品久久久久久 | 久久国产精品男人的天堂亚洲| www.自偷自拍.com| 80岁老熟妇乱子伦牲交| 精品人妻熟女毛片av久久网站| 90打野战视频偷拍视频| 人人妻人人爽人人添夜夜欢视频| 久久亚洲国产成人精品v| 宅男免费午夜| 国产成人精品无人区| a级毛片在线看网站| 国产97色在线日韩免费| 99国产精品99久久久久| 色婷婷久久久亚洲欧美| 9热在线视频观看99| 亚洲一区中文字幕在线| 一本大道久久a久久精品| 亚洲国产欧美网| 国产免费视频播放在线视频| 9191精品国产免费久久| 国产精品一二三区在线看| 欧美在线黄色| 欧美在线一区亚洲| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 亚洲成人免费电影在线观看| 精品人妻一区二区三区麻豆| 亚洲精品一二三| a级片在线免费高清观看视频| 999久久久精品免费观看国产| 岛国在线观看网站| 午夜福利视频精品| 成人三级做爰电影| 欧美精品av麻豆av| 91精品国产国语对白视频| 在线观看舔阴道视频| 青青草视频在线视频观看| 午夜福利视频精品| 国产成人精品久久二区二区免费| 又黄又粗又硬又大视频| 五月天丁香电影| av线在线观看网站| 日韩欧美一区视频在线观看| 久久精品国产亚洲av香蕉五月 | 黄网站色视频无遮挡免费观看| 免费在线观看影片大全网站| 天天躁夜夜躁狠狠躁躁| 伊人久久大香线蕉亚洲五| 18禁国产床啪视频网站| 十八禁人妻一区二区| 母亲3免费完整高清在线观看| 精品国产乱码久久久久久男人| 欧美激情 高清一区二区三区| 亚洲视频免费观看视频| 80岁老熟妇乱子伦牲交| 亚洲精品一二三| 人妻一区二区av| 国产av精品麻豆| netflix在线观看网站| 国产精品国产三级国产专区5o| av在线老鸭窝| 成人国产一区最新在线观看| 久久久久久免费高清国产稀缺| 午夜影院在线不卡| 久久天堂一区二区三区四区| 久久人人97超碰香蕉20202| 久久天堂一区二区三区四区| 女人高潮潮喷娇喘18禁视频| 丝瓜视频免费看黄片| 热99久久久久精品小说推荐| 色94色欧美一区二区| 国产精品九九99| 考比视频在线观看| avwww免费| 黄片小视频在线播放| 午夜福利一区二区在线看| 午夜免费观看性视频| 人妻 亚洲 视频| 国产精品国产av在线观看| 国产精品九九99| 1024视频免费在线观看| 男女之事视频高清在线观看| 欧美精品人与动牲交sv欧美| 欧美精品一区二区大全| 国产av又大| 国产黄频视频在线观看| 成人免费观看视频高清| 亚洲性夜色夜夜综合| 亚洲视频免费观看视频| 国产亚洲精品久久久久5区| 免费人妻精品一区二区三区视频| 最新在线观看一区二区三区| 久久久国产一区二区| 国产精品99久久99久久久不卡| 久久狼人影院| 免费看十八禁软件| 久久ye,这里只有精品| 日韩中文字幕欧美一区二区| 十八禁网站网址无遮挡| 黄色片一级片一级黄色片| 精品一区二区三区av网在线观看 | 两人在一起打扑克的视频| 中文字幕av电影在线播放| 老汉色∧v一级毛片| 亚洲av美国av| 中亚洲国语对白在线视频| 成人影院久久| 亚洲中文字幕日韩| 久久天堂一区二区三区四区| 视频区欧美日本亚洲| 国产黄频视频在线观看| 免费av中文字幕在线| 丝袜脚勾引网站| 久久精品国产a三级三级三级| 1024香蕉在线观看| 黄频高清免费视频| 伊人亚洲综合成人网| 亚洲成国产人片在线观看| 欧美乱码精品一区二区三区| 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| 18在线观看网站| 一级片'在线观看视频| 99九九在线精品视频| 99热全是精品| 十八禁高潮呻吟视频| 丰满饥渴人妻一区二区三| 老汉色∧v一级毛片| 中文字幕制服av| 亚洲精品国产区一区二| 亚洲午夜精品一区,二区,三区| 午夜福利视频在线观看免费| 国产亚洲精品第一综合不卡| 亚洲专区中文字幕在线| 丝瓜视频免费看黄片| 一区福利在线观看| tube8黄色片| 丁香六月天网| 国产成人系列免费观看| 日韩精品免费视频一区二区三区| 天天影视国产精品| 人人妻人人爽人人添夜夜欢视频| 亚洲五月婷婷丁香| 黑人欧美特级aaaaaa片| 老司机靠b影院| 午夜免费观看性视频| 国产精品.久久久| 久久久国产精品麻豆| 精品福利永久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 可以免费在线观看a视频的电影网站| 中国国产av一级| 女人爽到高潮嗷嗷叫在线视频| 久久人人爽人人片av| 亚洲精品一区蜜桃| 宅男免费午夜| 国产亚洲精品久久久久5区| 欧美精品一区二区免费开放| 18禁裸乳无遮挡动漫免费视频| 制服人妻中文乱码| 一区二区三区乱码不卡18| 国产视频一区二区在线看| 天天影视国产精品| 日韩大码丰满熟妇| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 69av精品久久久久久 | 操出白浆在线播放| 久久人人爽av亚洲精品天堂| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕一二三四区 | 18禁国产床啪视频网站| 无遮挡黄片免费观看| 久久99一区二区三区| 午夜久久久在线观看| 啦啦啦啦在线视频资源| 老司机影院毛片| 国产男女内射视频| 性色av一级| 黑丝袜美女国产一区| www.精华液| 少妇粗大呻吟视频| 国产有黄有色有爽视频| 精品一区在线观看国产| 久久久久久久国产电影| 日本a在线网址| 青青草视频在线视频观看| 国产高清视频在线播放一区 | 国产一区二区 视频在线| 日韩中文字幕欧美一区二区| 亚洲国产日韩一区二区| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 国产av一区二区精品久久| 免费观看a级毛片全部| 夜夜骑夜夜射夜夜干| 亚洲成人国产一区在线观看| 国产人伦9x9x在线观看| 亚洲国产看品久久| 欧美另类亚洲清纯唯美| 国产淫语在线视频| 国产男人的电影天堂91| 巨乳人妻的诱惑在线观看| 精品久久久久久电影网| 黑人巨大精品欧美一区二区蜜桃| 99久久国产精品久久久| 好男人电影高清在线观看| 制服诱惑二区| 婷婷成人精品国产| 国产黄频视频在线观看| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 欧美日韩精品网址| 人成视频在线观看免费观看| 黄色视频在线播放观看不卡| a级毛片在线看网站| 在线 av 中文字幕| 久久人妻福利社区极品人妻图片| 亚洲精品国产av成人精品| 国产成人精品在线电影| 中文字幕高清在线视频| 90打野战视频偷拍视频| 国产免费一区二区三区四区乱码| 亚洲av电影在线进入| 中文字幕av电影在线播放| www.999成人在线观看| 国产高清国产精品国产三级| 国产一卡二卡三卡精品| 丰满迷人的少妇在线观看| 国产精品久久久人人做人人爽| 一级片'在线观看视频| 国产一区有黄有色的免费视频| 亚洲av男天堂| 欧美av亚洲av综合av国产av| 精品久久蜜臀av无| 日韩电影二区| 亚洲国产中文字幕在线视频| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 国产真人三级小视频在线观看| 日韩大片免费观看网站| 国产日韩欧美在线精品| 亚洲精品国产一区二区精华液| 欧美在线黄色| √禁漫天堂资源中文www| 国产真人三级小视频在线观看| 一本色道久久久久久精品综合| 新久久久久国产一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| 亚洲人成电影免费在线| 日韩欧美国产一区二区入口| 日本vs欧美在线观看视频| 日韩制服丝袜自拍偷拍| 99久久精品国产亚洲精品| 日韩制服丝袜自拍偷拍| e午夜精品久久久久久久| 精品亚洲乱码少妇综合久久| 99久久精品国产亚洲精品| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 免费黄频网站在线观看国产| 精品欧美一区二区三区在线| 国产主播在线观看一区二区| av天堂久久9| 久久亚洲国产成人精品v| 久久影院123| 亚洲成人国产一区在线观看| 高潮久久久久久久久久久不卡| 欧美黑人欧美精品刺激| 啦啦啦在线免费观看视频4| 岛国毛片在线播放| 久久精品国产综合久久久| 成在线人永久免费视频| 国产精品久久久久成人av| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 免费看十八禁软件| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 亚洲精品国产区一区二| 日本一区二区免费在线视频| 新久久久久国产一级毛片| 日韩大片免费观看网站| 精品视频人人做人人爽| 高清在线国产一区| 日本精品一区二区三区蜜桃| 国产免费视频播放在线视频| 叶爱在线成人免费视频播放| 五月天丁香电影| 欧美精品人与动牲交sv欧美| 日韩中文字幕欧美一区二区| 最黄视频免费看| 亚洲全国av大片| 国产精品秋霞免费鲁丝片| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 久久久精品免费免费高清| 成人影院久久| 日韩三级视频一区二区三区| 久久精品国产综合久久久| 免费观看人在逋| 久久久久网色| a在线观看视频网站| 亚洲精品国产区一区二| 国产麻豆69| 91成人精品电影| 大码成人一级视频| 蜜桃在线观看..| 亚洲欧美日韩高清在线视频 | 99香蕉大伊视频| 久久人人97超碰香蕉20202| av片东京热男人的天堂| 乱人伦中国视频| 国产精品成人在线| 蜜桃国产av成人99| 人人妻人人澡人人看| 国产亚洲一区二区精品| 麻豆av在线久日| 97精品久久久久久久久久精品| 亚洲五月婷婷丁香| 久久人人97超碰香蕉20202| 色婷婷av一区二区三区视频| 日韩电影二区| 黄片播放在线免费| 国产亚洲欧美在线一区二区| 亚洲欧美清纯卡通| 男女边摸边吃奶| 妹子高潮喷水视频| 日本wwww免费看| 国产成人系列免费观看| 久久ye,这里只有精品| 99国产精品免费福利视频| 91精品国产国语对白视频| 丝袜美腿诱惑在线| 一二三四在线观看免费中文在| 国产色视频综合| 自线自在国产av| 爱豆传媒免费全集在线观看| 热99久久久久精品小说推荐| 啦啦啦在线免费观看视频4| 亚洲性夜色夜夜综合| 在线 av 中文字幕| 成人手机av| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频 | 国产一区二区激情短视频 | 国产成人影院久久av| 不卡一级毛片| 夜夜夜夜夜久久久久| 日韩电影二区| 高潮久久久久久久久久久不卡| 女性被躁到高潮视频| a级片在线免费高清观看视频| 国产99久久九九免费精品| 99精国产麻豆久久婷婷| av免费在线观看网站| 国产色视频综合| 丝瓜视频免费看黄片| 777米奇影视久久| 91麻豆精品激情在线观看国产 | 亚洲七黄色美女视频| 亚洲欧美精品综合一区二区三区| 99香蕉大伊视频| 日本91视频免费播放| 一级毛片电影观看| 亚洲精品美女久久av网站| 欧美乱码精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 一本—道久久a久久精品蜜桃钙片| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线不卡| 人人妻人人澡人人爽人人夜夜| 女性被躁到高潮视频| 又大又爽又粗| 亚洲av成人不卡在线观看播放网 | 99精品欧美一区二区三区四区| 99久久综合免费| 男女免费视频国产| 久久久精品区二区三区| 性少妇av在线| 少妇被粗大的猛进出69影院| 啦啦啦视频在线资源免费观看| 亚洲欧美精品自产自拍| 精品国产超薄肉色丝袜足j| 日韩制服骚丝袜av| 少妇被粗大的猛进出69影院| 99国产精品99久久久久| 伊人亚洲综合成人网| 飞空精品影院首页| 老司机午夜福利在线观看视频 | 国产av精品麻豆| 亚洲欧美精品综合一区二区三区| 一进一出抽搐动态| 亚洲国产看品久久| 亚洲 欧美一区二区三区| 久久人妻熟女aⅴ| 建设人人有责人人尽责人人享有的| 亚洲欧美成人综合另类久久久| 日韩电影二区| 啦啦啦在线免费观看视频4| 日本a在线网址| 性色av一级| 国产97色在线日韩免费| 亚洲成人国产一区在线观看| 咕卡用的链子| 日韩大码丰满熟妇| 新久久久久国产一级毛片| 精品一区在线观看国产| 亚洲av电影在线进入| 亚洲专区国产一区二区| 三级毛片av免费| av欧美777| 亚洲色图综合在线观看| 国产成人精品久久二区二区91| 不卡一级毛片| 777米奇影视久久| 国产欧美日韩精品亚洲av| 超碰成人久久| 成年人黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久综合国产亚洲精品| 天堂中文最新版在线下载| 啦啦啦啦在线视频资源| 日韩中文字幕视频在线看片| 一二三四社区在线视频社区8| 夜夜骑夜夜射夜夜干| 国产精品成人在线| 午夜影院在线不卡| 亚洲色图综合在线观看| 亚洲一码二码三码区别大吗| 纯流量卡能插随身wifi吗| 免费久久久久久久精品成人欧美视频| 日韩,欧美,国产一区二区三区| 国产精品熟女久久久久浪| 日本av免费视频播放| 国产精品久久久av美女十八| 青青草视频在线视频观看| 成年美女黄网站色视频大全免费| 超碰97精品在线观看| 日韩大片免费观看网站| 99国产精品免费福利视频| 在线十欧美十亚洲十日本专区| 久9热在线精品视频| 美女中出高潮动态图| 国产99久久九九免费精品| 天天操日日干夜夜撸| 纯流量卡能插随身wifi吗| 夫妻午夜视频| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的| 日韩大片免费观看网站| 国产欧美日韩精品亚洲av| 男人爽女人下面视频在线观看| 免费在线观看黄色视频的| 80岁老熟妇乱子伦牲交| 欧美乱码精品一区二区三区| 久久九九热精品免费| 国产xxxxx性猛交| 啦啦啦视频在线资源免费观看| 老鸭窝网址在线观看| 国产在线一区二区三区精| 亚洲av电影在线观看一区二区三区| 丝袜美腿诱惑在线| 婷婷成人精品国产| 国产精品免费大片| 亚洲av日韩精品久久久久久密| 国产精品一区二区精品视频观看| 一区二区av电影网| 宅男免费午夜| 欧美国产精品va在线观看不卡| 久久香蕉激情| 国产精品久久久人人做人人爽| 咕卡用的链子| 波多野结衣一区麻豆| h视频一区二区三区| 99久久99久久久精品蜜桃| 91国产中文字幕| 男人添女人高潮全过程视频| 免费一级毛片在线播放高清视频 | 人人澡人人妻人| 国产福利在线免费观看视频| 成年av动漫网址| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美精品自产自拍| 91字幕亚洲| 久久午夜综合久久蜜桃| 国产免费福利视频在线观看| 成年av动漫网址| 丰满迷人的少妇在线观看| 高清黄色对白视频在线免费看| 国产深夜福利视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕一二三四区 | 国产成人a∨麻豆精品| av免费在线观看网站| 免费观看av网站的网址| 欧美日韩精品网址| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 后天国语完整版免费观看| 国产一级毛片在线| 日本撒尿小便嘘嘘汇集6| 日韩精品免费视频一区二区三区| 黑人欧美特级aaaaaa片| 一个人免费在线观看的高清视频 | 三上悠亚av全集在线观看| 在线av久久热| 国产精品久久久人人做人人爽| 国精品久久久久久国模美| 黄频高清免费视频|