• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于半剛性的4-羧基苯乙酸和富氮共配體組裝的Zn(II)/Cd(II)配位聚合物的合成、結(jié)構(gòu)和性質(zhì)

    2016-12-05 11:49:30鞠豐陽李云平李桂連劉廣臻辛凌云李曉玲
    關(guān)鍵詞:苯乙酸羧基羧酸

    鞠豐陽 李云平 李桂連 劉廣臻*, 辛凌云 李曉玲

    (1洛陽師范學(xué)院食品與藥品學(xué)院,洛陽471934)

    (2洛陽師范學(xué)院化學(xué)化工學(xué)院,洛陽471934)

    基于半剛性的4-羧基苯乙酸和富氮共配體組裝的Zn(II)/Cd(II)配位聚合物的合成、結(jié)構(gòu)和性質(zhì)

    鞠豐陽1李云平2李桂連2劉廣臻*,2辛凌云2李曉玲2

    (1洛陽師范學(xué)院食品與藥品學(xué)院,洛陽471934)

    (2洛陽師范學(xué)院化學(xué)化工學(xué)院,洛陽471934)

    采用溶劑熱法合成了一系列Zn(II)/Cd(II)配位聚合物:{[Zn(cbaa)(bpmp)0.5(H2O)]·2H2O}n(1)、[Zn(cbaa)(bip)]n(2)、[Cd(cbaa) (Hizb)]n(3)和[Cd2(cbaa)2(itmb)(H2O)]n(4)(H2cbaa=4-羧基苯乙酸;bpmp=1,4-二(4-吡啶甲基)哌嗪;bip=3,5-雙(1-咪唑基)吡啶;Hizb= 2-(4-咪唑-1-基苯基)-1H-苯并咪唑;itmb=1-(咪唑-1-基)-4-(1,2,4-三唑-1-基甲基)苯)。X射線單晶衍射結(jié)果表明,半剛性的4-羧基苯乙酸和富氮輔助配體構(gòu)筑形成了4個(gè)多樣化拓?fù)浣Y(jié)構(gòu)的配位聚合物?;衔?和2是Zn(II)配位聚合物:1是由2個(gè)Zn-羧酸鹽鏈之間通過富氮配體橋連形成的一維梯形結(jié)構(gòu),而2是由Zn-羧酸鹽鏈之間通過富氮配體拓展形成的二維單層結(jié)構(gòu);化合物3和4是Cd(II)配位聚合物:3是由Cd-O無機(jī)鏈之間通過羧酸配體的橋連拓展形成的二維單層結(jié)構(gòu),富氮配體作為伸出層平面的懸臂僅僅起到結(jié)構(gòu)修飾作用,而4則形成了Cd-羧酸鹽空曠雙層結(jié)構(gòu),富氮配體填充在層內(nèi)空腔中,從而導(dǎo)致了致密雙層結(jié)構(gòu)的產(chǎn)生。另外,考察了4個(gè)化合物的熱穩(wěn)定性和光致發(fā)光性能。

    溶劑熱合成;鋅;鎘;配位聚合物;熒光

    Scheme 1 Coordinationmodes of cbaa2-observed in comp lexes 1~4

    Carboxylate ligands are desirable candidates for the assembly processes of metal-organic coordination polymers(MOCPs)due to their excellent coordination capability and versatile bindingmodes under different reaction conditions[1-3].Additionally,the deprotonation of carboxyl groups can compensate for the metal charge,which is necessary to avoid inclusion of unligated anionic species[4-5].As is well known,the carboxylate groups are able to adoptnumerous binding modes such asmonodentate,bidentate,tridentate and tetradentate coordination[6-7].The bidentate coordination modes are themost common ones and can be detailed as chelating,bridging syn-anti inμ2-1,1 mode,synsyn,syn-anti,and anti-anti inμ2-1,3mode[8-11].And the tridentate modes can be illustrated as anti-syn-syn, anti-syn-anti inμ3-1,1,3 mode,and so on[12-13].To satisfy the coordination requirement,the tetradentate coordination mode called as syn-anti-syn-anti inμ4-1,1,3,3 mode and the pentadentate coordination mode may be employed[14].The rigid aromatic carboxylate ligands have been investigated universally due to the fact that their inherent large molecule stiffness can afford the MOCPs with high thermal stability[15-17].And several researches based on flexible aromatic carboxylate ligandshavebeen documented recently[18-21]. On the one hand,using flexible carboxylate ligands can result in“l(fā)osing control”over the design and assembly of relevant MOCPs because flexible ligands are more sensitive to reaction conditions.Moreover, the rotation about the C-C bonds can lead to changeable conformation and low symmetry of carboxylate ligands.On the other hand,the flexibility of ligandsmay provide rare opportunities to construct some interesting crystalline architectures with particular attributes deriving from so-called breathing ability.Semirigid aromatic dicarboxylate ligands combined with rigid-COOH and flexible-CH2COOH groups possess the merits of both rigid and flexible carboxylate groups,and have caught our attention successfully although they are underdeveloped in the chemistry of MOCPs[22-23].

    Several complicated factors such as the nature of metal ions and carboxylate ligands,the concentration of starting species,solvent,temperature,pH value and N-donor co-ligands can influence the coordination modes of the carboxylate groups,in turn deciding the structures,properties and potential applications of resulted MOCPs[24-25].Using N-donor co-ligands to meet or mediate the coordination modes of the carboxylate groups has been probed widely and always been an efficient approach for reconstructing the motifs of MOCPs[26-27].Bis-pyridyl-type ligands are the most common ones among numerous N-donor coligands.And various nitrogen-rich co-ligands including a number of imidazolyl,triazolyl,tetrazolyl,pyrazolyl, benzimidazolyl and so on,which can provide more coordination sides and more chance to produce H-bonds interaction and aromatic interaction,have been involved and played important role in the assembly of MOCPs[28-30].

    Herein,a series of four zinc and cadmium coordination polymers originating from Zn(II)/Cd(II)acetate,semirigid 4-carboxybenzeneaceticacid(H2cbaa) and various nitrogen-rich co-ligands have been exemplified.Various coordination modes of cbaa2-observed in complexes 1~4 are shown in Scheme 1a~d.

    And the preparations,X-ray structures,fluorescent properties and thermal stabilities of all these compounds are described below.

    1 Experimental

    1.1 Materials and m ethods

    All reagents were commercially purchased and used directly without further purification.Elemental analyses for C,H and N were performed on a Flash EA 2000 elemental analyzer.Infrared spectra(IR) were obtained by a Nicolet 6700 FT-IR spectrophotometer over a range of 4 000~600 cm-1.The powder X-ray diffraction(PXRD)patterns of the products were recorded with a Bruker AXS D8 Advance diffractometer using monochromated Cu Kαadiation(λ= 0.154 18 nm;generator current:40 mA;generator voltage:40 kV;scanning scope:2θ=5°~50o).The thermogravimetric analyses(TGA)were carried out on a SⅡEXStar6000 TG/DTA6300 analyzer with a heating rate of 10℃·min-1under N2atmosphere.Luminescence spectra of the solid samples were obtained at the room temperature on a Hitachi F-4500 spectrophotometerwith xenon arc lamp as the light source.

    1.2 Preparation of complexes

    The compounds were synthesized by the solvothermal methods using a mixed solvent of absolute methanol(3.50 mL),deionized water(3.50 mL)and NaOH(0.002 0 g,0.05 mmol).Starting materials were placed in a sealed 23 mL PTFE-lined stainless steel autoclave and kept under autogenous pressure at 120℃for 4 days,whereupon it was cooled slowly to the room temperature.The crystals were isolated after being washed with distilled water and acetone,and allowed to dry in air.The PXRD patterns of the bulk products are in well agreement with the simulated patterns based on the structure solutions(Fig.S1~S4).

    Synthesis of{[Zn(cbaa)(bpmp)0.5(H2O)]·2H2O}n(1): A mixture of Zn(OAc)2·2H2O(0.044 g,0.20 mmol), H2cbaa(0.018 g,0.10 mmol)and bpmp(0.027 g,0.10 mmol)were dissolved in the mixed solvent,giving colourless blocked crystals afte solvothermal reaction (Yield:83%based on Zn).Anal.Calcd.for C17H21N2O7Zn(%):C,47.40;H,4.91;N,6.50.Found(%):C, 47.33;H,4.56;N,6.47.IR(KBr,cm-1):3 619(w,br), 2 933(w,br),2 815(m),1 618(s),1 578(s),1 525(s), 1 424(s),1 350(s),1 299(m),1 158(m),1 012(m),929 (w),841(m),780(m),727(m),687(w),615(w).

    Synthesis of[Zn(cbaa)(bip)]n(2):A mixture of Zn(OAc)2·2H2O(0.022 g,0.10mmol),H2cbaa(0.009 0 g,0.050 mmol)and bip(0.010 g,0.050 mmol)were dissolved in the mixed solvent,giving colourless blocked crystals after solvothermal reaction(Yield: 41%based on Zn).Anal.Calcd.for C20H15N5O4Zn(%): C,52.82;H,3.32;N,15.40.Found(%):C,52.79;H, 3.34;N,15.38.IR(KBr,cm-1):3 124(m),3 023(w), 2 893(w),1 607(s),1 561(s),1 509(s),1 359(s),1 317 (m),1 266(m),1 120(m),1 064(m),1 007(m),946(m), 882(m),823(m),732(m),646(s).

    Synthesis of[Cd(cbaa)(Hizb)]n(3):A mixture of Cd(OAc)2·2H2O(0.053 g,0.20mmol),H2cbaa(0.018 g,0.10 mmol)and Hizb(0.026 g,0.10 mmol)were dissolved in the mixed solvent,giving colourless blocked crystals after solvothermal reaction(Yield: 37%based on Cd).Anal.Calcd for C25H18CdN4O4(%): C,54.51;H,3.29;N,10.17.Found(%):C,54.60;H, 3.22;N,10.13.IR(KBr,cm-1):3 415(w,br),3 191(w, br),1 599(m),1 563(m),1 508(s),1 391(s),1 313(m), 1 277(w),1 064(w),843(w),747(m),679(w).

    Synthesisof[Cd2(cbaa)2(itmb)(H2O)]n(4):Amixture of Cd(OAc)2·2H2O(0.053 g,0.20 mmol),H2cbaa (0.018 g,0.10 mmol)and itmb(0.045 g,0.20 mmol) were dissolved in themixed solvent,giving colourless blocked crystals after solvothermal reaction(Yield: 64%based on Cd).Anal.Calcd for C30H25Cd2N5O9(%): C,43.71;H,3.06;N,8.50.Found(%):C,43.67;H, 3.11;N,8.48.IR(KBr,cm-1):3 292(w,br),3 135(m), 1 607(s),1 549(s),1 523(s),1 384(s),1 276(m),1 140 (m),1 059(w),1 018(w),931(w),835(w),783(m),739 (s),659(s).

    1.3 X-ray crystallography

    Single-crystal X-ray diffraction data for complexes 1~4 were recorded at room temperature on a Bruker SMARTAPEXⅡCCD diffractometerequipped with graphite-monochromated Mo Kαradiation(λ= 0.071 073 nm).All the structures were solved by the

    direct method followed by successive difference Fourier syntheses and refined by full-matrix leastsquares techniques using the SHELX-97 program package with anisotropic thermal parameters for all non-hydrogen atoms[31-32].Hydrogen atoms of the organic molecules were placed in calculated positions and refined isotropically with a riding model.The hydrogen atoms associated with the H2O molecule were initially located in a difference Fouriermap and included in the final refinement by use of geometrical restraints with the O-H distances being fixed at 0.085 nm and Uiso(H)equivalent to 1.5 times of Ueq(O).The details of the structure solution and final refinements are listed in Table 1.

    CCDC:906895,1;1443786,2;906897,3;906898, 4.

    Table 1 Crystal and structure refinement data for 1~4

    2 Results and discussion

    2.1 Structural description of{[Zn(cbaa)(bpmp)0.5(H2O)]·2H2O}n(1)

    The asymmetric unit of complex 1 comprises one crystallographically distinct Zn(II)cation,one cbaa2-, half bpmp molecule,one coordinating H2O molecule and two free H2O molecules(Fig.1a).The Zn1 atom forms a slightly distorted tetrahedron[ZnNO2(H2O)]by one-COO-oxygen atom and one-CH2COO-oxygen atom from two symmetry-related cbaa2-,one pyridyl nitrogen atom of bpmp ligand and one O atom of coordinated water.The Zn-O bond lengths range from 0.196 4(2)to 0.204 7(2)nm,and the Zn-N bond length is 0.204 1(2)nm.The isolated[ZnNO2(H2O)]tetrahedras are spaced by cbaa2-ligand to produce Zncarboxylate chains,and the neighbor chains are linked by bpmp co-ligands to generate a ladderlike

    coordination polymer propagating along the b direction (Fig.1b).Each stile of the ladder is comprised of [ZnNO2(H2O)]tetrahedra connected byμ2-cbaa2-ligand with a bismonodentate mode for both carboxyalte groups.Theμ2-bpmp ligand acts as the rung of the ladder joining to Zn(II)centers of the stiles through terminal pyridyl nitrogen atoms.

    Fig.1(a)View of coordination environment of Zn(II)in 1;(b)Ladderlike coordination polymer along the b direction

    Fig.2(a)Coordinated environmentof Zn(II)in 2;(b)Monolayer structure featuring[ZnN2O2]units spaced by carboxylate and bip molecules

    The parall ladders are closed packing such that each ladder is surrounded by six neighbours and cohered together by H-bonding interactions between the coordinated water and lattice water,leading to no solvent-accessible volume for the supramolecular structure(Fig.S5).

    2.2 Structural description of[Zn(cbaa)(bip)]n(2)

    The asymmetric unit of complex 2 consists of one Zn(II)cation,one cbaa2-and one bip molecule,as shown in Fig.2a.The unique Zn atom forms a slightly distorted tetrahedron[ZnN2O2]by one-COO-oxygen atom and one-CH2COO-oxygen atom from two symmetry-related cbaa2-,and two N atoms from two symmetry-related bip ligands.The Cd-O distances are 0.194 03(16)and 0.195 57(16)nm while the Cd-N distances are 0.201 18(16)and 0.203 78(16)nm.The [ZnN2O2]units are connected byμ2-cbaa2-ligandswith both carboxylate groups in monodentatemode to form a metal-carboxylate chain along the a direction and futher linked by the bipmolecules along the c diretion to generate a square(4,4)grid monolayer(Fig.2b). The neighboring layers are cohered to produce a layer-pair by strongπ-πstacking interactions derived from the pyridine rings of bip molecules with the centroid-centroid distances of 0.407 10(2)nm.And the layer-pairs are further stacked to form the ultimate 3D framework by relatively weak van der Waals interactions(Fig.S6).

    2.3 Structural description of[Cd(cbaa)(Hizb)]n(3)

    The asymmetric unit of complex 3 consists of one Cd(II)cation,one cbaa2-and one Hizb molecule,as shown in Fig.3a.The unique Cd atom displays a [CdNO6]heptacoordinated geometry with the coordination sphere defined by three-COO-oxygen atoms, three-CH2COO-oxygen atoms and one imidazolyl N atom.The Cd-O distances range from 0.223 6(3)to 0.271 47(31)nm,and the Cd-N distance is 0.225 1(3) nm.

    The Cd1 cations are doubly bridged with each other by twoμ2-O bridges from carboxylate groups to produce 1D motifs constructed by edge-shared [CdNO6]polyhedra(Fig.3b).And the 1D motifs are interlinked byμ2-cbaa2-ligands to produce a monolayer structure in the ab plane with the Hizb ligands as pendentarms(Fig.3c and 3d),wherein both carboxylates of each cbaa2-adopt a tridentate coordination mode.There are only intralayer H-bonds between benzimidazolyl N atoms and carboxylate O atoms,and the final 3D supramolecular structure is only stabilized by weak van derWaals forces between the layers.

    Fig.3(a)Coordinated environmentof Cd(II)in 3;(b)Cd-carboxylate chain featuring edge-shared[CdNO6]polyhedra; (c)Monolayer structure with Hizb pendent arms;the intralayer H-bonding interactions are labeled as dark dotted lines;(d)Cd-carboxylate sheetmotif showing coordinated details of cbaa2-ligand

    2.4 Structural description of[Cd2(cbaa)2(itmb) (H2O)]n(4)

    The asymmetric unit of complex 4 consists of two Cd(II)cations,two cbaa2-,one itmb molecule and one guest water molecule,as shown in Fig.4a.Both Cd atoms display octahedrally coordinated geometries. The coordination sphere of Cd1 is formed by two -COO-oxygen atoms,two-CH2COO-oxygen atoms, one water O atom and one terminal N atom of one itmb while the coordination sphere of Cd2 is defined by two-COO-oxygen atom,three-CH2COO-oxygen atoms and one termial N atom of one itmb ligand.The Cd-O distances range from 0.221 9(2)to 0.251 5(2)nm, and the Cd-N distances are 0.232 8(3)and 0.234 7(3) nm,respectively.

    Two Cd octahedra are triply bridged by the combination of one-CH2COO-oxygen atom and two -COO-carboxylate groups in bridging bidentatemode to form one[Cd2O(OCO)2]dinuclear unit with the Cd…Cd seperation of 0.367 18(3)nm.The adjacent dinuclear units are further connected by one bridging bidentate-CH2COO-carboxylate group to generate a single-stranded Cd-carboxylate chain along the b direction(Fig.4b).These Cd-carboxylate chains are

    extended byμ2-cbaa2-ligands with two carboxylate groups in bridging bidentate and bridging tridentate coordination mode to produce one Cd-carboxylate sheetmotif(Fig.4c).And the neighbor sheetmotifs are connected through anotherμ2-cbaa2-ligands with both carboxylate groups in bridging bidentate mode to generate one open Cd-carboxylate bilayer with linear channels paralleling to the chain motifs(Fig.S7). Furthermore,each channel is filled with two stacking of itmb ligands acting simultaneously as the linkers between the chain motifs,thus leading to final dense bilayer(Fig.4d).Meanwile,there are interlayer H-bonds between coordinated H2Omolecules and carboxylate O atoms to stabilize its entire 3D supramolecular structure(Fig.S8).

    Fig.4(a)Coordinated environment of Cd(II)in 4;(b)Single-stranded chain featuring{Cd2O(OCO)2}dinuclear unit spaced by bridging bidentate-CH2COO-carboxylate groups;(c)Cd-carboxylate sheetmotif showing coordinated details of cbaa2-ligands;(d)Dense bilayer structure featuring open Cd-carboxylate bilayerwith each channel filled with two stacking of itmb ligands acting simultaneously as the linkers between the chainmotifs

    2.5 TGA and fluorescent properties

    Thermogravimetric analysis(TGA)for complexes 1~4 were carried outon crystalline samples from room temperature to 900℃to investigate their thermal stabilities,as shown in Fig.5.For complex 1,the release of two guest watermolecules was observed in the range from 61 to 182℃with two obviousprocesses (Calcd.8.36%,Found 7.84%).And the succeeding weight loss owing to the removal of one coordinated water and decomposition of organic ligands takes place between 280 and 860℃.The final residue holding a weight of 18.67%of the total sample is attributed to ZnO phase(Calcd.18.89%).Complex 2 can survive below 310℃and then a series of consecutive weight losses are observed and do not stop until the heating end.Similar to complex 2,complex 3 can survive below 350℃and then decomposes gradually until the heating end.The final residue is attributed to CdO component(Calcd.23.31%,Found 24.02%).Complex 4 undergoes the firstweight loss of 2.03%in the temperature range of 110~155℃, which could be assigned to the release of one coordinated watermolecule(Calcd.2.18%).And the full decomposition of organic ligands appears at the temperature of 155~535℃.The remnant holding a

    weight of 30.17%of the total sample is CdO phase (Calcd.31.15%).

    The fluorescent properties of complexes 1~4 as well as the related ligands were investigated in the solid state at ambient temperature,as depicted in Fig. 6.The free H2cbaa ligand has the emission with a maximum at 445 nm(λex=353 nm).And the free nitrogen-rich co-ligands display featureless emissions with themaximum at 418 nm(λex=290 nm)for bip, 466 nm(λex=384 nm)for Hizb and 416 nm(λex=350 nm)for itmp while the bpmp molecule shows weak fluorescent emission in the high-energy region and makes almost no contribution to the emission of the complex 1[33].Furthermore,there are multifarious emission behaviorswith themaximum at 468 nm(λex= 300 nm)for 1,425 nm(λex=349 nm)for 2,417 and 452nm(λex=340 nm)for 3,and 393 nm(λex=300 nm) for 4,respectively.They can probably be assigned to the ligand localized emission but neither metal-toligand charge transfer(MLCT)nor ligand-to-metal charge transfer(LMCT)in nature for the Zn2+and Cd2+with d10configuration are difficult to oxidize or reduce[34-35].Crystalsof1,2 and 4 show emission bands with spectrum features similar to that of the powdered H2cbaa ligand.In comparison with the free H2cbaa precursor,red shifts of emission bands for 1 and blue shifts of emission bands for 2 and 4 have been observed,which may be attributed to the deprotonated effect of H2cbaa and the coordination interactions of the cbaa2-ligands around the centralmetal ions[36-37]. In addition,complex 3 displays fluorescence emission with bimodal bands which may be related to the cooperative actions of cbaa2-ligands and Hizb ligands.

    3 Conclusions

    In summary,the reactions of Zn(II)/Cd(II)acetate with semirigid 4-carboxybenzeneacetate and different nitrogen-rich co-ligands bymild solvothermalmethods generate four new coordination polymers.Complex 1 and 2 possess 1D ladder and 2D monolayer structure featuring Zn-carboxylate chains linked by different nitrogen-rich co-ligands,respectively.Complex 3 exhibit 2D monolayer containing Cd-O inorganic chains cross-linked further by cbaa carboxylates with Hizb co-ligands acting as pendentarms,while complex 4 is 2D dense bilayer containing Cd-carboxylate open bilayer with linear channels filled with itmb coligands.Moreover,the solid state luminescences of all compounds are attributed to the ligand localized emission.

    Fig.5 TGA curves of complexes 1~4

    Fig.6 Solid-state emission spectra of complexes 1~4 and the related ligands at ambient temperature

    Supporting information isavailable athttp://www.wjhxxb.cn

    [1]Yang L B,Wang H C,Fang X D,et al.CrystEngComm, 2016,18:130-142

    [2]Zeng M H,Wang Q X,Tan Y X,et al.J.Am.Chem.Soc., 2010,132:2561-2563

    [3]Li G L,Liu G Z,Ma L F,et al.Chem.Commun.,2014,50: 2615-2617

    [4]Du M,Jiang X J,Zhao X J.Inorg.Chem.,2007,46:3984-3995

    [5]Liu G Z,Li SH,Wang L Y.CrystEngComm,2012,14:880-889

    [6]Ghosh A K,Shatruk M,Bertolasi V,et al.Inorg.Chem., 2013,52:13894-13903

    [7]Zhang JP,Huang X C,Chen X M.Chem.Soc.Rev.,2009, 38:2385-2396

    [8]Lama P,Aijaz A,Neogi S,et al.Cryst.Growth Des.,2010, 10:3410-3417

    [9]Li X L,Liu G Z,Xin L Y,et al.Synth.React.Inorg.Met.-Org.Chem.,2015,45:914-920

    [10]Li G L,Yin W D,Li X L,et al.Synth.React.Inorg.Met.-Org.Chem.,2015,45:869-874

    [11]Ghosh S K,Ribas J,Bharadwaj P K.Cryst.Growth Des., 2005,5:623-629

    [12]Su Z,Fan J,Chen M,et al.Cryst.Growth Des.,2011,11: 1159-1169

    [13]Dietzel P D C,Johnsen R E,Blom R,et al.Chem.Eur.J., 2008,14:2389-2397

    [14]Xie F T,Bie H Y,Duan L M,et al.J.Solid State Chem., 2005,178:2858-2866

    [15]Liu G Z,Li S H,Li X L,et al.CrystEngComm,2013,15: 4571-4580

    [16]Xin L Y,Li X L,Liu G Z.Synth.React.Inorg.Met.-Org. Chem.,2013,43:1013-1018

    [17]YINWei-Dong(尹衛(wèi)東),LIGui-Lian(李桂連),LIU Guang-Zhen(劉廣臻),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31(7):1439-1446

    [18]Liu TF,LüJ,Cao R.CrystEngComm,2010,12:660-670

    [19]Pigge FC.CrystEngComm,2011,13:1733-1748

    [20]Zhou Y F,Wang R H,Wu B L,et al.J.Mol.Struct.,2004, 697:73-79

    [21]Xin L Y,Liu G Z,Ma L F,et al.Aust.J.Chem.,2015,68: 758-765

    [22]Liu G Z,Li X D,Li X L,et al.CrystEngComm,2013,15: 2428-2437

    [23]Tian Z F,Su Y,Lin JG,et al.Polyhedron,2007,26:2829-2836

    [24]Long L S.CrystEngComm,2010,12:1354-1365

    [25]Ma L F,Liu B,Wang L Y,et al.Dalton Trans.,2010,39: 2301-2308

    [26]Li C P,Chen J,Yu Q,et al.Cryst.Growth Des.,2010,10: 1623-1632

    [27]Jia W W,Luo JH,Zhu M L.Cryst.Growth Des.,2011,11: 2386-2397

    [28]Xue L P,Chang X H,Li SH,et al.Dalton Trans.,2014,43: 7219-7226

    [29]Xu JK,Sun X C,Yang L R,et al.Z.Anorg.Allg.Chem., 2014,640:236-242

    [30]YINWei-Dong(尹衛(wèi)東),LIGui-Lian(李桂連),LIXiao-Ling (李曉玲),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2016,32(4):662-668

    [31]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Germany,1997.

    [32]Sheldrick G M.SHELXL-97,Program for Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

    [33]Sahu J,Ahmad M,Bharadwaj P K.Cryst.Growth Des., 2013,13:2618-2627

    [34]Zhang L P,Ma JF,Yang J,et al.Inorg.Chem.,2010,49: 1535-1550

    [35]QIAO Yu(喬宇),MABo-Nan(馬博男),LIXiu-Ying(李秀穎), et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31(6): 1245-1251

    [36]Chang X H,Zhao Y,Feng X,et al.Polyhedron,2014,83: 159-166

    [37]Li F F,Ma J F,Song S Y,et al.Inorg.Chem.,2005,44: 9374-9383

    Zinc(II)and Cadm ium(II)Coordination Polymersw ith Various Polynuclears Spaced by Sem irigid 4-Carboxybenzeneacetate and Nitrogen-Rich Co-ligands:Syntheses,Structures and Properties

    JU Feng-Yang1LIYun-Ping2LIGui-Lian2LIUGuang-Zhen*,2XIN Ling-Yun2LIXiao-Ling2

    (1School of Food and Drug,Luoyang Normal University,Luoyang,Henan 471934,China)

    (2College of Chemistry and Chemical Engineering,Luoyang Normal University,Luoyang,Henan 471934,China)

    A series of four Zn(II)/Cd(II))coordination polymers,{[Zn(cbaa)(bpmp)0.5(H2O)]·2H2O}n(1),[Zn(cbaa) (bip)]n(2),[Cd(cbaa)(Hizb)]n(3)and[Cd2(cbaa)2(itmb)(H2O)]n(4)have been obtained by the solvothermal reaction of Zn(II)/Cd(II)acetate with semirigid 4-carboxybenzeneacetic acid(H2cbaa)and co-ligands,1,4-bis(4-pyridylmethy)piperazine(bpmp),3,5-bis(1-imidazoly)pyridine(bip),2-(4-imidazol-l-yl-phenyl)-1H-benzimidazole(Hizb) and 1-(imidazo-1-ly)-4-(1,2,4-trazol-1-ylmethyl)benzene(itmb).The single-crystal X-ray diffraction analyses show that four compounds feature various polynuclears spaced by 4-carboxybenzeneacetate and N-rich co-ligands and display various topology structures.Two zinc complexes are 1D ladder featuring Zn-carboxylate chains linked further by bpmp co-ligands for 1 and 2D monolayer containing Zn-carboxylate chains cross-linked further by bip co-ligands for 2,respectively.And two cadmium complexes exhibit2Dmonolayer featuring Cd-O inorganic chains cross-linked further by cbaa carboxylateswith Hizb co-ligands acting as pendent arms for 3 and 2D dense bilayer

    國家自然科學(xué)基金(No.21571093)、河南省高??萍紕?chuàng)新人才項(xiàng)目(No.14HASTIT017)、河南省高??萍紕?chuàng)新團(tuán)隊(duì)項(xiàng)目(No.14IRTSTHN008)和河南省科技攻關(guān)計(jì)劃(No.162102210304)資助。

    *通信聯(lián)系人。E-mail:gzliuly@126.com

    4-carboxybenzeneacetic acid;zinc;cadmium;coordination polymers;fluorescent properties

    2016-06-30。收修改稿日期:2016-09-14。

    O0614.24+1;O614.24+2

    A

    1001-4861(2016)10-1876-09

    10.11862/CJIC.2016.234

    containing Cd-carboxylate open bilayer with itmb co-ligands encapsulated within the cavities for 4,respectively. The fluorescent properties and thermal stabilities of all these compounds have been investigated.CCDC:906895, 1;1443786,2;906897,3;906898,4.

    猜你喜歡
    苯乙酸羧基羧酸
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    攪拌對聚羧酸減水劑分散性的影響
    鳥氨酸苯乙酸對肝硬化患者上消化道出血后血氨水平的影響
    復(fù)合羧酸鑭對PVC熱穩(wěn)定作用研究
    中國塑料(2014年1期)2014-10-17 02:46:34
    四羧基酞菁鋅鍵合MCM=41的合成及其對Li/SOCl2電池催化活性的影響
    對羥基苯乙酸-N,N-二甲基甲酰氨基甲酰甲酯的合成工藝研究
    廢塑料熱解聚乙烯蠟的羧基化改性和表征
    聚羧酸減水劑與減縮劑的相容性研究
    羧基官能化己內(nèi)酯的合成
    羧基官能化己內(nèi)酯的合成
    亚洲色图 男人天堂 中文字幕 | 99国产精品免费福利视频| 欧美3d第一页| 国产精品久久久久久av不卡| 亚洲欧洲日产国产| 日本色播在线视频| 伊人亚洲综合成人网| 亚洲人成77777在线视频| 欧美老熟妇乱子伦牲交| 免费黄网站久久成人精品| 欧美日韩av久久| 一区二区三区四区激情视频| 久久久国产一区二区| 婷婷色综合大香蕉| 久久久久久久久久久久大奶| 久久久久久久久久久免费av| 两个人免费观看高清视频| 成年av动漫网址| 国产乱来视频区| 亚洲高清免费不卡视频| 中文字幕最新亚洲高清| 我的女老师完整版在线观看| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区黑人 | 亚洲欧美成人精品一区二区| 国产色爽女视频免费观看| 热re99久久精品国产66热6| 免费日韩欧美在线观看| 日日摸夜夜添夜夜爱| 国产片内射在线| 久久久久久伊人网av| 日韩大片免费观看网站| 草草在线视频免费看| 亚洲精品aⅴ在线观看| 不卡视频在线观看欧美| 国产亚洲精品第一综合不卡 | 久久人妻熟女aⅴ| 精品少妇黑人巨大在线播放| av在线老鸭窝| 亚洲精品中文字幕在线视频| 我要看黄色一级片免费的| 久久综合国产亚洲精品| 日日撸夜夜添| 精品久久久久久电影网| 日韩人妻精品一区2区三区| 在线天堂中文资源库| 午夜免费男女啪啪视频观看| 精品亚洲成a人片在线观看| 久久久精品区二区三区| 99久久精品国产国产毛片| 国产成人av激情在线播放| 777米奇影视久久| 美女国产视频在线观看| 如日韩欧美国产精品一区二区三区| 精品熟女少妇av免费看| 捣出白浆h1v1| 考比视频在线观看| av在线app专区| 男人爽女人下面视频在线观看| 王馨瑶露胸无遮挡在线观看| 永久网站在线| 成人亚洲欧美一区二区av| 日本免费在线观看一区| 欧美精品人与动牲交sv欧美| 夫妻性生交免费视频一级片| 人人妻人人爽人人添夜夜欢视频| 日日啪夜夜爽| 午夜精品国产一区二区电影| 一边摸一边做爽爽视频免费| 久久久久网色| 国产在视频线精品| 咕卡用的链子| 欧美日韩视频高清一区二区三区二| av天堂久久9| 免费不卡的大黄色大毛片视频在线观看| 欧美精品一区二区免费开放| 精品国产露脸久久av麻豆| 国产不卡av网站在线观看| 一级爰片在线观看| 久热久热在线精品观看| 狂野欧美激情性bbbbbb| 2021少妇久久久久久久久久久| 亚洲精品久久午夜乱码| 国国产精品蜜臀av免费| av片东京热男人的天堂| 又大又黄又爽视频免费| 欧美亚洲 丝袜 人妻 在线| 伊人亚洲综合成人网| 久久久亚洲精品成人影院| 亚洲一码二码三码区别大吗| 久久国产精品大桥未久av| 久久久久国产网址| 日韩在线高清观看一区二区三区| 亚洲三级黄色毛片| 丁香六月天网| 欧美精品高潮呻吟av久久| 丝袜喷水一区| 十八禁高潮呻吟视频| 男女无遮挡免费网站观看| 成年动漫av网址| 一级爰片在线观看| 新久久久久国产一级毛片| 亚洲第一av免费看| 在线观看一区二区三区激情| 乱码一卡2卡4卡精品| 国产乱人偷精品视频| av在线app专区| 十八禁高潮呻吟视频| av黄色大香蕉| 三上悠亚av全集在线观看| 欧美3d第一页| 久久人人爽人人片av| 最近的中文字幕免费完整| 97人妻天天添夜夜摸| 亚洲国产色片| 国产精品一区www在线观看| 久久久久国产精品人妻一区二区| 精品一区二区三区视频在线| 亚洲四区av| 黄色视频在线播放观看不卡| 99久国产av精品国产电影| 黄色 视频免费看| 日韩视频在线欧美| 亚洲精品美女久久久久99蜜臀 | 日韩av在线免费看完整版不卡| 国产精品一国产av| 一级片'在线观看视频| av在线播放精品| 精品久久久精品久久久| 免费黄色在线免费观看| 美女视频免费永久观看网站| 丁香六月天网| 精品人妻熟女毛片av久久网站| 久久久国产精品麻豆| 在线看a的网站| 久久99蜜桃精品久久| 国产精品秋霞免费鲁丝片| 亚洲一级一片aⅴ在线观看| 亚洲内射少妇av| 啦啦啦中文免费视频观看日本| av卡一久久| 亚洲精品国产av成人精品| 亚洲av免费高清在线观看| 国产精品国产三级国产专区5o| 三上悠亚av全集在线观看| 精品人妻一区二区三区麻豆| 成年动漫av网址| 国产在线视频一区二区| 夫妻性生交免费视频一级片| 精品熟女少妇av免费看| 亚洲一区二区三区欧美精品| 香蕉国产在线看| 在线观看三级黄色| av国产精品久久久久影院| 卡戴珊不雅视频在线播放| 高清欧美精品videossex| 国产精品国产三级国产专区5o| 国产日韩欧美亚洲二区| 免费少妇av软件| 精品一品国产午夜福利视频| 成人手机av| 久久99精品国语久久久| 26uuu在线亚洲综合色| 26uuu在线亚洲综合色| 高清av免费在线| 免费观看无遮挡的男女| 国语对白做爰xxxⅹ性视频网站| 中文乱码字字幕精品一区二区三区| 婷婷色av中文字幕| 午夜福利乱码中文字幕| 亚洲经典国产精华液单| 久久久亚洲精品成人影院| 亚洲精品视频女| 国产一区二区在线观看日韩| 极品人妻少妇av视频| 男女边吃奶边做爰视频| 日本爱情动作片www.在线观看| 王馨瑶露胸无遮挡在线观看| av女优亚洲男人天堂| 亚洲精品国产av蜜桃| 成人午夜精彩视频在线观看| 久久精品aⅴ一区二区三区四区 | 99九九在线精品视频| 中文乱码字字幕精品一区二区三区| 51国产日韩欧美| 亚洲精品456在线播放app| 熟妇人妻不卡中文字幕| 新久久久久国产一级毛片| 午夜福利乱码中文字幕| 国产成人一区二区在线| 性高湖久久久久久久久免费观看| 国产av码专区亚洲av| 午夜福利在线观看免费完整高清在| av在线观看视频网站免费| 色吧在线观看| 日韩av免费高清视频| av天堂久久9| 卡戴珊不雅视频在线播放| 欧美人与性动交α欧美软件 | 寂寞人妻少妇视频99o| 国产精品无大码| 久久精品国产自在天天线| 18禁裸乳无遮挡动漫免费视频| 国产国拍精品亚洲av在线观看| av天堂久久9| 最近手机中文字幕大全| 免费黄色在线免费观看| 久久久久久人人人人人| 免费人成在线观看视频色| 捣出白浆h1v1| 1024视频免费在线观看| 少妇人妻久久综合中文| 免费av中文字幕在线| 啦啦啦中文免费视频观看日本| 春色校园在线视频观看| 国产精品一二三区在线看| 国产精品久久久久久精品古装| 亚洲欧美色中文字幕在线| 国产又色又爽无遮挡免| 少妇高潮的动态图| 欧美精品一区二区大全| 波多野结衣一区麻豆| 少妇的逼好多水| 国产1区2区3区精品| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 免费看不卡的av| 国产免费现黄频在线看| 伊人亚洲综合成人网| 极品人妻少妇av视频| 成人18禁高潮啪啪吃奶动态图| 又黄又粗又硬又大视频| 极品少妇高潮喷水抽搐| 亚洲国产日韩一区二区| 亚洲精品,欧美精品| 亚洲av.av天堂| 91久久精品国产一区二区三区| 丰满少妇做爰视频| 欧美成人精品欧美一级黄| 免费看不卡的av| 国产免费一级a男人的天堂| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| 丝袜脚勾引网站| 国产乱人偷精品视频| 日韩熟女老妇一区二区性免费视频| 美女大奶头黄色视频| 欧美亚洲 丝袜 人妻 在线| 国产一区二区三区av在线| 亚洲综合色惰| 国产精品三级大全| 视频区图区小说| 色哟哟·www| 一本—道久久a久久精品蜜桃钙片| 日韩成人av中文字幕在线观看| 欧美人与性动交α欧美软件 | 99精国产麻豆久久婷婷| 伊人亚洲综合成人网| 亚洲国产av影院在线观看| av天堂久久9| 欧美人与性动交α欧美软件 | 人成视频在线观看免费观看| 一本色道久久久久久精品综合| 人人妻人人添人人爽欧美一区卜| 在线 av 中文字幕| 国产精品蜜桃在线观看| 男女无遮挡免费网站观看| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 国产精品久久久久成人av| 另类精品久久| 日韩电影二区| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| 国产精品三级大全| 高清不卡的av网站| 欧美成人午夜精品| 在线观看一区二区三区激情| 在线精品无人区一区二区三| 亚洲欧美一区二区三区黑人 | 91国产中文字幕| 国产高清国产精品国产三级| 色婷婷久久久亚洲欧美| 日本91视频免费播放| 黄色配什么色好看| 亚洲美女黄色视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 免费少妇av软件| 欧美日韩综合久久久久久| 国产极品粉嫩免费观看在线| 国产精品女同一区二区软件| a级毛片黄视频| 久久精品国产a三级三级三级| 国产探花极品一区二区| a级毛片在线看网站| 一区二区av电影网| 天美传媒精品一区二区| 亚洲精品成人av观看孕妇| 日韩电影二区| 国产av精品麻豆| 欧美日韩精品成人综合77777| 亚洲国产精品一区三区| 国产 精品1| 午夜影院在线不卡| 欧美精品人与动牲交sv欧美| 国产亚洲午夜精品一区二区久久| 久久久久网色| 精品国产一区二区三区四区第35| 色94色欧美一区二区| 亚洲国产精品专区欧美| 欧美日韩av久久| av黄色大香蕉| 女性生殖器流出的白浆| av免费观看日本| 免费大片18禁| 国产精品国产三级国产专区5o| 久久精品aⅴ一区二区三区四区 | 国产69精品久久久久777片| 少妇被粗大的猛进出69影院 | 亚洲国产av影院在线观看| 高清不卡的av网站| 久久久国产欧美日韩av| 人人妻人人澡人人爽人人夜夜| 国产极品天堂在线| 久久久久人妻精品一区果冻| 少妇人妻精品综合一区二区| 少妇的逼水好多| 视频在线观看一区二区三区| 一级a做视频免费观看| 亚洲av免费高清在线观看| 丁香六月天网| 大陆偷拍与自拍| 国产精品人妻久久久影院| 免费日韩欧美在线观看| 国产精品久久久av美女十八| 亚洲欧美精品自产自拍| 女人精品久久久久毛片| 精品国产国语对白av| 少妇精品久久久久久久| 午夜福利在线观看免费完整高清在| 成人国语在线视频| 啦啦啦视频在线资源免费观看| 中文字幕亚洲精品专区| 午夜影院在线不卡| 全区人妻精品视频| 久久人人爽人人爽人人片va| 在线 av 中文字幕| 久久久久久久久久成人| 成人国产麻豆网| 久久久久网色| 少妇被粗大的猛进出69影院 | 日韩三级伦理在线观看| 成年人午夜在线观看视频| 考比视频在线观看| 亚洲精品视频女| 国产精品一区二区在线不卡| 另类精品久久| 最近中文字幕2019免费版| 精品久久蜜臀av无| 免费黄色在线免费观看| 午夜福利,免费看| 婷婷色综合大香蕉| 最后的刺客免费高清国语| 久久久国产欧美日韩av| 制服丝袜香蕉在线| 亚洲综合色网址| 国产精品熟女久久久久浪| 久久久精品免费免费高清| 只有这里有精品99| 亚洲色图综合在线观看| 国产精品久久久av美女十八| 日本与韩国留学比较| 9191精品国产免费久久| 一个人免费看片子| 永久免费av网站大全| 一级毛片电影观看| 黄色 视频免费看| 看十八女毛片水多多多| 精品一区在线观看国产| 热re99久久国产66热| 18禁动态无遮挡网站| 亚洲av综合色区一区| 亚洲性久久影院| 亚洲综合色惰| 中文字幕av电影在线播放| 十八禁高潮呻吟视频| 黄色一级大片看看| 在线观看免费日韩欧美大片| 伦理电影免费视频| 亚洲av综合色区一区| 国产日韩欧美亚洲二区| 99久久综合免费| 在线观看www视频免费| 亚洲精品美女久久久久99蜜臀 | 国产日韩欧美亚洲二区| 日韩,欧美,国产一区二区三区| 欧美亚洲 丝袜 人妻 在线| 丰满少妇做爰视频| av在线老鸭窝| 亚洲av国产av综合av卡| 成人国语在线视频| 婷婷色综合www| 亚洲国产看品久久| freevideosex欧美| 日本爱情动作片www.在线观看| 久久久久久人人人人人| 99re6热这里在线精品视频| 26uuu在线亚洲综合色| 王馨瑶露胸无遮挡在线观看| 乱人伦中国视频| 亚洲欧美一区二区三区黑人 | 日本与韩国留学比较| 亚洲成人手机| 内地一区二区视频在线| 免费高清在线观看日韩| av又黄又爽大尺度在线免费看| 热re99久久国产66热| 丝瓜视频免费看黄片| 日本免费在线观看一区| 精品午夜福利在线看| 欧美日韩av久久| 亚洲性久久影院| 少妇人妻久久综合中文| 欧美日韩av久久| 伦精品一区二区三区| 日本vs欧美在线观看视频| 中文乱码字字幕精品一区二区三区| 久久久精品免费免费高清| 99香蕉大伊视频| 少妇猛男粗大的猛烈进出视频| 自线自在国产av| 欧美精品一区二区大全| av一本久久久久| 最近手机中文字幕大全| 欧美老熟妇乱子伦牲交| 亚洲国产av新网站| 亚洲欧美中文字幕日韩二区| 欧美变态另类bdsm刘玥| 少妇人妻久久综合中文| 女性被躁到高潮视频| 午夜影院在线不卡| 亚洲熟女精品中文字幕| 91在线精品国自产拍蜜月| 欧美3d第一页| 久久女婷五月综合色啪小说| 国产成人精品婷婷| 三级国产精品片| 赤兔流量卡办理| 欧美人与善性xxx| 亚洲欧洲日产国产| 国产乱来视频区| 伦理电影大哥的女人| 久久精品国产自在天天线| 美国免费a级毛片| 免费看不卡的av| 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 一级爰片在线观看| av播播在线观看一区| 午夜福利影视在线免费观看| 久久精品熟女亚洲av麻豆精品| 男人操女人黄网站| 午夜免费鲁丝| 久久精品国产亚洲av天美| 亚洲av日韩在线播放| 多毛熟女@视频| 美女视频免费永久观看网站| 91精品三级在线观看| 女人精品久久久久毛片| 欧美xxxx性猛交bbbb| 久久久国产精品麻豆| 一级a做视频免费观看| 婷婷色av中文字幕| 久久久久国产网址| 久久热在线av| 日本欧美视频一区| 美女主播在线视频| 午夜福利视频精品| 日韩一区二区视频免费看| 超色免费av| 王馨瑶露胸无遮挡在线观看| 少妇被粗大的猛进出69影院 | 欧美精品一区二区免费开放| 日韩一区二区三区影片| 国产熟女欧美一区二区| www.熟女人妻精品国产 | 久久久久国产网址| 国产亚洲欧美精品永久| 乱人伦中国视频| 制服诱惑二区| 欧美丝袜亚洲另类| 纵有疾风起免费观看全集完整版| 久久午夜福利片| 精品人妻熟女毛片av久久网站| 大码成人一级视频| 麻豆精品久久久久久蜜桃| 丝袜人妻中文字幕| 最后的刺客免费高清国语| 欧美激情极品国产一区二区三区 | 丁香六月天网| 少妇被粗大猛烈的视频| 18禁动态无遮挡网站| 在线观看免费日韩欧美大片| 久久久精品区二区三区| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| 亚洲少妇的诱惑av| 国产精品国产三级专区第一集| 亚洲精品久久午夜乱码| 丝瓜视频免费看黄片| a级毛片在线看网站| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 极品人妻少妇av视频| 成年av动漫网址| 日本av免费视频播放| 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区| 欧美日韩视频高清一区二区三区二| 少妇被粗大的猛进出69影院 | 如日韩欧美国产精品一区二区三区| 国产一区二区激情短视频 | 蜜桃国产av成人99| 1024视频免费在线观看| 中文字幕精品免费在线观看视频 | 男女边吃奶边做爰视频| 国产淫语在线视频| 亚洲av福利一区| 亚洲国产看品久久| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| av网站免费在线观看视频| 97人妻天天添夜夜摸| 亚洲国产精品一区二区三区在线| 咕卡用的链子| 成年人免费黄色播放视频| 精品少妇久久久久久888优播| 黑人巨大精品欧美一区二区蜜桃 | 午夜91福利影院| 在线精品无人区一区二区三| 综合色丁香网| 美女中出高潮动态图| 一区二区av电影网| 美女国产高潮福利片在线看| 国产欧美亚洲国产| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 精品久久国产蜜桃| 亚洲国产欧美日韩在线播放| 久久99一区二区三区| 人人澡人人妻人| 亚洲欧美色中文字幕在线| 亚洲av.av天堂| 超碰97精品在线观看| 满18在线观看网站| 美女国产高潮福利片在线看| 亚洲成色77777| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区| 青青草视频在线视频观看| 青春草视频在线免费观看| 有码 亚洲区| 日韩电影二区| 制服人妻中文乱码| 在线观看人妻少妇| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 蜜臀久久99精品久久宅男| 午夜福利影视在线免费观看| 狠狠婷婷综合久久久久久88av| 久久人人爽av亚洲精品天堂| 一个人免费看片子| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| 欧美bdsm另类| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 免费日韩欧美在线观看| 中文字幕另类日韩欧美亚洲嫩草| 99久久精品国产国产毛片| 亚洲成人av在线免费| 好男人视频免费观看在线| av有码第一页| 午夜91福利影院| 大香蕉久久网| 日韩成人av中文字幕在线观看| 亚洲第一av免费看| 国产成人免费观看mmmm| 午夜精品国产一区二区电影| 国产一区二区在线观看日韩| 亚洲五月色婷婷综合| 欧美精品人与动牲交sv欧美| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 精品一区二区免费观看| 99热全是精品| 天天躁夜夜躁狠狠久久av| 久久 成人 亚洲| 十八禁网站网址无遮挡| 欧美另类一区| 精品一品国产午夜福利视频| 日本vs欧美在线观看视频| 亚洲精品第二区| 永久免费av网站大全| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 亚洲,一卡二卡三卡| 看免费成人av毛片| 精品久久蜜臀av无| 老女人水多毛片| 亚洲美女视频黄频| 亚洲美女搞黄在线观看| 国产黄色免费在线视频|