• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time vehicle tracking for traffic monitoring systems①

    2016-12-05 06:38:57HuShuoZhangXuguangWuNa
    High Technology Letters 2016年3期

    Hu Shuo (胡 碩):Zhang Xuguang:Wu Na

    (*Key Laboratory of Industrial Computer Control Engineering of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China) (**Key Laboratory of Measurement Technology & Instrumentation of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China)

    ?

    Real-time vehicle tracking for traffic monitoring systems①

    Hu Shuo (胡 碩)*To whom correspondence should be addressed.E-mail:hus@ysu.edu.cnReceived on Sep.7,2015*:Zhang Xuguang*:Wu Na**

    (*Key Laboratory of Industrial Computer Control Engineering of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China) (**Key Laboratory of Measurement Technology & Instrumentation of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China)

    A real-time vehicle tracking method is proposed for traffic monitoring system at road intersections:and the vehicle tracking module consists of an initialization stage and a tracking stage.License plate location based on edge density and color analysis is used to detect the license plate region for tracking initialization.In the tracking stage:covariance matching is employed to track the license plate.Genetic algorithm is used to reduce the computational cost.Real-time image tracking of multi-lane vehicles is achieved.In the experiment:test videos are recorded in advance by recorders of actual E-police systems at several different city intersections.In the tracking module:the average false detection rate and missed plates rate are 1.19%:and 1.72%:respectively.

    traffic monitoring system:covariance matching:genetic algorithms:vehicle tracking

    0 Introduction

    Intelligent transportation systems (ITS) play an important role in human life:and traffic monitoring has been a popular research focus for the development of ITS[1,2].The task of ITS is to ensure that traffic information can be collected online and distributed in real time.Recently:vision-based vehicle tracking has become the most popular method to collect traffic information:and many researchers proposed algorithms and methods to improve the performance of this tracking method[3].To achieve a robust solution for object matching:numerous features:such as color:edge:gradient:texture:and active contours have been selected[4,5].The contour is used to track the object.A real-time image tracking system of multi-lane vehicles is performed in Ref.[6].A new spatial color histogram model is presented in Ref.[7].With the use of this model:a voting method based on the generalized Hough transform is employed to estimate the object location for tracking.In general:utilizing a single cue to deal with a variety of environmental conditions robustly is a difficult task.A covariance descriptor was proposed to describe a target in Ref.[8].The covariance descriptor not only fuses multiple features but also finds a global optimal solution in the matching region.Furthermore:covariance matrices:which are scale and rotation independent:and robust against illumination change:filter the corruption of noises during the covariance computation[9].Covariance matching has been successfully used in many applications:such as object tracking[10,11]:human detection[12]:and image clustering[13,14].An effective framework for covariance tracking based on the genetic algorithm (GA) is proposed in Refs[15,16].Region covariance matrices are constructed to describe image regions robustly.GA is employed to find the optimal solution of the template in the scene image.

    The purpose of this research is to design and implement a real-time vehicle tracking method for traffic monitoring system.A system architecture based on embedded platform is developed.The proposed tracker extracts traffic parameters online in real time.All the algorithms are performed in the embedded traffic monitor component based on the DM6446 chip.

    The rest of this paper is organized as follows:Section 1 describes the real-time vehicle tracking approach in detail.Section 2 presents experimental results of the proposed method and provides several interesting and practical examples of estimating traffic parameters and detecting red light running accidents.Section 3 presents the conclusion.

    1 Proposed vehicle tracking algorithm

    In the proposed system:a vehicle tracking module consists of two stages:namely:the initialization stage and the tracking stage.In the initialization state:the location of the license plate (LP) is detected by edge density information[17]and color analysis[18].Feature detection is employed in the LP region for the construction of the covariance matrix.In the tracking stage:covariance-based object matching is used to locate the vehicles and the genetic algorithm is also used to reduce the computational cost of the covariance matching for real-time tracking.

    In the tracking initialization:LP location based on the edge density and color analysis is performed to detect LP in the license plate detection (LPD) region:as shown in Fig.1.Multi-target tracking is performed in a multi-lane scene.In this study:the detected LP region is considered as the target template image for tracking.In the LPD region:all the LPs detected in the current frame are assumed asLc(n):wheren= 0,1,2,…:while all the LPs detected in the previous frame are denoted asLp(m).Tracking by covariance matching between theLc(n) andLp(m) is performed:wherem:n= 1,2,….IfLc(n) does not match successfully withLp(m):thenLc(n) is considered as a new target.Assuming that the number of LPs detected in current frame isN:and the number of LPs detected in the previous frame isM:Fig.2 shows the flowchart of the covariance matching and new target detection.The purpose of LP location is to extract candidate regions for matching in the LPD region.The proposed system performs vehicle tracking or new LPD based on the matching method shown in Fig.2.Furthermore:the LP location is employed only in the LPD region.Compared with the LPD region:the scale of the LP regions changes when the targets (vehicles) are far from the camera in the tracking region (see Fig.1):which affects the LP location accuracy.Hence:the method of tracking vehicles is different from the one employed in the LPD region and a target in the entire tracking region is searched by using covariance matching to find the most similar region to the template image.In addition:GA is employed to reduce the computational cost for real-time tracking.The system stops tracking when the vehicle leaves the tracking region:as shown in Fig.1.

    1.1 License plate location

    Generally:LP location methods are either texture based or color based[19].The texture-based methods analyze the texture characteristics in the LP region by using mathematical tools:such as edge density[20-22]and region connectivity[23,24]:and use the color information to detect the LP.Although the color characteristic in the LP region contains richer information:color-based methods have been paid less attention than texture-based ones because color is not stable in natural scenes[19].

    Fig.1 LPD region and tracking region

    Fig.2 Flowchart of matching and new target detection method

    In the proposed system:the LP region is detected by edge density and color analysis.The proposed method consists of the following three steps:

    Step 1 Vertical edge extraction.In general:the density of the vertical edges at the LP region is considerably higher than its neighborhood[17].The Sobel edge detection algorithm was used to extract the vertical edges to estimate their density in the detection region.In this paper:the Sobel kernel is defined in Eq.(1).The gradient image was computed by the Sobel convolution operation:and the binarized edge image was obtained through an adaptive threshold segmentation method.Fig.3(b) shows the binarized edge image.

    Fig.3 LP location by edge density and color analysis

    (1)

    Step 2 Edge density estimation.To estimate the edge density:a common method is to use a 2D Gaussian filter.The size of the filter is assigned according to the size of the LP in the LPD region.In our system:the size of the filter was set as 130×40 based on the experimental statistic analysis.

    Step 3 False object removing.The candidate regions for the LP are extracted by the filter described in Step 2.Some extracted candidate regions included the nose edge region [see Fig.3(c)]:which should be removed.We used the length-width ratio constraint and the color analysis described in Ref.[18] to remove the false LP region.Fig.3(d) shows the final detected LP region.

    1.2 Covariance matching

    fk=?Y(x,y)U(x,y)V(x,y)D(x,y)Yx(x,y)

    Yy(x,y)」

    (2)

    The LP is selected as a target in tracking the vehicle.Therefore:the region of the LP can be represented as a covariance matrix CRas

    (3)

    where μRis the average of the vector that corresponds to the features of the points in the region R[10].

    To match the LP between the template image and the object image:the similarity of the covariance matrices needs to be measured.Assume thatCtandCoare the two covariance matrices extracted from template and candidate image region.In the system:the covariance distance betweenCtandCois calculated based on F?rstner’s contribution[25]

    (4)

    whereλk(C1:C2) are the generalized eigenvalues of C1and C2:computed from |λC1-C2|=0.Therefore:the tracking of LPs can be achieved from the location of the object image that has a minimum distance of covariance matrices.

    1.3 Genetic algorithms

    GA is an optimization method that is robust and useful in solving problems when the solution space has high dimensionality or contains discontinuities[26,27].Recently:GAs have been used in target tracking[15,16,27]because of their optimization property.

    In this implementation:the N-points-sampling:which is at a constraint interval in both horizontal and vertical direction:is employed for initiation of the population:whereNis the population size.The selection of fitness function is crucial to a GA system.Based on the property of covariance matching described in Section 1.2:the fitness of an individual at the candidate position (x:y) is defined as

    (5)

    where ρ′=min(T:ρ):and ρ can be derived from Eq.(4).ThresholdTis used to restrict the fitness from 0 to 1.

    Crossover operators generate offspring by exchanging information between the parents.The exchange of vertical coordinates of two parents is defined as the crossover operator.

    A new mutation operator is also designed in this system and is employed by adding a random number into the horizontal or vertical coordinate of the individual as

    It+1=It+mm∈[-M:M]

    (6)

    whereItis the individual selected to mutate in thetthgeneration:andmis a random value in the range from -MtoM.In this paper:the population is initiated as a constraint interval in both horizontal and vertical direction:andMis assigned as the interval in the horizontal or vertical direction.

    2 Experimental results

    Fig.4 shows the system architecture of the vehicle monitoring system developed in this study.All the algorithms are performed in the embedded traffic monitor component (ETMC) based on the DM6446 chip.Before the system starts working:the configuration file:which contains preset parameter information:is created using a configuration software and then downloaded to the ETMC.The ETMC processes the video from the HD camera and extracted the traffic parameters such as vehicle flow:vehicle speed:and traffic accident information:which are then transmitted to the information process center server.

    Fig.4 Architecture of the proposed monitoring system

    The experimental results of the proposed traffic-monitoring system are presented to show the real-time vehicle tracking performance.The test videos are recorded in advance by the recorders of actual E-police systems at several different city intersections.

    Five videos recorded in three intersections are used to estimate the tracking performance.Intersection 1 includes daytime (shown in Fig.6):nighttime (shown in Fig.7):and rainy day (shown in Fig.8) observations:whereas intersections 2 and 3 are observed during daytime only.The results of the LPD are shown in Table 1.As observed from Table 1:the average false detection rate and missed plates rate are 1.19%:and 1.72%:respectively.

    Table 1 LPD results

    Fig.5 Time cost of tracking module

    In the tracking module:GA is used to reduce the computational cost of covariance matching.In the experiment:the size of the initialization population is set to 50:and the number of iteration generations is 20 to balance the accuracy and speed.The crossover and mutation probabilities are both set to 0.6.To avoid missing the best matching position:and the individual is retained with the maximum fitness in all generations.Fig.5 shows the average runtime of the proposed tracking system.The average time cost is 20.75 ms in a 24-hour period.From Fig.5:it can be seen that from 7:00 to 9:00 and from 17:00 to 19:00:the runtime of the system is greater than the mean value because of the heavy traffic flow in morning and the evening.However,the peak value is still smaller than 40 ms:which shows that the proposed system satisfies the real-time requirement.

    Fig.6 Vehicle tracking results in daytime scene

    Fig.6 shows the experimental result images of vehicle tracking in a multiple lane scene.In Fig.6(a):three vehicles are detected in the LPD region:and each vehicle was assigned with a number as a tracking ID according to the detected order.The vehicle IDs are recorded in the traffic flow information:then the traffic flow status for a given period is obtained by counting the number of vehicle IDs.From Fig.6(b):a car and a van:which are labeled “0” and “2,” respectively:in the frame 1 has left the tracking region; their ID numbers are removed in the 56thframe:which indicates that tracking for these vehicles has ended.In the proposed system:each vehicle’s tracked distance is recorded by using the LP detection position and the track end position.The speed of a vehicle is calculated by dividing the tracked distance by the elapsed time.In addition:two cars are detected and labeled as “3” and “4” in the same frame in Fig.6(b).Fig.6(c)-16(f) illustrate the red light running detection at an intersection.In Fig.6(c):a van is detected and labeled as “45” in the 713thframe.In Fig.6(d):the red light is on:which signals the cars to stop.However:the van does not stop:so the system records the van as a red light runner.The scene image is recorded for law enforcement evidence.To distinguish the violating vehicles from other vehicles:a large red rectangle is used as the tracking window for the red light runners:as shown in Fig.6(d).

    Fig.7 Red light running detection results in nighttime scene

    Fig.7 shows a red light running accident detection in the nighttime scene.In Fig.7(a):two cars are detected and labeled as “48” and “49,” respectively.The car labeled as “49” does not stop at the stop line when the traffic light signaled a go-straight red light in Fig.7(b).The system detects the red light running accident as shown in Fig.7(c).In Fig.7(d):the peccant car leaves the tracking region:and the system stops the tracking:and the relevant detection information of the car is recorded.

    Fig.8 Monitoring results in rainy day condition

    Fig.8(a) shows the occlusion problem:which induces detection errors in the tracking module.In Fig.8(a):the LP of the front bus is occluded by the vehicle behind because the vehicles are too close to each other; hence:the detection accuracy is reduced.Fig.8(b) shows the detection result on a rainy day.The blue LP and yellow LP are detected successfully:thereby demonstrating the robustness of the system.

    3 Conclusions

    A real-time traffic-monitoring system is developed and tested in this research.The performance of the proposed system is evaluated.In the tracking module:the average false detection rate and missed plates rate of the LPD are 1.19%:and 1.72%:respectively.The run-time of the tracking module is also tested.The average time cost of the tracking module is 20.75 ms in a 24-hour period:and experimental results demonstrate the effectiveness and efficiency of the proposed system.Moreover:the applications of red light running detection of vehicles at an intersection are demonstrated.

    The developed traffic monitoring system is useful for providing real-time online traffic parameters:such as number of vehicles:vehicle speed:and traffic flow:to a traffic control center.In the proposed system:LPD is performed to initialize the tracking:and the detected LP regions are considered as the template image to track the vehicles.Therefore:in the tracking module:one of the factors that cause detection error is the occlusion problem due to vehicles being too close to each other.Future work can focus on resolving the occlusion problem to improve the monitoring system further.

    [1] Kastrinaki V:Zervakis M:Kalaitzakis K.A survey of video processing techniques for traffic applications.ImageandVisionComputing:2003:21(4):359-381

    [2] Aoude G S :Desaraju V R :Stephens L H :et al.Driver behavior classification at intersections and validation on large naturalistic dataset.IEEETransactionsonIntelligentTransportationSystems:2012:13(2):724-736

    [3] Yang H:Shao L:Zheng F:et al.Recent advances and trends in visual tracking:A review.Neurocomputing:2011:74(18):3823-3831

    [4] Ma C:Liu C:Peng F:et al.Multi-feature Hashing tracking.PatternRecognitionLetters:2016:69(1):62-71

    [5] Zhang X:Liu H:Wang Y.Feature fusion based object tracking for robot platforms.IndustrialRobot:2011:38(1):66-75

    [6] Battiato S:Farinella G:Furnari A:et al.An integrated system for vehicle tracking and classification.ExpertSystemswithApplications:2015:42(11):7263-7275

    [7] Suryanto D:Kim H:Kim S.Spatial color histogram based center voting method for subsequent object tracking and segmentation.ImageandVisionComputing:2011:29:850-860

    [8] Tuzel O:Porikli F:Meer P.Region covariance:A fast descriptor for detection and for detection and classification.In:Proceedings of the European Conference on Computer Vision:Graz:Austria:2006.589-600

    [9] Zhang X:Liu H:Li X.Target tracking for mobile robot platforms via object matching and background anti-matching.RoboticsandAutonomousSystems:2010:58(11):1197-1206

    [10] Porikli F:Tuzel O:Meer P.Covariance tracking using model update based on Lie algebra.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:New York:USA:2006.728-735

    [11] Zhang X:Li X:Liang M:et al.Covariance tracking with forgetting factor and random sampling.InternationalJournalofUncertainty:FuzzinessandKnowledge-BasedSystems:2011:19(3):547-558

    [12] Tuzel O:Porikli F:Meer P.Pedestrian detection via classification on Riemannian manifolds.IEEETransPatternAnalMachIntell:2008:30(10):1713-1727

    [13] Zhang X:Zhang Y:Zhang J:et al.Unsupervised clustering for logo images using singular values region covariance matrices on Lie groups.OpticalEngineering:2012:51(04):301-311

    [14] Pang Y:Yuan Y:Li X.Gabor-based region covariance matrices for face recognition.IEEETransCircuitsSystVideoTechnol:2008:18(7):989-993

    [15] Zhang X:Hu S:Zhang L:et al.Fast covariance matching based on genetic algorithm.In:Proceedings of the WiCOM:Chengdu:China:2010.1-4

    [16] Zhang X:Hu S:Li X:et al.Fast covariance matching with fuzzy genetic algorithm.IEEETransactionsonIndustrialInformatics:2012:8(1):148-157

    [17] Anagnostopoulos C:Anagnostopoulos I:Loumos V:et al.A license plate-recognition algorithm for intelligent transportation system applications.IEEETransactionsonIntelligentTransportationSystems:2006:7(3):377-392

    [18] Abolghasemi V:Ahmadyfard A.An edge-based color-aided method for license plate detection.ImageandVisionComputing:2009:27(8):1134-1142

    [19] Yang X:Hao X:Zhao G.License plate location based on trichromatic imaging and color-discrete characteristic.OptikIntJLightElectronOpt:2012:123(16):1486-1491

    [20] Al-Hmouz R:Challa S.License plate localization based on a probabilistic model.MachineVisionandApplications:2010:21(3):319-330

    [21] Huang Y:Chang T :Chen Y:et al.A back propagation based realtime license plate recognition system.IntJPatternRecognArtifIntel:2008:22 (2):233-251

    [22] Guo J:Liu Y.License plate localization and character segmentation with feedback self-learning and hybrid binarization techniques.IEEETransVehTechnol:2008:57 (3):1417-1724

    [23] Jiao J:Ye X:Huang Q.A configurable method for multi-style license plate recognition.PatternRecognition:2009:42(3):358-369

    [24] Conci A:Carvalho J:Rauber T.A complete system for vehicle plate localization:segmentation and recognition in real life scene.IEEELatAmTrans:2009:7(5):497-506

    [25] F?rstner W:Moonen B.A Metric for Covariance Matrices:[Technical Report].Stuttgart:Department of Geodesy and Geoinformatics:Stuttgart University.1999.299-309

    [26] Goldberg D E.Genetic Algorithm in Search:Optimization and Machine Learning.Boston:Addison-Wesley:1989.1-10

    [27] Karmali F:Shelhamer M.Compensating for camera translation in video eye-movement recordings by tracking a representative landmark selected automatically by a genetic algorithm.JournalofNeuroscienceMethods:2009,176(2):157-165

    Hu Shuo:born in 1976.He received a B.Sc.in Electronics and Information System and M.Sc.in Circuits and Systems from the Northeast Normal University in 2000 and 2003:respectively.He received a Ph.D in Optical Engineering from Institute of Optics Fine Mechanics and Physics:Chinese Academy of Sciences:in 2006.His research interests include activity recognition:video surveillance and time series analysis.

    10.3772/j.issn.1006-6748.2016.03.003

    ①Supported by the National Natural Science Foundation of China (No.61005034):China Postdoctoral Science Foundation and under Grant (No.2012M510768) and the Science Foundation of Hebei Province under Grant (No.F2012203182).

    在线观看66精品国产| 嫩草影院新地址| 2021少妇久久久久久久久久久| 国产精品久久久久久久久免| 欧美日本视频| 欧美zozozo另类| 色视频www国产| 免费一级毛片在线播放高清视频| 日本免费一区二区三区高清不卡| 亚洲精品乱久久久久久| 国语对白做爰xxxⅹ性视频网站| 如何舔出高潮| 国产亚洲精品av在线| 国内少妇人妻偷人精品xxx网站| 久久久久精品久久久久真实原创| 亚洲欧美日韩卡通动漫| 国产精品久久电影中文字幕| 日本熟妇午夜| 日产精品乱码卡一卡2卡三| 国产亚洲午夜精品一区二区久久 | 中国国产av一级| 亚洲国产精品成人久久小说| a级一级毛片免费在线观看| 成年女人看的毛片在线观看| 中文精品一卡2卡3卡4更新| 能在线免费看毛片的网站| 亚洲久久久久久中文字幕| 欧美激情国产日韩精品一区| 3wmmmm亚洲av在线观看| 欧美成人a在线观看| 18禁动态无遮挡网站| 亚洲性久久影院| 亚洲精品日韩在线中文字幕| 国产亚洲午夜精品一区二区久久 | 一级毛片我不卡| 高清毛片免费看| 久久久久国产网址| 国产精品av视频在线免费观看| 国产黄片视频在线免费观看| 99热这里只有精品一区| 亚洲成人av在线免费| 热99在线观看视频| 18禁裸乳无遮挡免费网站照片| 高清毛片免费看| 国语自产精品视频在线第100页| 男女下面进入的视频免费午夜| 精品免费久久久久久久清纯| 国产精品久久电影中文字幕| 黄色日韩在线| 我的女老师完整版在线观看| 好男人在线观看高清免费视频| 国产精品麻豆人妻色哟哟久久 | 日韩大片免费观看网站 | 亚洲国产精品合色在线| 久久久久精品久久久久真实原创| 最近手机中文字幕大全| 精品国内亚洲2022精品成人| 2022亚洲国产成人精品| 搡老妇女老女人老熟妇| 亚洲国产精品久久男人天堂| 全区人妻精品视频| av又黄又爽大尺度在线免费看 | 网址你懂的国产日韩在线| 26uuu在线亚洲综合色| 一区二区三区四区激情视频| 高清在线视频一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 91精品国产九色| 两性午夜刺激爽爽歪歪视频在线观看| 久久这里只有精品中国| 好男人在线观看高清免费视频| 国产淫语在线视频| 亚洲精品自拍成人| 69人妻影院| 成人亚洲精品av一区二区| 亚洲国产精品合色在线| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人| 亚洲国产精品久久男人天堂| 精品国产一区二区三区久久久樱花 | 69人妻影院| 成人亚洲精品av一区二区| 免费无遮挡裸体视频| 精品国产三级普通话版| 毛片一级片免费看久久久久| 午夜久久久久精精品| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 久久久色成人| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 国产精品精品国产色婷婷| 啦啦啦啦在线视频资源| 精品不卡国产一区二区三区| 亚洲国产欧美人成| 亚洲一区高清亚洲精品| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影| 国模一区二区三区四区视频| 日韩视频在线欧美| 亚洲乱码一区二区免费版| 午夜亚洲福利在线播放| 国产大屁股一区二区在线视频| 日本黄色视频三级网站网址| 99在线人妻在线中文字幕| 国产真实乱freesex| a级一级毛片免费在线观看| 蜜臀久久99精品久久宅男| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| 综合色av麻豆| 亚洲精品乱码久久久v下载方式| 亚洲成人av在线免费| 国产成年人精品一区二区| 在线免费十八禁| 久久久欧美国产精品| 少妇人妻一区二区三区视频| 久久久久九九精品影院| 久久亚洲国产成人精品v| www日本黄色视频网| 亚洲国产最新在线播放| 少妇的逼水好多| 人人妻人人澡欧美一区二区| 一边摸一边抽搐一进一小说| 久久久欧美国产精品| 日本午夜av视频| 午夜福利在线观看吧| 天堂网av新在线| 亚洲精品亚洲一区二区| 成人无遮挡网站| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 啦啦啦啦在线视频资源| 国产探花极品一区二区| 丰满人妻一区二区三区视频av| 国产精品一区www在线观看| 国产精品不卡视频一区二区| 精品国产三级普通话版| 亚洲四区av| 国产成人午夜福利电影在线观看| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| 久久久久免费精品人妻一区二区| 久久久久久久久大av| 1024手机看黄色片| 国产免费男女视频| 久久这里只有精品中国| 在线免费十八禁| 秋霞伦理黄片| 在线观看一区二区三区| 熟女人妻精品中文字幕| 日韩国内少妇激情av| 菩萨蛮人人尽说江南好唐韦庄 | 欧美最新免费一区二区三区| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 久久久精品94久久精品| 免费黄网站久久成人精品| 国产午夜福利久久久久久| 久久久久久久午夜电影| 直男gayav资源| 国产免费一级a男人的天堂| av在线天堂中文字幕| 99热这里只有精品一区| 午夜福利在线在线| 国模一区二区三区四区视频| 欧美+日韩+精品| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 纵有疾风起免费观看全集完整版 | 国产亚洲精品久久久com| 久久久欧美国产精品| 亚洲美女视频黄频| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 男女国产视频网站| 乱码一卡2卡4卡精品| 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频 | 国产大屁股一区二区在线视频| 在线观看av片永久免费下载| 欧美激情在线99| 一级爰片在线观看| www日本黄色视频网| 一本一本综合久久| 国产精品乱码一区二三区的特点| 精品久久久久久久久av| 中文在线观看免费www的网站| 日韩一本色道免费dvd| 日日干狠狠操夜夜爽| 国产一区有黄有色的免费视频 | 精品久久久久久电影网 | 国产不卡一卡二| 亚洲国产色片| 九草在线视频观看| 久久久久久大精品| 在线播放国产精品三级| 国产一区二区三区av在线| 插阴视频在线观看视频| 国产伦在线观看视频一区| 我的女老师完整版在线观看| 亚洲国产成人一精品久久久| 91午夜精品亚洲一区二区三区| 99久久无色码亚洲精品果冻| 欧美人与善性xxx| 国产欧美另类精品又又久久亚洲欧美| 晚上一个人看的免费电影| 国产免费一级a男人的天堂| 久久精品久久精品一区二区三区| 18+在线观看网站| 国产精品av视频在线免费观看| 国产黄色视频一区二区在线观看 | 99在线视频只有这里精品首页| 日韩国内少妇激情av| 五月玫瑰六月丁香| 国产在线一区二区三区精 | 国产片特级美女逼逼视频| 不卡视频在线观看欧美| 激情 狠狠 欧美| 在线播放国产精品三级| 黄片wwwwww| 国产成人aa在线观看| .国产精品久久| av在线天堂中文字幕| av在线老鸭窝| 草草在线视频免费看| 国产成人aa在线观看| 亚洲av二区三区四区| 国产精品爽爽va在线观看网站| 直男gayav资源| 只有这里有精品99| 简卡轻食公司| 国产精品久久久久久久电影| 亚洲国产精品成人综合色| 国产精品电影一区二区三区| 久久久久久久久久黄片| 国产精品蜜桃在线观看| 亚洲精品久久久久久婷婷小说 | 九草在线视频观看| 一级毛片久久久久久久久女| 中文字幕av在线有码专区| 久久99热这里只有精品18| 免费在线观看成人毛片| 国产爱豆传媒在线观看| 日本一二三区视频观看| 网址你懂的国产日韩在线| 最近视频中文字幕2019在线8| 国产高清三级在线| 草草在线视频免费看| 三级国产精品片| 亚洲电影在线观看av| 最近中文字幕高清免费大全6| 国产探花在线观看一区二区| 97超视频在线观看视频| av黄色大香蕉| 午夜a级毛片| 三级国产精品片| 麻豆久久精品国产亚洲av| 卡戴珊不雅视频在线播放| 国产午夜精品一二区理论片| 亚洲av成人av| 老师上课跳d突然被开到最大视频| 成人三级黄色视频| 乱系列少妇在线播放| 插逼视频在线观看| 欧美成人a在线观看| 国产伦理片在线播放av一区| 日韩强制内射视频| 秋霞伦理黄片| 高清av免费在线| 99久久人妻综合| 亚洲成人精品中文字幕电影| 简卡轻食公司| 成人毛片60女人毛片免费| 亚洲高清免费不卡视频| 亚洲色图av天堂| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 国产成人精品婷婷| 黄色欧美视频在线观看| av又黄又爽大尺度在线免费看 | 看十八女毛片水多多多| 18禁在线播放成人免费| 啦啦啦韩国在线观看视频| 男女啪啪激烈高潮av片| 男插女下体视频免费在线播放| 看十八女毛片水多多多| 91精品伊人久久大香线蕉| 人妻制服诱惑在线中文字幕| 我要搜黄色片| 欧美高清成人免费视频www| 久久精品影院6| 又爽又黄a免费视频| 91av网一区二区| 韩国av在线不卡| 一区二区三区高清视频在线| 男插女下体视频免费在线播放| 国产白丝娇喘喷水9色精品| 日本免费a在线| 看片在线看免费视频| 免费电影在线观看免费观看| 99久久成人亚洲精品观看| 黄片wwwwww| 免费看av在线观看网站| 自拍偷自拍亚洲精品老妇| 国产美女午夜福利| 纵有疾风起免费观看全集完整版 | 亚洲欧美中文字幕日韩二区| 永久网站在线| 美女cb高潮喷水在线观看| 国产精品一区二区在线观看99 | 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 国产精品久久久久久av不卡| 成年版毛片免费区| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 欧美一区二区亚洲| 国产伦理片在线播放av一区| 国产精品女同一区二区软件| 尾随美女入室| 少妇裸体淫交视频免费看高清| 久久久欧美国产精品| 色哟哟·www| 国产成人精品一,二区| 99久久中文字幕三级久久日本| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱| 久热久热在线精品观看| 久久99蜜桃精品久久| 韩国av在线不卡| 亚洲精品自拍成人| a级毛色黄片| 婷婷色麻豆天堂久久 | 男女下面进入的视频免费午夜| 国产单亲对白刺激| 亚洲成人中文字幕在线播放| 国产精品蜜桃在线观看| 成人国产麻豆网| 三级国产精品片| 午夜福利在线在线| 欧美3d第一页| 日本色播在线视频| 欧美成人免费av一区二区三区| 欧美日韩在线观看h| 国产精品国产三级国产专区5o | 九九爱精品视频在线观看| 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 久久99蜜桃精品久久| 建设人人有责人人尽责人人享有的 | 男女边吃奶边做爰视频| 欧美潮喷喷水| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| 亚洲国产欧美在线一区| 大又大粗又爽又黄少妇毛片口| 亚洲av成人av| 赤兔流量卡办理| 男女国产视频网站| 国产成人一区二区在线| 69人妻影院| 国内精品一区二区在线观看| 六月丁香七月| 亚洲国产高清在线一区二区三| 午夜免费激情av| 欧美区成人在线视频| videossex国产| 国产老妇女一区| 能在线免费看毛片的网站| 最近中文字幕2019免费版| 一边摸一边抽搐一进一小说| 成年女人看的毛片在线观看| 午夜爱爱视频在线播放| 亚洲精品久久久久久婷婷小说 | ponron亚洲| 国产精品一区www在线观看| 精品人妻偷拍中文字幕| 国产视频内射| 久久国产乱子免费精品| 欧美另类亚洲清纯唯美| 日韩制服骚丝袜av| 国产日韩欧美在线精品| 色综合站精品国产| 国产精品99久久久久久久久| av视频在线观看入口| 女人久久www免费人成看片 | 国产极品天堂在线| 嘟嘟电影网在线观看| 哪个播放器可以免费观看大片| 91精品国产九色| 在线观看一区二区三区| 国产综合懂色| 色哟哟·www| 18+在线观看网站| 国产精品女同一区二区软件| 少妇高潮的动态图| 男人的好看免费观看在线视频| 亚洲欧美精品自产自拍| 久99久视频精品免费| 男人舔奶头视频| 麻豆乱淫一区二区| 成人三级黄色视频| 亚洲图色成人| 欧美精品国产亚洲| 国产精品电影一区二区三区| 一级二级三级毛片免费看| 熟妇人妻久久中文字幕3abv| av卡一久久| 中文亚洲av片在线观看爽| 在现免费观看毛片| 日韩人妻高清精品专区| 国产单亲对白刺激| 精品久久久久久电影网 | 成人漫画全彩无遮挡| 伦精品一区二区三区| 天美传媒精品一区二区| 网址你懂的国产日韩在线| 最近手机中文字幕大全| 91久久精品电影网| 青春草国产在线视频| av免费观看日本| 亚洲国产精品久久男人天堂| 亚洲国产欧美在线一区| 国产精品不卡视频一区二区| 久久精品久久精品一区二区三区| 人体艺术视频欧美日本| 能在线免费观看的黄片| 欧美日本亚洲视频在线播放| 中文字幕亚洲精品专区| 美女黄网站色视频| 小蜜桃在线观看免费完整版高清| 91在线精品国自产拍蜜月| h日本视频在线播放| 国产精华一区二区三区| 午夜日本视频在线| 国产v大片淫在线免费观看| 免费播放大片免费观看视频在线观看 | h日本视频在线播放| 国产精华一区二区三区| 神马国产精品三级电影在线观看| 国产69精品久久久久777片| 婷婷色综合大香蕉| 色尼玛亚洲综合影院| 国产高清视频在线观看网站| 久久久欧美国产精品| 嫩草影院新地址| 成人亚洲欧美一区二区av| 99在线视频只有这里精品首页| 亚洲欧美成人综合另类久久久 | 变态另类丝袜制服| 亚洲,欧美,日韩| 精品免费久久久久久久清纯| 九九在线视频观看精品| 国产精品一区www在线观看| 国产精品福利在线免费观看| 亚洲精品一区蜜桃| 亚洲国产欧美人成| 黄色配什么色好看| 亚洲四区av| 亚洲精品久久久久久婷婷小说 | 国产午夜精品久久久久久一区二区三区| 国产v大片淫在线免费观看| 久久久久久伊人网av| 日韩一区二区视频免费看| 18禁在线播放成人免费| 小说图片视频综合网站| 最近2019中文字幕mv第一页| 欧美bdsm另类| 成人综合一区亚洲| 天美传媒精品一区二区| av.在线天堂| 三级毛片av免费| 国产片特级美女逼逼视频| av天堂中文字幕网| 国产精品久久久久久精品电影小说 | 美女cb高潮喷水在线观看| 91午夜精品亚洲一区二区三区| 91精品国产九色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩 亚洲 欧美在线| 深夜a级毛片| 国产综合懂色| 中国国产av一级| 欧美最新免费一区二区三区| 日韩 亚洲 欧美在线| 亚洲精品成人久久久久久| av在线老鸭窝| 美女xxoo啪啪120秒动态图| 欧美最新免费一区二区三区| 最近2019中文字幕mv第一页| 日韩精品有码人妻一区| 国产欧美日韩精品一区二区| 日日干狠狠操夜夜爽| 天堂中文最新版在线下载 | 最近中文字幕高清免费大全6| 在线天堂最新版资源| 秋霞在线观看毛片| 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 色播亚洲综合网| 亚洲av日韩在线播放| 啦啦啦啦在线视频资源| 久久久久久久久久黄片| 欧美人与善性xxx| 亚洲精品国产av成人精品| 亚洲精品久久久久久婷婷小说 | av国产免费在线观看| 国产亚洲av片在线观看秒播厂 | 午夜福利在线观看吧| 久久久亚洲精品成人影院| 女的被弄到高潮叫床怎么办| 99在线人妻在线中文字幕| 日韩,欧美,国产一区二区三区 | 深夜a级毛片| 国产精品麻豆人妻色哟哟久久 | 久热久热在线精品观看| 亚洲av福利一区| 国产探花极品一区二区| 亚洲欧美日韩高清专用| www日本黄色视频网| 中文字幕久久专区| 91在线精品国自产拍蜜月| 精品一区二区三区人妻视频| 国产精品伦人一区二区| 国产成人精品婷婷| 黄色一级大片看看| 麻豆成人午夜福利视频| 男女下面进入的视频免费午夜| 国产精品电影一区二区三区| 日韩av在线大香蕉| 中文字幕av成人在线电影| 国产久久久一区二区三区| av又黄又爽大尺度在线免费看 | 国产亚洲最大av| 在线观看66精品国产| 99热全是精品| 国产精品国产三级国产av玫瑰| 国产午夜精品论理片| 男人的好看免费观看在线视频| av播播在线观看一区| 亚洲人成网站高清观看| 狠狠狠狠99中文字幕| 国产高潮美女av| 免费黄网站久久成人精品| 久久精品综合一区二区三区| 国产黄片美女视频| 狂野欧美白嫩少妇大欣赏| 99久久精品热视频| 国产精品不卡视频一区二区| 国产精华一区二区三区| 免费观看a级毛片全部| 国产精品电影一区二区三区| 国产精品久久久久久av不卡| 亚洲精品久久久久久婷婷小说 | 亚洲欧美成人综合另类久久久 | 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕 | 国产亚洲精品av在线| 日本一二三区视频观看| 五月伊人婷婷丁香| a级一级毛片免费在线观看| 国产精品久久视频播放| 亚洲精品,欧美精品| av在线老鸭窝| 亚洲欧美日韩卡通动漫| 亚洲精品自拍成人| 久久久a久久爽久久v久久| 日本av手机在线免费观看| 一区二区三区高清视频在线| 久久精品国产亚洲av天美| 国产亚洲最大av| 日本免费在线观看一区| 晚上一个人看的免费电影| 久久精品综合一区二区三区| 精品国产露脸久久av麻豆 | 国产成人a区在线观看| 一区二区三区四区激情视频| 国产乱人视频| 最近最新中文字幕大全电影3| 一夜夜www| 久久久亚洲精品成人影院| 亚洲天堂国产精品一区在线| 国产精品女同一区二区软件| 午夜福利网站1000一区二区三区| 亚洲图色成人| 我要搜黄色片| 午夜福利高清视频| 99久久成人亚洲精品观看| 视频中文字幕在线观看| 午夜福利高清视频| 国产综合懂色| 亚洲欧美日韩卡通动漫| 亚洲精品久久久久久婷婷小说 | 国产精品久久久久久精品电影| 欧美日韩国产亚洲二区| 中文乱码字字幕精品一区二区三区 | 欧美精品国产亚洲| 亚洲av二区三区四区| 亚洲一区高清亚洲精品| 亚洲欧洲日产国产| 熟女电影av网| 欧美极品一区二区三区四区| 嫩草影院精品99| 成人毛片60女人毛片免费| 久久精品国产鲁丝片午夜精品| 综合色丁香网| 日韩人妻高清精品专区| 国产色爽女视频免费观看| 日韩av在线大香蕉| 欧美日本亚洲视频在线播放| 可以在线观看毛片的网站|