• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Abnormal activity detection for surveillance video synopsis①

    2016-12-05 01:28:10ZhuXiaobin祝曉斌WangQianLiHaishengGuoXiaoxiaXiYanShenYang
    High Technology Letters 2016年2期

    Zhu Xiaobin (祝曉斌), Wang Qian, Li Haisheng, Guo Xiaoxia, Xi Yan, Shen Yang

    (*School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, P.R.China) (**Academy of Broadcasting Science, SAPPRFT, Beijing 100866, P.R.China)

    ?

    Abnormal activity detection for surveillance video synopsis①

    Zhu Xiaobin (祝曉斌)②*, Wang Qian*, Li Haisheng*, Guo Xiaoxia**, Xi Yan**, Shen Yang**

    (*School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, P.R.China) (**Academy of Broadcasting Science, SAPPRFT, Beijing 100866, P.R.China)

    Video synopsis is an effective and innovative way to produce short video abstraction for huge video archives, while keeping the dynamic characteristic of activities in the original video. Abnormal activity, as the critical event, is always the main concern in video surveillance context. However, in traditional video synopsis, all the normal and abnormal activities are condensed together equally, which can make the synopsis video confused and worthless. In addition, the traditional video synopsis methods always neglect redundancy in the content domain. To solve the above-mentioned issues, a novel video synopsis method is proposed based on abnormal activity detection and key observation selection. In the proposed algorithm, activities are classified into normal and abnormal ones based on the sparse reconstruction cost from an atomically learned activity dictionary. And key observation selection using the minimum description length principle is conducted for eliminating content redundancy in normal activity. Experiments conducted in publicly available datasets demonstrate that the proposed approach can effectively generate satisfying synopsis videos.

    abnormal activity detection, key observation selection, sparse coding, minimum description length (MDL), video synopsis

    0 Introduction

    Security applications have great demands on efficient technologies for fast video browsing, retrieval or analysis, facing endlessly produced surveillance videos. Therefore, how to obtain short and comprehensive video abstractions becomes an urgent task in research domain. Video synopsis is an effective method, which makes the abstraction video greatly shorter than the original one by displaying the activities from different periods simultaneously.

    Video synopsis can eliminate redundancy in the spatial-temporal domain, and generate short video abstraction. However, the existing synopsis methods[1,2]still have the following limitations: They always tend to summarize all types of activities from input videos. In video surveillance context, people mainly concern with particular activities, especially abnormal activities. The traditional synopsis video will include lots of activities people are not really interested in; They always concentrate on eliminating redundancy in the spatial-temporal domain, while neglecting the redundancy in the content domain. Too many observations for activities can make the synopsis videos chaotic and less understandable.

    To address the above issues, a novel video synopsis approach is proposed based on abnormal activity detection and key observation selection. In the proposed algorithm, based on sparse coding framework, activities are classified into two types, namely abnormal type and normal type, based on which two synopsis videos are generated separately. Synopsis with abnormal activities is usually the main concern in surveillance context, while synopsis with normal activities is a complementary video. Because adjacent observations in an activity are always similar in action and appearance, thus key observation selection is adopted to eliminate content redundancy in synopsis video for normal activities. Section 1 overviews the related works. Section 2 elaborates the methodology of this work. The experiments are given in Section 3, and this study is concluded in Section 4.

    1 Related work

    Video abstraction can be broadly divided into three categories, namely videosummarization, video skimming, and video synopsis. Video summarization techniques try to provide a summary by creating shorter video remaining descriptivesections of the original video. Typically, these techniques adopt static representations such as key-frames[3]. Although summarization based on key-frame could greatly compress theoriginal video, it loses not only the dynamic nature of video but also meaningful video contents.

    Video skimming[4,5]aims to extract informative video segments from the original video to obtain a condensed summary video. Ref.[5] adopted long-term and short-term audiovisual tempo analyses to detect valuable substories of a video and combined them for video skimming. The skimming video is generated based on the selected scene periods. Although, video skimming method can generate relatively more coherent and expressive summary video than those key-frame based ones. However, people will tend to spend large amounts of time browsing video segments with little information.

    Video synopsis methods break the previous framework through rearranging spatial-temporal location of foreground objects to generate a new efficient summary video, while keeping the dynamic nature of the original video[1,6-11]. In Ref.[1], activities were represented by space-time tubes. Then, energy function comprised of collision cost, activity cost and temporal consistency cost, etc., is minimized using annealing, MRF, or greedy optimization method, yielding an abbreviated synopsis video for fast browsing. Ref.[6]formulated the synopsis video generation problem as a maximum posterior probability (MAP)estimation problem, where video objects are chronologically rearranged in realtime without pre-computing the complete trajectory of activities. In Ref.[9], Feng, et al. adopted an online content-aware approach to achieve efficient video condensation. In the above mentioned methods, all the activities of the input video are equally treated and summarized together. The generated synopsis video tends to comprise lots of activities people are not really interested in. In addition, great redundancy in the content domain is always neglected in the above video synopsis methods, which leads to collisions,and negative impaction on subjective effect of video synopsis. In Ref.[10], space-time worms were correlated with an user-specified query to identify actions of interest, which were then condensed by optimizing their temporal shift, allowing simultaneous display of multiple instances of relevant activity. Motivated by the works in Ref.[10] and Ref.[11], a novel framework is proposed for video synopsis, which can overcome the above limitations of the current methods.

    2 The proposed algorithm

    2.1 Framework

    The proposed framework is shown in Fig.1. Firstly, background subtraction followed by a graph-based tracking[12-14]is adopted to extract moving objectactivities. Then, sparse reconstruction cost is adopted to classify normal and abnormal activities based on dense trajectory. For normal activities, key observation selection is used to eliminate content redundancy with the minimum description length (MDL) principle. Finally, two synopsis videos are generated for normal and abnormal activities, respectively.

    Fig.1 The proposed framework

    2.2 Abnormal activity detection

    After the background/foreground segmentation, a multiple hypothesis tracker is used to track blobs[15]. Then, foreground blobs are grouped into targets by employing similar techniques as in Ref.[16]. Each activity is represented by a sequence of object masks in those frames. The space-time sequences of an object is deemed as a tube, and the central point of object is taken as motion trajectory. Motion trajectories of objects are widely used in abnormal activity detection. Sparse coding framework is suitable for model high-dimensional samples. Normal samples tend to generate sparse reconstruction coefficients with a small reconstruction cost, while abnormal one is dissimilar to any of the normal basis, thus generates a dense representation with a large reconstruction cost. Recent works[17]showed the power of sparse coding in detecting abnormal activities (events). In the proposed algorithm, abnormal activity is conducted based on the sparse coding framework.

    2.2.1 Feature extraction

    In Ref.[18], typical trajectories were modelled with hierarchical clustering method for identifying abnormal behavior. One limitation of trajectory-based approaches is that the detection performance greatly relies on the accuracy of foreground object extraction and tracking. The other is that single trajectory cannot well describe the overall motion of the corresponding object across the scene[19]. Dense trajectory is extensively applied to a variety of tasks, e.g., action recognition[20], and abnormal event detection[21], etc. It is capable of well describing object activities, even in complex and crowded scenes. So, dense trajectories are extracted using particle advection[22]for abnormal activity detection in the proposed algorithm. In Fig.2(a), the dotted lines denote the dense trajectories belonging to one object (encircled in the tube) across the scene.

    To describe the motion of an object, the multi-scale histogram of optical flow (MHOF) is adopted as the feature descriptor[17], as shown in Fig.2(b). The noise motion is firstly filtered with extremely large amplitude. MHOF hasK=64 bins including four scales, for more precisely preserve motion direction information and motion energy information. The first scale uses the first 16 bins to denote 16 directions with motion magnitude r≤T1, the second scale uses the next 16 bins with motion magnitude T1≤r≤T2, the third scale uses the next 16 with motion magnitude T2≤r≤T3, and the fourth scale uses the final 16 with motion magnitude T3≤r.

    Fig.2 The proposedabnormal activity detection algorithm

    2.2.2 Dictionary learning

    Because the local trajectory may be abnormal, while global trajectory is normal, as shown in Fig.2(c), the video is splited into several sub-regions and extract MHOF features in each region to train dictionary[23,24]for sparsely representing each feature. Given a training set of feature pool as B=[b1,b2,…,bk]∈Rm×N, where each column vector bi∈Rmdenotes a feature vector withm-dimension andNdenotes the total number of feature vectors. To find a set of basis D (it can be initialized byk-means) and a matrix of mixing coefficients W, B can be reconstructed by the weighted sum of computed basis D well. More formally, this problem can be formulated as

    (1)

    The efficient sparse coding algorithm is utilized as in Ref.[23]. The objective function is not convex in terms of all the variables jointly. Therefore, it is unrealistic to expect an algorithm to easily find the global optimal solution. An alternating optimization method is adopted to solve it.

    2.2.3 Sparse reconstruction cost

    With the dictionary dat hand, a test sample y can be classified as normal activity or not. As mentioned above, the feature of a normal sample can be constructed by only a few number of bases in the dictionary D, while an abnormal sample cannot. So, the sparse representation problem can be formulated as

    (2)

    This can be solved by the gradient based method described in Ref.[23]. The l2,1-norm is adopted for W during dictionary learning. Here, l1-norm is adopted for w. The l2,1-norm is a general version of the l1-norm in nature. Since if w is a one dimension vector, then ‖w‖2,1=‖w‖1. After that, the optimal reconstruction weight vector w*is got, the sparsity reconstruction cost (SRC)[17]can be computed as

    (3)

    And the test sample y will be detected as an abnormal activity, if the following criterion is satisfied:

    S>ε

    (4)

    where ε is a parameter that is set by cross-validation. It determines the sensitivity of classifying abnormal activity.

    2.3 Key observation selection

    Video synopsis method[1]provides an effective way for fast browsing activities by spatial-temporal rearranging them into a greatly condensed video. In typical scenarios, the activities always consist of numerous observations, resulting in collision and degradation of subjective effect in synopsis video. In addition, adjacent observations may be very similar in action and appearance. In light of these factors, a few representative observations are used, namely key observations, to depict the original behavior of normal behavior, which can greatly eliminate the redundancy in the content domain, and promote the efficiency of video synopsis. In Ref.[11],k-means clustering method was adopted to select a pre-defined number of key actions. However, the number of key actions can not be fixed for different objects, even in the same scenario.

    Different from Ref.[25], the key observations is extracted from every object instead of input video. The observations which have significant action are selected as the key ones, according to the proposed criteria. In the proposed algorithm, the difference between the sampled activities and the original activities (representativeness) is tried, while to is used minimized as small number of observations as possible (compressibility), as shown in Fig.3 (the points denote key observations, and the dotted line denotes the sampled trajectory). However, the representativeness and the compressibility are contradictory to each other. For example, if all the observations of the trajectory are chosen as the key ones, then the represent ativeness is maximized. In contrast, if only the starting and ending observations of the trajectory are chosen as the key ones, the representativeness is minimized, but the compressibility is maximized. Take the representativeness and compressibility into consideration, a data-driven method is adopted to select key observations by transforming it into an MDL optimization problem[26]for exploring an optimal selection.

    Fig.3 An example of key observation selection

    The description length (DL) in the proposed algorithm is computed as: L(D,S) =L(D|S)+ L(S), where S is the learned key observation selection solution, and D is the input trajectory (consisted of observations). L(D|S) is the number of bits required for encoding the data with the help of the key observation selection, while L(S) stands for that to encode the selection solution. The optimal key observation selection solutionSis the one that minimizes L(D, S) (MDL), namely MDL.L(S) and L(D|S) is computed as follows:

    (5)

    L(D|S)=

    (6)

    As mentioned above, it is needed to search the optimal key observation selection scheme that minimizes the DL. However, it is an NP-hard problem. Therefore, an approximate method is adopted by choosing a local optimum. As shown in Fig.4, if DL(OkOk+3

    Fig.4 An example of the approximate algorithm

    2.4 Synopsis video generation

    Video synopsis can be seen as an energy minimization optimization problem, and the energy includes the cost of objects collision, the cost of objects time inconsistency, the cost of objects lost, and so on. Following Ref.[1], the concepts of collision Ec, time consistency cost Et, and compression rate cost Elare introduced for generating lossless synopsis video in the proposed algorithm. The synopsis of abnormal activities and normal activities are conducted respectively using the same energy function, generating two videos for fast browsing. The energy function can be formulated as follows:

    E=argmin?ME(M)

    (7)

    (8)

    Algorithm1:SelectingkeyobservationsintrajectorybasedonMDL.Input:N,thenumberofobservationsOutput:trajectoryO'consistofkeyobservationsData:{Os,Os+1,…,Oe}O'1=Os;p=2;for{k=1;k

    3 Experimental evaluation

    In order to evaluate the performance of the proposed abnormal activity detection based surveillance video synopsis method, experiments are conducted on three real world testing videos, captured by the equipment in outdoor scenes. The first dataset (D1) targets at pedestrian activity, which consists of 31,530 frames, and the representative images are shown in Fig.5(a). The second dataset (D2) targets at vehicle surveillance of street scenario, which consists of 43,685 frames, and the representative images are shown in Fig.5(b). The third dataset (D3) targets at vehicle surveillance of street scenario, which consists of 39,556 frames, and the representative images are shown in Fig.5(c). All video are resized to resolution 352×288, 15 FPS. The first 8minutes are selected for training dictionary.

    Fig.5 The representative images

    To demonstrate the benefit of key observation selection in video synopsis, the proposed synopsis method (denoted as Proposed) is compared with traditional method without abnormal activity detection and key observation selection[1](denoted as Method 1), cluster-based synopsis[2](denoted as Method 2), and another key observation selection based synopsis method without abnormal detection[27](denoted as Method 3). The detailed results are displayed in Table 1, Table 2 and Table 3, corresponding to D1, D2 and D3 respectively. From Table 1, it can be concluded that our method obtains 4.7% compression rate, while causing 3,784 energy loss. Method 1 obtains 7.4% compression rate, while causing 5,008 energy loss. Method 2 obtains 6.7% compression rate, while causing 4,445 energy loss. And Method 3 obtains 5.9% compression rate, while causing 4,281 energy loss. From Table 2, it can be concluded that the proposed method obtains 2.3% compression rate, while causing 2,841 energy loss. Method 1 obtains 7.2% compression rate, while causing 3,641 energy loss. Method 2 obtains 6.8% compression rate, while causing 3,577 energy loss. And Method 3 obtains 6.0% compression rate, while causing 3,302 energy loss. From Table 3, it can be conclude that the proposed method obtains 11.5% compression rate, while causing 5,682 energy loss. Method 1 obtains 15.3% compression rate, while causing 7,752 energy loss. Method 2 obtains 14.9% compression rate, while causing 7,172 energy loss. And Method 3 obtains 13.8% compression rate, while causing 6,465 energy loss. The energy loss are mainly caused by object collision and chronological mis-order, which can heavily degrade the quality of synopsis video. Obviously, the proposed method achieves lower energy loss, while preserving a high compression rate.

    Table 1 Detailed lost information in synopsis for Dataset 1

    Table 2 Detailed lost information in synopsis for Dataset 2

    Table 3 Detailed lost information in synopsis for Dataset 3

    4 Conclusion

    In this work, a novel video synopsis is proposed based on abnormal activity detection and key observation selection. In the proposed algorithm, the activities are classified into normal and abnormal ones based on sparse coding framework. For normal activities, key observation selection using MDL principle is conducted for eliminating content redundancy. Experimental results on publicly available datasets demonstrate the effectiveness of the proposed approach.

    [1] Pritch Y, Rav-Acha A l, Gutman A, et al. Webcam synopsis: Peeking around the world. In: Proceedings of the IEEE International Conference on Computer Vision, Janeiro, Brazil, 2007. 1-8

    [2] Pritch Y, Ratovitch S, Hendel A, et al. Clustered synopsis of surveillance video. In: Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, Genova, Italy, 2009. 195-200

    [3] Hanjalic A, Zhang H, Vecchi M P. An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis.IEEETransactionsonCircuitsandSystemsforVideoTechnology, 1999,9(8):1280-1289

    [4] Smith M A, Kanade T. Video skimming and characterization through the combination of image and language under standing. In: Proceedings of the Content-BasedAccess of Image and Video Databases, Bombay, India, 1998. 61-70

    [5] Li Y, Lee S, Yeh C, et al. Techniques for movie content analysis and skimming tutorial and overview on video abstraction techniques.IEEESignalProcessingMagazine, 2006, 23(2):79-89

    [6] Huang C, Chung P, Yang D H, et al. Maximum a posteriori probability estimation for online surveillance video synopsis.IEEETransactionsonCircuitsandSystemsforVideoTechnology, 2014, 24(8): 1417-1429

    [7] Zhang X Y, Wang S. Bidirectional active learning, a two-way exploration into unlabeled and labeled dataset.IEEETransactionsonNeuralNetworksandLearningSystems, 2015, 28(12):3034-3044

    [8] Zhang X Y. Interactive patent classification based on multi-classifierfusion and active learning.Neurocomputing, 2014, 127(1): 200-205

    [9] Feng S, Lei Z, Yi D, et al. Online content-aware video condensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012. 2082-2087

    [10] Rodriguez M. Cram:Compact representation of actions in movies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010. 3328-3335

    [11] Tian Z, Xue J, Lan X, et al. Key object-based static video summarization. In: Proceedings of the ACM Multimedia, Arizona, USA, 2011. 1301-1304

    [12] Taj M, Maggio E, Cavallaro A. Multi-feature graph-based object tracking. In: Proceedings of the 1st International Evaluation Conference on Classification of Events, Activities and Relationships, Southampton, England, 2006.190-199

    [13] Su S J, Nian X H,Pan H. Trajectory tracking and formation control based on consensus in high-dimensional multi-agent systems.HighTechnologyLetters, 2012, 18(3): 326-332

    [14] Hu Z T, Fu C L. A novel multi-sensor multiple model particle filter with correlated noises for maneuvering target tracking.HighTechnologyLetters, 2014, 20(4): 355-362

    [15] Arulampalam S, Maskell S, Gordon N, et al. A tutorial on particlefilters for on line non-linear/non-gaussianbayesian tracking.IEEETransactionsonSignalProcessing, 2002, 50(2):174-188

    [16] McKenna S, Jabri S, Duric Z, et al. Trackinggroups of people.ComputerVisionandImageUnderstanding, 2000, 80(1):42-56

    [17] Cong Y, Yuan J, Liu J. Sparse reconstruction cost for abnormal event detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011. 3449-3456

    [18] Hu W, Xiao X, Fu Z, et al. A system forlearning statistical motion pattern.IEEETransactionsonPatternAnalysisandMachineIntelligence(TPAMI), 2006, 28(9): 1450-1464

    [19] Meng F F, Qu Z S, Zeng Q S, et al. Video objects behavior analyzing based on motion history image.HighTechnologyLetters, 2009, 15(3): 319-324

    [20] Wang H, Klaser A, Schmid C, et al. Action recognition by dense trajectories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011. 3169-3176

    [21] Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 935-942

    [22] Sand P, Teller S. Particle video: Long-range motion estimation usingpoint trajectories.InternationalJournalofComputerVision, 2008, 80(1): 72-91

    [23] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. In: Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 2007. 3169-3176

    [24] Zhang C J, Liu J, Tian Q C, et al. Image classification bynon-negative sparse coding, low-rank and sparse decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011. 1673-1680

    [25] Kim C, Wang J. An integrated scheme for object-based video abstraction. In: Proceedings of the ACM Multimedia, Los Angeles, USA, 2000. 303-311

    [26] Lee J, Han J. Trajectory clustering: A partitionandgroup framework. In: Proceedings of the ACM Special Interest Group on Management of Data, Beijing, China, 2007. 593-604

    [27] Zhu X, Liu J, Wang J, et al. Key observation selection-based effective video synopsis for camera network.MultimediaVisionandApplication, 2013, 25(1):145-157

    Zhu Xiaobin, born in 1982. He received his Ph.D in 2013 from Institute of Automation, Chinese Academy of Sciences. His research interests include machine learning,pattern recognition, video and image analysis, etc.

    10.3772/j.issn.1006-6748.2016.02.011

    ①Supported by the National Natural Science Foundation of China (No. 61402023), Beijing Technology and Business University Youth Fund (No. QNJJ2014-23) and Beijing Natural Science Foundation (No. 4162019).

    ②To whom correspondence should be addressed. E-mail: buddysoft@sina.comReceived on Oct. 29, 2015

    久久精品熟女亚洲av麻豆精品| 婷婷色麻豆天堂久久| 少妇丰满av| 日韩成人伦理影院| 国产男女内射视频| 69精品国产乱码久久久| 亚洲电影在线观看av| 国产白丝娇喘喷水9色精品| 精品视频人人做人人爽| 成年av动漫网址| 在线观看国产h片| 国产欧美日韩综合在线一区二区 | 免费黄网站久久成人精品| 在线观看三级黄色| 高清黄色对白视频在线免费看 | 26uuu在线亚洲综合色| 女性生殖器流出的白浆| 男女无遮挡免费网站观看| 曰老女人黄片| 久久久精品94久久精品| 久久99精品国语久久久| 精品酒店卫生间| 国产乱人偷精品视频| 插阴视频在线观看视频| 搡老乐熟女国产| 七月丁香在线播放| 最新的欧美精品一区二区| 国产成人精品福利久久| 日韩电影二区| 三上悠亚av全集在线观看 | 日韩在线高清观看一区二区三区| 亚洲国产成人一精品久久久| 亚洲婷婷狠狠爱综合网| 自拍欧美九色日韩亚洲蝌蚪91 | 啦啦啦中文免费视频观看日本| 一级片'在线观看视频| 观看av在线不卡| 熟女电影av网| 在线精品无人区一区二区三| 在线观看人妻少妇| 麻豆精品久久久久久蜜桃| 亚洲国产精品一区三区| 国产精品国产三级国产av玫瑰| 成年美女黄网站色视频大全免费 | 人妻 亚洲 视频| 亚洲国产精品999| 亚洲性久久影院| 欧美xxxx性猛交bbbb| 青青草视频在线视频观看| 91aial.com中文字幕在线观看| 久久久久久久久久久免费av| 国产亚洲av片在线观看秒播厂| 久久人人爽人人片av| 色哟哟·www| 哪个播放器可以免费观看大片| 不卡视频在线观看欧美| 国产精品一区www在线观看| 成人18禁高潮啪啪吃奶动态图 | 人体艺术视频欧美日本| 国产在线一区二区三区精| 18禁动态无遮挡网站| 国产精品嫩草影院av在线观看| 国产视频首页在线观看| 久久国产精品大桥未久av | 天天操日日干夜夜撸| 久久毛片免费看一区二区三区| 日韩一区二区三区影片| 王馨瑶露胸无遮挡在线观看| 欧美日韩视频高清一区二区三区二| 久久6这里有精品| 亚洲国产欧美在线一区| 国产av码专区亚洲av| 亚洲图色成人| 亚洲欧美中文字幕日韩二区| 自拍欧美九色日韩亚洲蝌蚪91 | 日本欧美国产在线视频| 欧美精品国产亚洲| 色婷婷av一区二区三区视频| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 国产精品嫩草影院av在线观看| 七月丁香在线播放| 中文天堂在线官网| 久久亚洲国产成人精品v| 丝袜在线中文字幕| 欧美3d第一页| 国产精品99久久99久久久不卡 | 新久久久久国产一级毛片| 日本黄色片子视频| 一本一本综合久久| 六月丁香七月| 菩萨蛮人人尽说江南好唐韦庄| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久成人| 插阴视频在线观看视频| 看非洲黑人一级黄片| 欧美日本中文国产一区发布| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 日韩在线高清观看一区二区三区| 美女内射精品一级片tv| 在线观看av片永久免费下载| 亚洲国产精品一区二区三区在线| 欧美精品人与动牲交sv欧美| 日本免费在线观看一区| 久久久久精品性色| 精品久久国产蜜桃| 日本wwww免费看| 久久国产精品大桥未久av | av免费在线看不卡| 亚洲精品日韩av片在线观看| 美女大奶头黄色视频| 九草在线视频观看| 欧美一级a爱片免费观看看| 超碰97精品在线观看| 亚洲综合精品二区| 十分钟在线观看高清视频www | 王馨瑶露胸无遮挡在线观看| 建设人人有责人人尽责人人享有的| 另类精品久久| 国产在线一区二区三区精| 久热这里只有精品99| 亚洲av成人精品一区久久| 亚洲人成网站在线播| 久久精品久久久久久久性| 中文精品一卡2卡3卡4更新| 大话2 男鬼变身卡| 国产伦理片在线播放av一区| 熟妇人妻不卡中文字幕| 18禁动态无遮挡网站| 色婷婷久久久亚洲欧美| 久久精品国产亚洲网站| 狂野欧美白嫩少妇大欣赏| 最后的刺客免费高清国语| 91精品伊人久久大香线蕉| 亚州av有码| 国产一区二区三区av在线| 色94色欧美一区二区| 99国产精品免费福利视频| 国产又色又爽无遮挡免| 国产91av在线免费观看| 丰满少妇做爰视频| 爱豆传媒免费全集在线观看| 国产精品嫩草影院av在线观看| 一本色道久久久久久精品综合| 日韩大片免费观看网站| 国产亚洲最大av| 美女国产视频在线观看| av在线观看视频网站免费| 美女大奶头黄色视频| 国产女主播在线喷水免费视频网站| 99精国产麻豆久久婷婷| 免费av不卡在线播放| 黄色配什么色好看| 在线播放无遮挡| 久久精品熟女亚洲av麻豆精品| 黄色欧美视频在线观看| 啦啦啦啦在线视频资源| 亚洲四区av| 精品卡一卡二卡四卡免费| 午夜免费鲁丝| 在线观看国产h片| 午夜久久久在线观看| 男女边吃奶边做爰视频| 国产熟女午夜一区二区三区 | tube8黄色片| 久久久久久久国产电影| av天堂久久9| 国产精品不卡视频一区二区| av在线app专区| 欧美97在线视频| 欧美97在线视频| 大又大粗又爽又黄少妇毛片口| 国产精品蜜桃在线观看| 在线 av 中文字幕| 亚洲国产最新在线播放| 久久久久久久精品精品| 日韩成人av中文字幕在线观看| 亚洲av.av天堂| 99久久中文字幕三级久久日本| av在线观看视频网站免费| 国产极品天堂在线| 国产av码专区亚洲av| 久久狼人影院| 国产在线男女| 国产在线视频一区二区| 黄色配什么色好看| 99精国产麻豆久久婷婷| 黄色日韩在线| 亚洲国产精品一区二区三区在线| 熟女电影av网| 成人免费观看视频高清| 五月开心婷婷网| 精品人妻熟女毛片av久久网站| 国产白丝娇喘喷水9色精品| 我的老师免费观看完整版| 美女大奶头黄色视频| 最黄视频免费看| 大片电影免费在线观看免费| 亚洲情色 制服丝袜| 一本久久精品| 成人漫画全彩无遮挡| 99热网站在线观看| 日本wwww免费看| 视频区图区小说| 日日撸夜夜添| 最新中文字幕久久久久| 亚洲国产精品专区欧美| 国产精品偷伦视频观看了| 欧美精品一区二区免费开放| 国产一区二区在线观看日韩| 日韩中字成人| 亚洲情色 制服丝袜| 日韩欧美精品免费久久| 国产一级毛片在线| videossex国产| 校园人妻丝袜中文字幕| 免费久久久久久久精品成人欧美视频 | 日日爽夜夜爽网站| 国产高清有码在线观看视频| 国模一区二区三区四区视频| 成人无遮挡网站| av女优亚洲男人天堂| 国产精品99久久99久久久不卡 | 高清午夜精品一区二区三区| 国产精品一区二区在线观看99| 熟女电影av网| 日本黄大片高清| 免费播放大片免费观看视频在线观看| 交换朋友夫妻互换小说| 最新的欧美精品一区二区| 国产亚洲5aaaaa淫片| 亚洲欧美精品自产自拍| 中文字幕人妻丝袜制服| 亚洲av国产av综合av卡| 久久久久精品久久久久真实原创| 蜜臀久久99精品久久宅男| 久久久久久久久久久久大奶| 国产一区二区在线观看日韩| 观看美女的网站| 美女福利国产在线| 熟女人妻精品中文字幕| 男人狂女人下面高潮的视频| 日本91视频免费播放| 久久精品国产亚洲av涩爱| 少妇的逼水好多| 不卡视频在线观看欧美| 亚洲国产精品国产精品| 最后的刺客免费高清国语| 综合色丁香网| 2018国产大陆天天弄谢| 国产视频首页在线观看| 久久人人爽av亚洲精品天堂| 能在线免费看毛片的网站| 久久午夜福利片| 日本黄色片子视频| 国产色婷婷99| 国产男女超爽视频在线观看| 国产永久视频网站| 搡女人真爽免费视频火全软件| 2022亚洲国产成人精品| av在线观看视频网站免费| 少妇人妻 视频| 精品国产一区二区三区久久久樱花| 免费观看在线日韩| 成人免费观看视频高清| av.在线天堂| av天堂中文字幕网| 亚洲电影在线观看av| 日韩av在线免费看完整版不卡| 久久久久久久久久久久大奶| 精品久久久久久久久亚洲| 免费久久久久久久精品成人欧美视频 | 精品熟女少妇av免费看| 人人妻人人爽人人添夜夜欢视频 | 亚洲怡红院男人天堂| 久久99蜜桃精品久久| 国产成人精品无人区| 一区二区三区精品91| 亚洲综合色惰| 久久午夜综合久久蜜桃| 夜夜骑夜夜射夜夜干| 久久精品久久久久久久性| 国产精品久久久久久久久免| 国产视频内射| 美女视频免费永久观看网站| 国产精品国产av在线观看| 一级毛片黄色毛片免费观看视频| 日本色播在线视频| 69精品国产乱码久久久| 成人国产av品久久久| 国产亚洲欧美精品永久| 国产精品久久久久久av不卡| 亚洲va在线va天堂va国产| 亚洲婷婷狠狠爱综合网| 99久久精品国产国产毛片| 少妇 在线观看| 精品亚洲乱码少妇综合久久| 免费av不卡在线播放| 久久久久视频综合| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 免费看光身美女| 中文天堂在线官网| 男女啪啪激烈高潮av片| 少妇人妻一区二区三区视频| 色哟哟·www| 大片免费播放器 马上看| 久久久久久久国产电影| 麻豆成人av视频| 亚洲国产最新在线播放| 人妻人人澡人人爽人人| 国产精品久久久久久精品古装| 成人午夜精彩视频在线观看| 午夜免费观看性视频| 国产一区二区三区综合在线观看 | 精品久久久精品久久久| 一级爰片在线观看| av专区在线播放| av天堂中文字幕网| 欧美精品一区二区免费开放| 人人妻人人澡人人看| 人妻一区二区av| 午夜福利网站1000一区二区三区| 国产精品成人在线| 免费av中文字幕在线| 日韩亚洲欧美综合| 国产91av在线免费观看| 人妻 亚洲 视频| av在线观看视频网站免费| 在线观看美女被高潮喷水网站| 91久久精品国产一区二区成人| 在线观看www视频免费| 午夜视频国产福利| 高清黄色对白视频在线免费看 | 国产精品99久久99久久久不卡 | 亚洲美女视频黄频| 美女xxoo啪啪120秒动态图| 天堂8中文在线网| 乱系列少妇在线播放| 久久精品夜色国产| 中文字幕亚洲精品专区| 99热这里只有是精品50| 国产av码专区亚洲av| 2022亚洲国产成人精品| 亚洲美女视频黄频| 一区二区三区四区激情视频| 国内精品宾馆在线| 51国产日韩欧美| 在线观看免费视频网站a站| 男女免费视频国产| 各种免费的搞黄视频| 美女内射精品一级片tv| 欧美精品亚洲一区二区| 免费人成在线观看视频色| 国产成人精品无人区| 中文欧美无线码| 日本午夜av视频| 精品久久久久久久久av| 国产淫片久久久久久久久| 天堂俺去俺来也www色官网| 午夜视频国产福利| 国产成人精品久久久久久| 蜜臀久久99精品久久宅男| 国内揄拍国产精品人妻在线| 久久97久久精品| 久久久久久久国产电影| 男人添女人高潮全过程视频| 久久99一区二区三区| 青青草视频在线视频观看| 亚洲欧美一区二区三区国产| 香蕉精品网在线| 日日摸夜夜添夜夜添av毛片| 看免费成人av毛片| 永久网站在线| 国产精品人妻久久久影院| 国产在视频线精品| tube8黄色片| 亚洲精品视频女| 人人澡人人妻人| 亚洲图色成人| 女人久久www免费人成看片| 精品一区二区免费观看| 国内精品宾馆在线| 亚洲第一av免费看| 欧美亚洲 丝袜 人妻 在线| 美女脱内裤让男人舔精品视频| 免费看日本二区| av福利片在线观看| 免费不卡的大黄色大毛片视频在线观看| 一本大道久久a久久精品| h视频一区二区三区| 美女主播在线视频| 毛片一级片免费看久久久久| 韩国av在线不卡| a级毛片免费高清观看在线播放| 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 99热国产这里只有精品6| 欧美日韩精品成人综合77777| 国产精品福利在线免费观看| 亚洲av.av天堂| 高清不卡的av网站| 国产亚洲一区二区精品| 久久久久久人妻| 久久毛片免费看一区二区三区| 免费看光身美女| 高清黄色对白视频在线免费看 | 我的老师免费观看完整版| 成人国产av品久久久| 亚洲国产精品专区欧美| 97超视频在线观看视频| 大片免费播放器 马上看| 国产精品蜜桃在线观看| 纯流量卡能插随身wifi吗| 成人午夜精彩视频在线观看| 亚洲av国产av综合av卡| 国产一区亚洲一区在线观看| 免费大片18禁| 乱系列少妇在线播放| 国产 精品1| 国产亚洲av片在线观看秒播厂| 久久亚洲国产成人精品v| 亚洲久久久国产精品| 日本黄大片高清| 国产一区亚洲一区在线观看| 一级a做视频免费观看| 精品国产国语对白av| 在线观看www视频免费| a级片在线免费高清观看视频| 国产免费一级a男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产自在天天线| 久久精品久久精品一区二区三区| 建设人人有责人人尽责人人享有的| av专区在线播放| 天堂中文最新版在线下载| 亚洲精品色激情综合| 国产乱来视频区| 91精品国产九色| 伦精品一区二区三区| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 黄色视频在线播放观看不卡| 亚洲天堂av无毛| 国产欧美日韩精品一区二区| 国产在线免费精品| 婷婷色综合大香蕉| 国产综合精华液| 中文字幕制服av| 内地一区二区视频在线| 三级经典国产精品| 免费观看a级毛片全部| 一级a做视频免费观看| 丝袜脚勾引网站| 亚洲国产精品一区三区| 亚洲综合精品二区| 婷婷色综合www| 高清在线视频一区二区三区| 午夜视频国产福利| 波野结衣二区三区在线| 天堂8中文在线网| 亚洲国产色片| 青春草视频在线免费观看| 自拍偷自拍亚洲精品老妇| 91在线精品国自产拍蜜月| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲| 少妇裸体淫交视频免费看高清| 狠狠精品人妻久久久久久综合| 国产一区二区三区av在线| 国产国拍精品亚洲av在线观看| a级毛色黄片| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 国产亚洲午夜精品一区二区久久| 国产淫片久久久久久久久| 如何舔出高潮| 免费av不卡在线播放| 人人澡人人妻人| 丝瓜视频免费看黄片| 中文天堂在线官网| 多毛熟女@视频| 99久久人妻综合| 免费大片黄手机在线观看| 久久久久久伊人网av| 亚洲一级一片aⅴ在线观看| 日韩三级伦理在线观看| 91久久精品国产一区二区成人| 亚洲精品国产av蜜桃| .国产精品久久| 午夜久久久在线观看| 另类精品久久| 91精品一卡2卡3卡4卡| 在线看a的网站| 亚洲国产最新在线播放| 三上悠亚av全集在线观看 | 久久精品久久久久久噜噜老黄| 99九九在线精品视频 | 国产免费福利视频在线观看| 午夜av观看不卡| 少妇猛男粗大的猛烈进出视频| 亚洲欧美成人精品一区二区| 久久热精品热| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 人人妻人人看人人澡| 菩萨蛮人人尽说江南好唐韦庄| 成人二区视频| 亚洲久久久国产精品| 亚洲精品国产成人久久av| 又爽又黄a免费视频| 亚洲精品国产成人久久av| 亚洲美女搞黄在线观看| freevideosex欧美| 亚洲av在线观看美女高潮| 久久精品国产自在天天线| 丰满饥渴人妻一区二区三| 亚洲国产av新网站| 在线亚洲精品国产二区图片欧美 | 久热这里只有精品99| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 日本wwww免费看| 晚上一个人看的免费电影| 少妇被粗大的猛进出69影院 | 一区二区av电影网| 蜜桃久久精品国产亚洲av| √禁漫天堂资源中文www| 亚洲三级黄色毛片| 少妇被粗大猛烈的视频| 国产淫语在线视频| 街头女战士在线观看网站| 久久精品夜色国产| 亚洲精品自拍成人| 丰满少妇做爰视频| av有码第一页| 六月丁香七月| 国产在线视频一区二区| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 在线观看国产h片| 在线天堂最新版资源| 欧美日韩国产mv在线观看视频| 国产极品天堂在线| 热99国产精品久久久久久7| 只有这里有精品99| 成人无遮挡网站| 久久久久久久久久人人人人人人| 麻豆乱淫一区二区| 免费观看av网站的网址| av国产久精品久网站免费入址| 久久人妻熟女aⅴ| 一本大道久久a久久精品| 午夜av观看不卡| 香蕉精品网在线| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av蜜桃| 最新中文字幕久久久久| 久久毛片免费看一区二区三区| 中国国产av一级| 十八禁网站网址无遮挡 | 久久久欧美国产精品| 国产亚洲欧美精品永久| 黄色欧美视频在线观看| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 亚洲怡红院男人天堂| 能在线免费看毛片的网站| 亚洲经典国产精华液单| 欧美另类一区| 免费人成在线观看视频色| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久人人人人人人| 国产69精品久久久久777片| 精华霜和精华液先用哪个| 人妻 亚洲 视频| 亚洲国产精品一区三区| 三级国产精品欧美在线观看| 亚洲四区av| h日本视频在线播放| 99热这里只有是精品在线观看| 午夜福利在线观看免费完整高清在| 水蜜桃什么品种好| 免费观看av网站的网址| 老司机亚洲免费影院| 人人妻人人澡人人看| 一个人免费看片子| 日日爽夜夜爽网站| 欧美最新免费一区二区三区| 在线观看免费高清a一片| 人体艺术视频欧美日本| 国产精品熟女久久久久浪| 日韩熟女老妇一区二区性免费视频| 人妻人人澡人人爽人人| 如日韩欧美国产精品一区二区三区 | a级毛片在线看网站| 精品亚洲乱码少妇综合久久| 成人国产av品久久久| 三级国产精品欧美在线观看| 亚洲色图综合在线观看| av天堂中文字幕网| 国产成人免费无遮挡视频| 国产成人精品久久久久久| 日韩 亚洲 欧美在线| 男人舔奶头视频| 精品人妻一区二区三区麻豆| 深夜a级毛片| 亚洲成人一二三区av| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 国产黄片视频在线免费观看|