• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time vehicle tracking for traffic monitoring systems①

    2016-12-05 06:38:57HuShuoZhangXuguangWuNa
    High Technology Letters 2016年3期

    Hu Shuo (胡 碩):Zhang Xuguang:Wu Na

    (*Key Laboratory of Industrial Computer Control Engineering of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China) (**Key Laboratory of Measurement Technology & Instrumentation of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China)

    ?

    Real-time vehicle tracking for traffic monitoring systems①

    Hu Shuo (胡 碩)*To whom correspondence should be addressed.E-mail:hus@ysu.edu.cnReceived on Sep.7,2015*:Zhang Xuguang*:Wu Na**

    (*Key Laboratory of Industrial Computer Control Engineering of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China) (**Key Laboratory of Measurement Technology & Instrumentation of Hebei Province:Institute of Electrical Engineering,Yanshan University:Qinhuangdao 066004:P.R.China)

    A real-time vehicle tracking method is proposed for traffic monitoring system at road intersections:and the vehicle tracking module consists of an initialization stage and a tracking stage.License plate location based on edge density and color analysis is used to detect the license plate region for tracking initialization.In the tracking stage:covariance matching is employed to track the license plate.Genetic algorithm is used to reduce the computational cost.Real-time image tracking of multi-lane vehicles is achieved.In the experiment:test videos are recorded in advance by recorders of actual E-police systems at several different city intersections.In the tracking module:the average false detection rate and missed plates rate are 1.19%:and 1.72%:respectively.

    traffic monitoring system:covariance matching:genetic algorithms:vehicle tracking

    0 Introduction

    Intelligent transportation systems (ITS) play an important role in human life:and traffic monitoring has been a popular research focus for the development of ITS[1,2].The task of ITS is to ensure that traffic information can be collected online and distributed in real time.Recently:vision-based vehicle tracking has become the most popular method to collect traffic information:and many researchers proposed algorithms and methods to improve the performance of this tracking method[3].To achieve a robust solution for object matching:numerous features:such as color:edge:gradient:texture:and active contours have been selected[4,5].The contour is used to track the object.A real-time image tracking system of multi-lane vehicles is performed in Ref.[6].A new spatial color histogram model is presented in Ref.[7].With the use of this model:a voting method based on the generalized Hough transform is employed to estimate the object location for tracking.In general:utilizing a single cue to deal with a variety of environmental conditions robustly is a difficult task.A covariance descriptor was proposed to describe a target in Ref.[8].The covariance descriptor not only fuses multiple features but also finds a global optimal solution in the matching region.Furthermore:covariance matrices:which are scale and rotation independent:and robust against illumination change:filter the corruption of noises during the covariance computation[9].Covariance matching has been successfully used in many applications:such as object tracking[10,11]:human detection[12]:and image clustering[13,14].An effective framework for covariance tracking based on the genetic algorithm (GA) is proposed in Refs[15,16].Region covariance matrices are constructed to describe image regions robustly.GA is employed to find the optimal solution of the template in the scene image.

    The purpose of this research is to design and implement a real-time vehicle tracking method for traffic monitoring system.A system architecture based on embedded platform is developed.The proposed tracker extracts traffic parameters online in real time.All the algorithms are performed in the embedded traffic monitor component based on the DM6446 chip.

    The rest of this paper is organized as follows:Section 1 describes the real-time vehicle tracking approach in detail.Section 2 presents experimental results of the proposed method and provides several interesting and practical examples of estimating traffic parameters and detecting red light running accidents.Section 3 presents the conclusion.

    1 Proposed vehicle tracking algorithm

    In the proposed system:a vehicle tracking module consists of two stages:namely:the initialization stage and the tracking stage.In the initialization state:the location of the license plate (LP) is detected by edge density information[17]and color analysis[18].Feature detection is employed in the LP region for the construction of the covariance matrix.In the tracking stage:covariance-based object matching is used to locate the vehicles and the genetic algorithm is also used to reduce the computational cost of the covariance matching for real-time tracking.

    In the tracking initialization:LP location based on the edge density and color analysis is performed to detect LP in the license plate detection (LPD) region:as shown in Fig.1.Multi-target tracking is performed in a multi-lane scene.In this study:the detected LP region is considered as the target template image for tracking.In the LPD region:all the LPs detected in the current frame are assumed asLc(n):wheren= 0,1,2,…:while all the LPs detected in the previous frame are denoted asLp(m).Tracking by covariance matching between theLc(n) andLp(m) is performed:wherem:n= 1,2,….IfLc(n) does not match successfully withLp(m):thenLc(n) is considered as a new target.Assuming that the number of LPs detected in current frame isN:and the number of LPs detected in the previous frame isM:Fig.2 shows the flowchart of the covariance matching and new target detection.The purpose of LP location is to extract candidate regions for matching in the LPD region.The proposed system performs vehicle tracking or new LPD based on the matching method shown in Fig.2.Furthermore:the LP location is employed only in the LPD region.Compared with the LPD region:the scale of the LP regions changes when the targets (vehicles) are far from the camera in the tracking region (see Fig.1):which affects the LP location accuracy.Hence:the method of tracking vehicles is different from the one employed in the LPD region and a target in the entire tracking region is searched by using covariance matching to find the most similar region to the template image.In addition:GA is employed to reduce the computational cost for real-time tracking.The system stops tracking when the vehicle leaves the tracking region:as shown in Fig.1.

    1.1 License plate location

    Generally:LP location methods are either texture based or color based[19].The texture-based methods analyze the texture characteristics in the LP region by using mathematical tools:such as edge density[20-22]and region connectivity[23,24]:and use the color information to detect the LP.Although the color characteristic in the LP region contains richer information:color-based methods have been paid less attention than texture-based ones because color is not stable in natural scenes[19].

    Fig.1 LPD region and tracking region

    Fig.2 Flowchart of matching and new target detection method

    In the proposed system:the LP region is detected by edge density and color analysis.The proposed method consists of the following three steps:

    Step 1 Vertical edge extraction.In general:the density of the vertical edges at the LP region is considerably higher than its neighborhood[17].The Sobel edge detection algorithm was used to extract the vertical edges to estimate their density in the detection region.In this paper:the Sobel kernel is defined in Eq.(1).The gradient image was computed by the Sobel convolution operation:and the binarized edge image was obtained through an adaptive threshold segmentation method.Fig.3(b) shows the binarized edge image.

    Fig.3 LP location by edge density and color analysis

    (1)

    Step 2 Edge density estimation.To estimate the edge density:a common method is to use a 2D Gaussian filter.The size of the filter is assigned according to the size of the LP in the LPD region.In our system:the size of the filter was set as 130×40 based on the experimental statistic analysis.

    Step 3 False object removing.The candidate regions for the LP are extracted by the filter described in Step 2.Some extracted candidate regions included the nose edge region [see Fig.3(c)]:which should be removed.We used the length-width ratio constraint and the color analysis described in Ref.[18] to remove the false LP region.Fig.3(d) shows the final detected LP region.

    1.2 Covariance matching

    fk=?Y(x,y)U(x,y)V(x,y)D(x,y)Yx(x,y)

    Yy(x,y)」

    (2)

    The LP is selected as a target in tracking the vehicle.Therefore:the region of the LP can be represented as a covariance matrix CRas

    (3)

    where μRis the average of the vector that corresponds to the features of the points in the region R[10].

    To match the LP between the template image and the object image:the similarity of the covariance matrices needs to be measured.Assume thatCtandCoare the two covariance matrices extracted from template and candidate image region.In the system:the covariance distance betweenCtandCois calculated based on F?rstner’s contribution[25]

    (4)

    whereλk(C1:C2) are the generalized eigenvalues of C1and C2:computed from |λC1-C2|=0.Therefore:the tracking of LPs can be achieved from the location of the object image that has a minimum distance of covariance matrices.

    1.3 Genetic algorithms

    GA is an optimization method that is robust and useful in solving problems when the solution space has high dimensionality or contains discontinuities[26,27].Recently:GAs have been used in target tracking[15,16,27]because of their optimization property.

    In this implementation:the N-points-sampling:which is at a constraint interval in both horizontal and vertical direction:is employed for initiation of the population:whereNis the population size.The selection of fitness function is crucial to a GA system.Based on the property of covariance matching described in Section 1.2:the fitness of an individual at the candidate position (x:y) is defined as

    (5)

    where ρ′=min(T:ρ):and ρ can be derived from Eq.(4).ThresholdTis used to restrict the fitness from 0 to 1.

    Crossover operators generate offspring by exchanging information between the parents.The exchange of vertical coordinates of two parents is defined as the crossover operator.

    A new mutation operator is also designed in this system and is employed by adding a random number into the horizontal or vertical coordinate of the individual as

    It+1=It+mm∈[-M:M]

    (6)

    whereItis the individual selected to mutate in thetthgeneration:andmis a random value in the range from -MtoM.In this paper:the population is initiated as a constraint interval in both horizontal and vertical direction:andMis assigned as the interval in the horizontal or vertical direction.

    2 Experimental results

    Fig.4 shows the system architecture of the vehicle monitoring system developed in this study.All the algorithms are performed in the embedded traffic monitor component (ETMC) based on the DM6446 chip.Before the system starts working:the configuration file:which contains preset parameter information:is created using a configuration software and then downloaded to the ETMC.The ETMC processes the video from the HD camera and extracted the traffic parameters such as vehicle flow:vehicle speed:and traffic accident information:which are then transmitted to the information process center server.

    Fig.4 Architecture of the proposed monitoring system

    The experimental results of the proposed traffic-monitoring system are presented to show the real-time vehicle tracking performance.The test videos are recorded in advance by the recorders of actual E-police systems at several different city intersections.

    Five videos recorded in three intersections are used to estimate the tracking performance.Intersection 1 includes daytime (shown in Fig.6):nighttime (shown in Fig.7):and rainy day (shown in Fig.8) observations:whereas intersections 2 and 3 are observed during daytime only.The results of the LPD are shown in Table 1.As observed from Table 1:the average false detection rate and missed plates rate are 1.19%:and 1.72%:respectively.

    Table 1 LPD results

    Fig.5 Time cost of tracking module

    In the tracking module:GA is used to reduce the computational cost of covariance matching.In the experiment:the size of the initialization population is set to 50:and the number of iteration generations is 20 to balance the accuracy and speed.The crossover and mutation probabilities are both set to 0.6.To avoid missing the best matching position:and the individual is retained with the maximum fitness in all generations.Fig.5 shows the average runtime of the proposed tracking system.The average time cost is 20.75 ms in a 24-hour period.From Fig.5:it can be seen that from 7:00 to 9:00 and from 17:00 to 19:00:the runtime of the system is greater than the mean value because of the heavy traffic flow in morning and the evening.However,the peak value is still smaller than 40 ms:which shows that the proposed system satisfies the real-time requirement.

    Fig.6 Vehicle tracking results in daytime scene

    Fig.6 shows the experimental result images of vehicle tracking in a multiple lane scene.In Fig.6(a):three vehicles are detected in the LPD region:and each vehicle was assigned with a number as a tracking ID according to the detected order.The vehicle IDs are recorded in the traffic flow information:then the traffic flow status for a given period is obtained by counting the number of vehicle IDs.From Fig.6(b):a car and a van:which are labeled “0” and “2,” respectively:in the frame 1 has left the tracking region; their ID numbers are removed in the 56thframe:which indicates that tracking for these vehicles has ended.In the proposed system:each vehicle’s tracked distance is recorded by using the LP detection position and the track end position.The speed of a vehicle is calculated by dividing the tracked distance by the elapsed time.In addition:two cars are detected and labeled as “3” and “4” in the same frame in Fig.6(b).Fig.6(c)-16(f) illustrate the red light running detection at an intersection.In Fig.6(c):a van is detected and labeled as “45” in the 713thframe.In Fig.6(d):the red light is on:which signals the cars to stop.However:the van does not stop:so the system records the van as a red light runner.The scene image is recorded for law enforcement evidence.To distinguish the violating vehicles from other vehicles:a large red rectangle is used as the tracking window for the red light runners:as shown in Fig.6(d).

    Fig.7 Red light running detection results in nighttime scene

    Fig.7 shows a red light running accident detection in the nighttime scene.In Fig.7(a):two cars are detected and labeled as “48” and “49,” respectively.The car labeled as “49” does not stop at the stop line when the traffic light signaled a go-straight red light in Fig.7(b).The system detects the red light running accident as shown in Fig.7(c).In Fig.7(d):the peccant car leaves the tracking region:and the system stops the tracking:and the relevant detection information of the car is recorded.

    Fig.8 Monitoring results in rainy day condition

    Fig.8(a) shows the occlusion problem:which induces detection errors in the tracking module.In Fig.8(a):the LP of the front bus is occluded by the vehicle behind because the vehicles are too close to each other; hence:the detection accuracy is reduced.Fig.8(b) shows the detection result on a rainy day.The blue LP and yellow LP are detected successfully:thereby demonstrating the robustness of the system.

    3 Conclusions

    A real-time traffic-monitoring system is developed and tested in this research.The performance of the proposed system is evaluated.In the tracking module:the average false detection rate and missed plates rate of the LPD are 1.19%:and 1.72%:respectively.The run-time of the tracking module is also tested.The average time cost of the tracking module is 20.75 ms in a 24-hour period:and experimental results demonstrate the effectiveness and efficiency of the proposed system.Moreover:the applications of red light running detection of vehicles at an intersection are demonstrated.

    The developed traffic monitoring system is useful for providing real-time online traffic parameters:such as number of vehicles:vehicle speed:and traffic flow:to a traffic control center.In the proposed system:LPD is performed to initialize the tracking:and the detected LP regions are considered as the template image to track the vehicles.Therefore:in the tracking module:one of the factors that cause detection error is the occlusion problem due to vehicles being too close to each other.Future work can focus on resolving the occlusion problem to improve the monitoring system further.

    [1] Kastrinaki V:Zervakis M:Kalaitzakis K.A survey of video processing techniques for traffic applications.ImageandVisionComputing:2003:21(4):359-381

    [2] Aoude G S :Desaraju V R :Stephens L H :et al.Driver behavior classification at intersections and validation on large naturalistic dataset.IEEETransactionsonIntelligentTransportationSystems:2012:13(2):724-736

    [3] Yang H:Shao L:Zheng F:et al.Recent advances and trends in visual tracking:A review.Neurocomputing:2011:74(18):3823-3831

    [4] Ma C:Liu C:Peng F:et al.Multi-feature Hashing tracking.PatternRecognitionLetters:2016:69(1):62-71

    [5] Zhang X:Liu H:Wang Y.Feature fusion based object tracking for robot platforms.IndustrialRobot:2011:38(1):66-75

    [6] Battiato S:Farinella G:Furnari A:et al.An integrated system for vehicle tracking and classification.ExpertSystemswithApplications:2015:42(11):7263-7275

    [7] Suryanto D:Kim H:Kim S.Spatial color histogram based center voting method for subsequent object tracking and segmentation.ImageandVisionComputing:2011:29:850-860

    [8] Tuzel O:Porikli F:Meer P.Region covariance:A fast descriptor for detection and for detection and classification.In:Proceedings of the European Conference on Computer Vision:Graz:Austria:2006.589-600

    [9] Zhang X:Liu H:Li X.Target tracking for mobile robot platforms via object matching and background anti-matching.RoboticsandAutonomousSystems:2010:58(11):1197-1206

    [10] Porikli F:Tuzel O:Meer P.Covariance tracking using model update based on Lie algebra.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:New York:USA:2006.728-735

    [11] Zhang X:Li X:Liang M:et al.Covariance tracking with forgetting factor and random sampling.InternationalJournalofUncertainty:FuzzinessandKnowledge-BasedSystems:2011:19(3):547-558

    [12] Tuzel O:Porikli F:Meer P.Pedestrian detection via classification on Riemannian manifolds.IEEETransPatternAnalMachIntell:2008:30(10):1713-1727

    [13] Zhang X:Zhang Y:Zhang J:et al.Unsupervised clustering for logo images using singular values region covariance matrices on Lie groups.OpticalEngineering:2012:51(04):301-311

    [14] Pang Y:Yuan Y:Li X.Gabor-based region covariance matrices for face recognition.IEEETransCircuitsSystVideoTechnol:2008:18(7):989-993

    [15] Zhang X:Hu S:Zhang L:et al.Fast covariance matching based on genetic algorithm.In:Proceedings of the WiCOM:Chengdu:China:2010.1-4

    [16] Zhang X:Hu S:Li X:et al.Fast covariance matching with fuzzy genetic algorithm.IEEETransactionsonIndustrialInformatics:2012:8(1):148-157

    [17] Anagnostopoulos C:Anagnostopoulos I:Loumos V:et al.A license plate-recognition algorithm for intelligent transportation system applications.IEEETransactionsonIntelligentTransportationSystems:2006:7(3):377-392

    [18] Abolghasemi V:Ahmadyfard A.An edge-based color-aided method for license plate detection.ImageandVisionComputing:2009:27(8):1134-1142

    [19] Yang X:Hao X:Zhao G.License plate location based on trichromatic imaging and color-discrete characteristic.OptikIntJLightElectronOpt:2012:123(16):1486-1491

    [20] Al-Hmouz R:Challa S.License plate localization based on a probabilistic model.MachineVisionandApplications:2010:21(3):319-330

    [21] Huang Y:Chang T :Chen Y:et al.A back propagation based realtime license plate recognition system.IntJPatternRecognArtifIntel:2008:22 (2):233-251

    [22] Guo J:Liu Y.License plate localization and character segmentation with feedback self-learning and hybrid binarization techniques.IEEETransVehTechnol:2008:57 (3):1417-1724

    [23] Jiao J:Ye X:Huang Q.A configurable method for multi-style license plate recognition.PatternRecognition:2009:42(3):358-369

    [24] Conci A:Carvalho J:Rauber T.A complete system for vehicle plate localization:segmentation and recognition in real life scene.IEEELatAmTrans:2009:7(5):497-506

    [25] F?rstner W:Moonen B.A Metric for Covariance Matrices:[Technical Report].Stuttgart:Department of Geodesy and Geoinformatics:Stuttgart University.1999.299-309

    [26] Goldberg D E.Genetic Algorithm in Search:Optimization and Machine Learning.Boston:Addison-Wesley:1989.1-10

    [27] Karmali F:Shelhamer M.Compensating for camera translation in video eye-movement recordings by tracking a representative landmark selected automatically by a genetic algorithm.JournalofNeuroscienceMethods:2009,176(2):157-165

    Hu Shuo:born in 1976.He received a B.Sc.in Electronics and Information System and M.Sc.in Circuits and Systems from the Northeast Normal University in 2000 and 2003:respectively.He received a Ph.D in Optical Engineering from Institute of Optics Fine Mechanics and Physics:Chinese Academy of Sciences:in 2006.His research interests include activity recognition:video surveillance and time series analysis.

    10.3772/j.issn.1006-6748.2016.03.003

    ①Supported by the National Natural Science Foundation of China (No.61005034):China Postdoctoral Science Foundation and under Grant (No.2012M510768) and the Science Foundation of Hebei Province under Grant (No.F2012203182).

    亚洲精品色激情综合| 亚洲av免费在线观看| 婷婷色麻豆天堂久久| 人妻夜夜爽99麻豆av| 午夜福利在线观看免费完整高清在| 国产免费福利视频在线观看| 国产高清不卡午夜福利| 天天一区二区日本电影三级| 小蜜桃在线观看免费完整版高清| 午夜免费观看性视频| 国产激情偷乱视频一区二区| 久久久精品免费免费高清| 少妇的逼水好多| 国产伦在线观看视频一区| 国内精品一区二区在线观看| www.av在线官网国产| 国产探花极品一区二区| 久久久久国产网址| 在线a可以看的网站| 亚洲电影在线观看av| 久久久久久久国产电影| 天美传媒精品一区二区| 在线观看美女被高潮喷水网站| 深爱激情五月婷婷| 久久97久久精品| 一二三四中文在线观看免费高清| 18禁裸乳无遮挡免费网站照片| 国语对白做爰xxxⅹ性视频网站| 国产精品熟女久久久久浪| 97精品久久久久久久久久精品| 一级黄片播放器| 又爽又黄无遮挡网站| 成年av动漫网址| 国产综合懂色| 成年女人在线观看亚洲视频 | 天堂影院成人在线观看| 免费观看精品视频网站| 秋霞伦理黄片| 亚洲欧美成人精品一区二区| 久久久久免费精品人妻一区二区| 色5月婷婷丁香| 白带黄色成豆腐渣| 国产白丝娇喘喷水9色精品| 精品国产一区二区三区久久久樱花 | 亚洲精品一区蜜桃| 亚洲图色成人| 真实男女啪啪啪动态图| 日韩电影二区| 久久这里有精品视频免费| 18+在线观看网站| 伊人久久精品亚洲午夜| 大陆偷拍与自拍| 身体一侧抽搐| 国产精品一区二区三区四区久久| 美女脱内裤让男人舔精品视频| 国产高清不卡午夜福利| 九九在线视频观看精品| 国产精品久久久久久久电影| 永久免费av网站大全| 在线观看av片永久免费下载| 2022亚洲国产成人精品| 97人妻精品一区二区三区麻豆| 97人妻精品一区二区三区麻豆| 七月丁香在线播放| xxx大片免费视频| 国产精品三级大全| 综合色丁香网| 色播亚洲综合网| 午夜精品在线福利| 中文乱码字字幕精品一区二区三区 | 国产单亲对白刺激| 亚洲一区高清亚洲精品| 久久精品国产亚洲av天美| 国产高清三级在线| 久久久久久久久中文| 国产精品99久久久久久久久| 成人亚洲欧美一区二区av| 国产午夜福利久久久久久| 男女啪啪激烈高潮av片| 久久国产乱子免费精品| 国产精品av视频在线免费观看| 亚洲18禁久久av| 欧美一区二区亚洲| 嫩草影院入口| 亚洲va在线va天堂va国产| 老司机影院成人| 亚洲人与动物交配视频| 欧美日韩亚洲高清精品| 中文字幕人妻熟人妻熟丝袜美| 美女被艹到高潮喷水动态| 国产亚洲精品av在线| 国内精品一区二区在线观看| 寂寞人妻少妇视频99o| 亚洲精品视频女| 亚洲成人精品中文字幕电影| 国产精品av视频在线免费观看| 777米奇影视久久| 欧美另类一区| 久久97久久精品| 日本一二三区视频观看| 亚洲欧美一区二区三区国产| 又爽又黄无遮挡网站| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 亚洲色图av天堂| 国产老妇女一区| 日韩欧美 国产精品| 免费看a级黄色片| 99久久中文字幕三级久久日本| 日韩av免费高清视频| 色播亚洲综合网| 日韩 亚洲 欧美在线| 欧美 日韩 精品 国产| 乱码一卡2卡4卡精品| 99久久精品一区二区三区| 日韩,欧美,国产一区二区三区| 国产有黄有色有爽视频| 国产极品天堂在线| 哪个播放器可以免费观看大片| 日韩欧美三级三区| 99久国产av精品国产电影| 亚洲va在线va天堂va国产| 亚洲国产精品成人久久小说| a级毛色黄片| 免费少妇av软件| 国产精品99久久久久久久久| 免费无遮挡裸体视频| 精品熟女少妇av免费看| 亚洲精品视频女| 我的女老师完整版在线观看| 男女边吃奶边做爰视频| 女人十人毛片免费观看3o分钟| 国语对白做爰xxxⅹ性视频网站| 少妇熟女欧美另类| 国产一级毛片在线| 亚洲人成网站高清观看| 看免费成人av毛片| 欧美日韩一区二区视频在线观看视频在线 | videossex国产| 成年人午夜在线观看视频 | 91狼人影院| 日本猛色少妇xxxxx猛交久久| av又黄又爽大尺度在线免费看| 麻豆国产97在线/欧美| 乱人视频在线观看| 六月丁香七月| 亚洲四区av| 久久精品国产亚洲网站| 国产在线一区二区三区精| 久久这里有精品视频免费| 久久久久久久久久人人人人人人| 亚洲欧美精品自产自拍| 亚洲自拍偷在线| 国国产精品蜜臀av免费| 久久久久九九精品影院| 久热久热在线精品观看| 久久精品熟女亚洲av麻豆精品 | 91aial.com中文字幕在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲最大av| 国产老妇伦熟女老妇高清| 欧美极品一区二区三区四区| 国产成人午夜福利电影在线观看| 在线天堂最新版资源| 欧美日韩在线观看h| 亚洲一级一片aⅴ在线观看| 亚洲av一区综合| 亚洲欧美中文字幕日韩二区| 国产精品麻豆人妻色哟哟久久 | 两个人视频免费观看高清| 亚洲人与动物交配视频| 性色avwww在线观看| 99久久精品国产国产毛片| 国产单亲对白刺激| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃 | 日日撸夜夜添| 国产黄色小视频在线观看| 国产老妇伦熟女老妇高清| 亚洲美女搞黄在线观看| 日韩一区二区视频免费看| 一级毛片黄色毛片免费观看视频| av免费观看日本| 97超视频在线观看视频| 午夜福利视频精品| 免费黄色在线免费观看| 亚洲av不卡在线观看| 午夜免费男女啪啪视频观看| 日本-黄色视频高清免费观看| 亚洲美女视频黄频| 国产视频首页在线观看| 大香蕉97超碰在线| 久久久久久久久久久丰满| 亚洲在久久综合| 日产精品乱码卡一卡2卡三| 少妇的逼好多水| 免费观看的影片在线观看| 女的被弄到高潮叫床怎么办| 国产成人一区二区在线| av网站免费在线观看视频 | 亚洲综合精品二区| 久热久热在线精品观看| kizo精华| ponron亚洲| 日韩大片免费观看网站| 国产成人a∨麻豆精品| 三级国产精品片| 日韩视频在线欧美| 精品熟女少妇av免费看| 日韩精品有码人妻一区| 91久久精品国产一区二区三区| 五月天丁香电影| 午夜久久久久精精品| 亚洲最大成人中文| 国产精品国产三级专区第一集| 亚洲国产欧美在线一区| 最近手机中文字幕大全| 免费黄网站久久成人精品| 国产成人一区二区在线| 精品人妻偷拍中文字幕| 国产av不卡久久| 最近的中文字幕免费完整| 亚洲久久久久久中文字幕| 特级一级黄色大片| 亚洲精品久久久久久婷婷小说| 午夜激情久久久久久久| 性色avwww在线观看| 丝瓜视频免费看黄片| 国产成人精品福利久久| 欧美日韩精品成人综合77777| 综合色av麻豆| 三级毛片av免费| 可以在线观看毛片的网站| 高清午夜精品一区二区三区| 少妇丰满av| 欧美zozozo另类| 欧美成人精品欧美一级黄| 欧美激情国产日韩精品一区| 两个人的视频大全免费| 日韩三级伦理在线观看| 午夜福利视频1000在线观看| 亚洲图色成人| 老司机影院毛片| 精品久久久久久电影网| 国产黄片视频在线免费观看| 亚洲精品456在线播放app| 熟妇人妻久久中文字幕3abv| 婷婷色麻豆天堂久久| 狂野欧美激情性xxxx在线观看| 午夜激情福利司机影院| 亚洲丝袜综合中文字幕| 国产女主播在线喷水免费视频网站 | 国产av国产精品国产| 国产单亲对白刺激| av在线亚洲专区| 日本与韩国留学比较| 观看美女的网站| 色视频www国产| 麻豆成人av视频| 亚洲国产精品sss在线观看| 观看美女的网站| 18禁动态无遮挡网站| 亚洲最大成人中文| 男人舔女人下体高潮全视频| 美女xxoo啪啪120秒动态图| 少妇熟女欧美另类| 免费人成在线观看视频色| 大陆偷拍与自拍| av免费在线看不卡| 国产亚洲精品久久久com| 最近最新中文字幕大全电影3| 黄色日韩在线| 在线免费观看的www视频| 男人爽女人下面视频在线观看| 啦啦啦韩国在线观看视频| 亚洲av日韩在线播放| 国产av不卡久久| 国产精品一区www在线观看| 国产在线一区二区三区精| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产最新在线播放| 国产亚洲av片在线观看秒播厂 | 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 国产91av在线免费观看| 看十八女毛片水多多多| 男人舔女人下体高潮全视频| av卡一久久| 成年av动漫网址| 一级毛片黄色毛片免费观看视频| 在线免费观看的www视频| 久久久久九九精品影院| 欧美97在线视频| 一区二区三区高清视频在线| 18禁在线无遮挡免费观看视频| 欧美 日韩 精品 国产| 夫妻性生交免费视频一级片| 一级毛片 在线播放| 亚洲精品日本国产第一区| 波多野结衣巨乳人妻| av在线观看视频网站免费| 超碰av人人做人人爽久久| 中文字幕制服av| 欧美日韩综合久久久久久| 97超视频在线观看视频| 国产老妇伦熟女老妇高清| 国产精品人妻久久久久久| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 特大巨黑吊av在线直播| 国产高清不卡午夜福利| 精品午夜福利在线看| 亚洲精品日本国产第一区| 一级毛片aaaaaa免费看小| 只有这里有精品99| 日韩成人av中文字幕在线观看| 欧美极品一区二区三区四区| 欧美日韩综合久久久久久| 国产亚洲91精品色在线| 成人性生交大片免费视频hd| 人人妻人人看人人澡| 日本色播在线视频| 嫩草影院入口| 亚洲av成人精品一区久久| 国产爱豆传媒在线观看| a级毛片免费高清观看在线播放| 美女高潮的动态| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区免费毛片| av在线老鸭窝| 国产永久视频网站| 亚洲av一区综合| 高清毛片免费看| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区三区| 成人二区视频| 国产黄片美女视频| 国产成人精品婷婷| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 日韩不卡一区二区三区视频在线| 国产亚洲精品久久久com| 亚洲欧美成人精品一区二区| 哪个播放器可以免费观看大片| 插阴视频在线观看视频| 一级毛片aaaaaa免费看小| 日日啪夜夜撸| 国产免费视频播放在线视频 | 亚洲av男天堂| 中文乱码字字幕精品一区二区三区 | 男女下面进入的视频免费午夜| 免费观看的影片在线观看| 国产亚洲精品av在线| 日韩精品有码人妻一区| 久久久色成人| 亚洲精品一二三| 搡女人真爽免费视频火全软件| 亚洲精品日本国产第一区| 欧美+日韩+精品| 色吧在线观看| 秋霞在线观看毛片| 少妇高潮的动态图| 国产av不卡久久| 午夜福利成人在线免费观看| 寂寞人妻少妇视频99o| 久久99热这里只频精品6学生| 中文字幕人妻熟人妻熟丝袜美| 男女啪啪激烈高潮av片| 嫩草影院入口| 久久这里有精品视频免费| 26uuu在线亚洲综合色| 亚洲精品日本国产第一区| 不卡视频在线观看欧美| 色吧在线观看| 成年免费大片在线观看| 欧美不卡视频在线免费观看| 日韩欧美三级三区| 色视频www国产| 全区人妻精品视频| 中国国产av一级| 成年av动漫网址| av网站免费在线观看视频 | 国产单亲对白刺激| 国产成人精品久久久久久| 男女国产视频网站| 高清毛片免费看| 国产极品天堂在线| 性插视频无遮挡在线免费观看| av黄色大香蕉| 国产黄色免费在线视频| 欧美xxxx黑人xx丫x性爽| 在线播放无遮挡| 色吧在线观看| 青春草国产在线视频| 精品不卡国产一区二区三区| 国产精品爽爽va在线观看网站| 成年av动漫网址| 22中文网久久字幕| av在线播放精品| 精品久久久久久久人妻蜜臀av| 婷婷六月久久综合丁香| 韩国av在线不卡| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| 色尼玛亚洲综合影院| 中文字幕av成人在线电影| 日日摸夜夜添夜夜爱| 成人美女网站在线观看视频| 免费看a级黄色片| 亚洲综合精品二区| 欧美+日韩+精品| 国产av不卡久久| 午夜福利成人在线免费观看| 天天躁夜夜躁狠狠久久av| 97热精品久久久久久| 国产又色又爽无遮挡免| 亚洲综合色惰| 日本黄色片子视频| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 午夜免费男女啪啪视频观看| 亚洲怡红院男人天堂| 国产乱来视频区| 亚洲欧美精品自产自拍| 久久精品久久精品一区二区三区| 久久这里有精品视频免费| 亚洲美女视频黄频| 久久精品久久久久久久性| 久久久久久久久久人人人人人人| 我要看日韩黄色一级片| 老女人水多毛片| 国产 一区精品| 麻豆成人午夜福利视频| av福利片在线观看| 欧美日韩视频高清一区二区三区二| 免费少妇av软件| 国产精品av视频在线免费观看| 亚洲欧美一区二区三区国产| 欧美区成人在线视频| 久久99热这里只频精品6学生| 国产伦精品一区二区三区四那| 日日撸夜夜添| 久久99热6这里只有精品| 日本黄大片高清| 国语对白做爰xxxⅹ性视频网站| 国产成人精品福利久久| 偷拍熟女少妇极品色| 精品久久久久久久人妻蜜臀av| 国产国拍精品亚洲av在线观看| 国产成人a区在线观看| 搡女人真爽免费视频火全软件| 亚洲精品成人av观看孕妇| 在线天堂最新版资源| 亚洲欧美日韩卡通动漫| 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 直男gayav资源| 亚洲自拍偷在线| 欧美xxxx性猛交bbbb| av在线蜜桃| 禁无遮挡网站| 一个人看的www免费观看视频| 国产精品爽爽va在线观看网站| 自拍偷自拍亚洲精品老妇| 国产成人福利小说| 国产在视频线在精品| 精品久久久久久久久亚洲| 青春草国产在线视频| 国产永久视频网站| 欧美xxxx黑人xx丫x性爽| 看免费成人av毛片| 深爱激情五月婷婷| 欧美97在线视频| 亚洲综合色惰| 熟妇人妻不卡中文字幕| 蜜臀久久99精品久久宅男| 乱系列少妇在线播放| 国产免费福利视频在线观看| 一区二区三区免费毛片| 少妇熟女aⅴ在线视频| 一级毛片电影观看| 免费观看精品视频网站| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 日本午夜av视频| 99热6这里只有精品| 男女啪啪激烈高潮av片| 五月天丁香电影| 日本-黄色视频高清免费观看| 午夜福利在线观看吧| 一个人看的www免费观看视频| 一个人免费在线观看电影| 在线播放无遮挡| 久久久国产一区二区| 国产 一区 欧美 日韩| 男人舔女人下体高潮全视频| 亚洲成人一二三区av| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 亚洲av中文字字幕乱码综合| 久久久久久久久中文| 亚洲18禁久久av| 十八禁国产超污无遮挡网站| 亚洲美女视频黄频| 久久久久久久国产电影| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类| 日韩一本色道免费dvd| 精品一区二区三区视频在线| 寂寞人妻少妇视频99o| 国内精品宾馆在线| 大陆偷拍与自拍| 欧美成人一区二区免费高清观看| 大话2 男鬼变身卡| 亚洲内射少妇av| 国产精品国产三级国产专区5o| 国产伦在线观看视频一区| 国产乱人视频| 婷婷六月久久综合丁香| 亚洲国产最新在线播放| videos熟女内射| 国产一级毛片七仙女欲春2| 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 2018国产大陆天天弄谢| 成人欧美大片| 精品久久国产蜜桃| 国产免费又黄又爽又色| 最近最新中文字幕免费大全7| av线在线观看网站| 国产一区二区在线观看日韩| 免费看日本二区| eeuss影院久久| 中文字幕免费在线视频6| 美女主播在线视频| 亚洲精品国产av蜜桃| 日本色播在线视频| 亚洲av不卡在线观看| 男人舔女人下体高潮全视频| 中文字幕亚洲精品专区| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 亚洲国产av新网站| 人妻系列 视频| 一区二区三区高清视频在线| 午夜精品在线福利| 大话2 男鬼变身卡| 在线 av 中文字幕| 国产高潮美女av| 水蜜桃什么品种好| 午夜日本视频在线| 久久精品久久久久久久性| 亚洲精品日韩在线中文字幕| 国产中年淑女户外野战色| freevideosex欧美| 建设人人有责人人尽责人人享有的 | 亚洲自拍偷在线| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 熟妇人妻不卡中文字幕| 草草在线视频免费看| 日韩欧美国产在线观看| 免费av毛片视频| 十八禁国产超污无遮挡网站| 亚洲精品乱久久久久久| 成人美女网站在线观看视频| 床上黄色一级片| 久久久久久久久中文| av在线天堂中文字幕| 国产探花极品一区二区| 女人十人毛片免费观看3o分钟| 欧美区成人在线视频| 久久国内精品自在自线图片| 国产精品综合久久久久久久免费| 亚洲精品第二区| 欧美日韩在线观看h| 国产91av在线免费观看| 亚洲综合色惰| 成人综合一区亚洲| 精品久久久久久久久av| 欧美日本视频| 偷拍熟女少妇极品色| 欧美激情国产日韩精品一区| 色播亚洲综合网| 成年女人看的毛片在线观看| 国产片特级美女逼逼视频| 亚洲精品乱码久久久久久按摩| 天堂俺去俺来也www色官网 | 两个人视频免费观看高清| 欧美不卡视频在线免费观看| 最后的刺客免费高清国语| 国产精品一区二区性色av| 国产中年淑女户外野战色| 精品人妻视频免费看| 熟妇人妻不卡中文字幕| 97超视频在线观看视频| 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 国产精品一区二区在线观看99 | 免费少妇av软件| a级毛片免费高清观看在线播放| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 在线天堂最新版资源| 国产精品美女特级片免费视频播放器| 日韩精品青青久久久久久| 久久草成人影院| 久久久久久伊人网av| 欧美一级a爱片免费观看看| 91久久精品国产一区二区三区| 少妇熟女aⅴ在线视频|