• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed cubature Kalman filter based on observation bootstrap sampling①

    2016-12-05 01:31:02HuZhentao胡振濤HuYumeiZhengShanshanLiXianGuoZhen
    High Technology Letters 2016年2期

    Hu Zhentao (胡振濤), Hu Yumei, Zheng Shanshan, Li Xian, Guo Zhen

    (Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)

    ?

    Distributed cubature Kalman filter based on observation bootstrap sampling①

    Hu Zhentao (胡振濤), Hu Yumei②, Zheng Shanshan, Li Xian, Guo Zhen

    (Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)

    Aiming at the adverse effect caused by observation noise on system state estimation precision, a novel distributed cubature Kalman filter (CKF) based on observation bootstrap sampling is proposed. Firstly, combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling, an observation bootstrap sampling strategy is designed. The objective is to deal with the adverse influence of observation uncertainty by increasing observations information. Secondly, the strategy is dynamically introduced into the cubature Kalman filter, and the distributed fusion framework of filtering realization is constructed. Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system. Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness.

    state estimation, cubature Kalman filter (CKF), observation bootstrap sampling, distributed weighted fusion

    0 Introduction

    The state estimation problems of a nonlinear system widely exist in the field of signal processing, integrated navigation, target location and tracking, etc[1]. The implementation principle for existing state estimator is, under the framework of recursive Bayesian estimation, to take the advantage of all observation information to construct a state posterior probability distribution function, and then to obtain state optimal estimation according to the minimum variance criterion. While Kalman filter (KF)[2]is the typical implementation for linear Gaussian system. However, with regard to nonlinear features of estimated system, the optimal solution usually cannot be resolved. Therefore, a large number of suboptimal approximation algorithms are proposed such as the extended Kalman filter (EKF)[3,4], of which realization mechanism is to realize the local linearization of state equation and observation equation. It only calculates the posterior mean and covariance accurately to the first order with all higher order moments truncated. If the estimated system nonlinearities are very strong, EKF usually can not obtain good filtering result and even lead to filtering divergence phenomenon[5].

    Considering that the probability density distribution is easier to be approximated than nonlinear function[6], the application of sampling method for approximating posterior probability distribution to solve the state estimation problem of nonlinear system is increasingly attracting widely attention. The sampling method is mainly divided into two categories: stochastic sampling and deterministic sampling. The stochastic sampling nonlinear filter, namely particle filter (PF)[7,8], is a kind of Monte Carlo method. In the filtering process, a set of stochastic points with weight, sampled from the state space, are adopted to approximate state probability density function. As a result, the optimal estimation is approximated highly, and it needs not to be subject to the constraints of linear and Gaussian assumption. However, a large number of particles are needed to ensure the filtering precision and convergence, the calculation of stochastic sampling nonlinear filter is heavier than deterministic sampling filter. Moreover, the stochastic sampling mechanism often leads particles to degeneracy after a few iterations. The adverse effect caused by particle degeneracy is mitigated in a certain degree through re-sampling, but the re-sampling process results in the reduction of particles diversity. The typical implementation of deterministic sampling filter mainly includes unscented Kalman filter(UKF)[9,10]and cubature Kalman filter (CKF)[11,12]. UKF approaches nonlinear state posterior distribution by UT transformation strategy, and it has higher universality for nonlinear system with Gaussian noise. But whether the selection parameter is reasonable or not in UKF, it affects the estimation precision of system state directly. In addition, the problem that filtering variance is not positive definite may occur. In essence, a third-degree spherical-radial cubature rule to compute integrals numerically is derived in CKF. Nonlinear state posterior distribution is approximated through a set of points with deterministic space position distribution and weight. In the process of sampling and filtering, the weight in CKF is positive, so as to ensure that the filtering covariance is positive definite matrix.

    The distributed weighted optimal fusion technology is one of the effective methods to improve state estimation precision. Through the synergy between sensors to extend the measuring range, improving the information redundancy and credibility, and then the objective of improving state estimation precision is achieved. The fusion structure includes the centralized, distributed and hybrid while the distributed structure with fault-tolerant is the popular method used in implementation. In addition, achieving multi-source information will inevitably lead to the increase of the burden of hardware resource (especially sensor). Aiming at improving filtering precision without increasing hardware cost, realization of the distributed filter for nonlinear system state estimation has always been focused by experts and scholars in related field. To solve the above problem, an observation bootstrap strategy has been designed through combining the latest observation with the prior statistical information from observation noise modeling. On this basis, the bootstrap observation set is built and then applied to CKF filtering framework. Combined with distributed weighted optimal fusion technology[14,15], a novel distributed cubature Kalman filter based on observation bootstrap sampling (DCKF-OBS) is proposed. Its advantage is to improve state estimation precision without increasing hardware cost (the number of sensor and accuracy), through reducing the uncertainty of latest observation information.

    1 Observation bootstrap strategy

    Considering the general nonlinear discrete-time dynamical system, the system equation and observation equation are given as follows:

    xk=f(xk-1)+wk-1

    (1)

    zk=hk(xk)+vk

    (2)

    Aiming at reducing the adverse effect caused by the uncertainty and unicity of single sensor observation, the bootstrap sampling points of sensor observation are obtained through improving the degree of freedom according to the observation bootstrap strategy:

    (3)

    (4)

    (5)

    2 Cubature Kalman filter

    The optimal solution to solve nonlinear filtering problem needs to get a complete description of conditional probability density function. In CKF implementation, a third-degree spherical-radial cubature rule is extended to compute a standard Gaussian weighted integral of f(x) as follows. As a result, conditional posterior probability is obtained[13]:

    (6)

    Step A Time update step

    1) Evaluate cubature points

    Pk|k=Sk|k(Sk|k)Τ

    (7)

    (8)

    (9)

    (10)

    (11)

    Step B Observation update step

    1) Evaluate cubature points

    Pk+1|k=Sk+1|k×(Sk+1|k)Τ

    (12)

    (13)

    (14)

    (15)

    (16)

    (17)

    4) Evaluate the filtering gain Kk+1at time k+1

    (18)

    (19)

    (20)

    In essence, the nonlinear state posterior distribution is approximated through a set of points with deterministic space position distribution and weight in CKF. In the process of sampling and filtering, weight in CKF is positive all the time, which ensures that the estimate covariance is positive definiteness. In addition, in the aspect of real-time, because of deterministic sampling and less samples, CKF is superior to PF. In the aspect of precision, the numerical integral based on third-degree spherical-radial cubature rule is adopted in CKF, to approximate Gaussian weighted integral. Its approximation precision of probability distribution after nonlinear transformation is superior to UKF adopted unscented transformation[13].

    3 Distributed cubature Kalman filter based on observation bootstrap sampling

    In the distributed state fusion structure, each sensor observation is assigned to one estimator independently, namely taking use of the observation of each sensor to filter, then the local estimation is delivered to the center node for fusion. The global state estimate and its covariance are given as

    (21)

    (22)

    (23)

    1.Initializestateestimationanditserrorcovariance^xi0|0=x0andPi0|0=P0.2.GeneratethebootstrapobservationsetZk+1accordingtoEq.(3).3.Calculatethelocalestimation^xik+1|k+1anditserrorcovariancePiik+1|k+1,accordingtophysicalobservationzk+1,bootstrapobservationsetZk+1andEq.(7)toEq.(20).Notethatthebootstrapobservationerrorco-varianceisgivenasPzzk+1|k=∑Li=1Zjk+1|k(Zjk+1|k)Τ/L-^zk+1|k(^zk+1|k)Τ +σ2vk+1+λσ2vik+1.4.Solvetheglobalestimation^xgk+1|k+1ac-cordingtoEq.(21)toEq.(23).5.Let^xk+1|k+1=^xgk+1|k+1andPk+1|k+1=Pgk+1|k+1,sothecurrentstateestimationisobtained.6.IncreasekandcontinuetoStep2.

    4 Simulation result and analysis

    To verify the validity of DCKF-OBS, the Monte Carlo simulations of target tracking are presented in the Cartesian coordinate system. It adopts the typical uniform motion model and nonlinear observation model, and the number of Monte Carlo is 200. The root mean square error(RMSE) is used to evaluate the property of the algorithm in filtering precision. In this simulation environment, motion state equation and observation equation are given as

    xk=Fk|k-1xk-1+Γk-1wk-1

    Fig.1 Horizontal direction

    Fig.2 Vertical direction

    The quantitative comparison of mean state estimation RMSEs of the three algorithms are given in Table 1. The number of bootstrap observation is 30, and it is known clearly that the RMSE value of DCKF-OBS is the lowest. Fig.1, Fig.2 and Table 1 all indicate that the mean value of the RMSEs of DCKF-OBS is the lowest. The filtering precision of CKF is higher than UKF, and the DCKF-OBS is superior to the others. The analysis is elaborated in Section 2 and Section 3.

    Table 1 The RMSEs comparison when the number of bootstrap observation is 30

    The comparison of the mean value of state estimation RMSEs is given in Fig.3 and Fig.4 in the condition of different number of bootstrap observation. As shown in the figures, with the number of bootstrap observation increasing, the mean value of state estimation RMSEs decreases. At the stage of bootstrap observation number from 5 to 35, the mean value of RMSEs decreases sharply, and state estimation precision increases obviously. At the stage of bootstrap observation number from 35 to 50, the mean value of RMSEs is flat. Namely the effect on enhancing state estimation precision through increasing the number of bootstrap observation is slight. Moreover, with the increasing number of bootstrap observation, the hardware undertakes a larger amount of calculation. Therefore, performance indexes such as precision, real-time and calculation should be considered in practice. So as to select the appropriate number of bootstrap observation involved in filtering, and as a result, the superior precision of system state estimation is achieved. The RMSEs quantitative comparison of DCKF-OBS is given in Table 2 with different number of bootstrap observation.

    Fig.3 Horizontal direction

    Fig.4 Vertical direction

    Table 2 The RMSEs comparison of DCKF-OBS with different number of bootstrap observation

    5 Conclusions

    The estimation of nonlinear system is a widely considered field in engineering application, while the filter algorithm and the sensor accuracy are two dominant factors influencing the state estimation precision. Considering the two factors above, a novel distributed cubature Kalman filtering algorithm based on observation bootstrap sampling is proposed under the condition of single sensor observation system. In this algorithm, firstly, on the basis of physical observation, the bootstrap observation set of system state is obtained though bootstrap strategy. Secondly, the physical observation and bootstrap observation respectively participate in cubature Kalman filtering process, so that the local state estimation is achieved. And then global state estimation is achieved through adopting the information fusion theory to fuse local state estimations. The simulation experiments indicate that the DCKF-OBS is superior to CKF by comparing the state estimation RMSE. Furthermore, the state estimation precision is improved continually, along with the increase of the number of bootstrap observation. While the number is greater than 15, the state estimation precision increases slightly. The algorithm applies to nonlinear non-Gauss state estimation problem with single sensor observation system.

    [1] Xu S , Su X X, Liu S G. Dimension-wise adaptive spare grid quadrature nonlinear filter.ActaAutomaticaSinica, 2014, 40(6): 1249-1264

    [2] Nikoukhah R, Campbell S L, Delebecque F. Kalman filtering for general discrete-time linear systems.IEEETransactionsonAutomaticControl, 1999, 44(10):1829-1839

    [3] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters.IEEETransactionsonSignalProcessing, 2012, 60(2): 545-555

    [4] Huang S, Dissanayake G. Convergence and consistency analysis for extended Kalman filter based SLAM.IEEETransactionsonRobotics, 2007, 23(5): 1036-1049

    [5] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation.ProceedingsoftheIEEE, 2004, 92(3): 401-422

    [6] Wang X, Liang Y, Pan Q, et al. Nonlinear Gaussian smoothers with colored measurement noise.IEEETransactionsonAutomaticControl, 2015, 60(3): 870-876

    [7] Hu Z T, Liu X X, Hu Y M. Particle filter based on the lifting scheme of observations.IETRadar,Sonar&Navigation, 2014, 9(1): 48-54

    [8] Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo.ProceedingsoftheIEEE, 2007, 95(5): 899-924

    [9] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters.IEEETransactionsonSignalProcessing, 2012, 60(2): 545- 555

    [10] Chang L B, Hu B Q, Li A , et al. Transformed unscented Kalman filter.IEEETransactionsonAutomaticControl, 2013 ,58(1): 252-257

    [11] Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations.IEEETransactionsonSignalProcessing, 2010, 58(10): 4977-4993

    [12] Ding Z, Balaji B. Comparison of the unscented and cubature Kalman filters for radar tracking applications. In: Proceedings of the IET International Conference on Radar Systems, Glasgow, UK, 2012. 1-5

    [13] Arasaratnam I, Haykin S. Cubature Kalman filters.IEEETransactionsonAutomaticControl, 2009, 54(6): 1254-1269

    [14] Han C Z, Zhu H Y, Duan Z S. Multi-source Information Fusion. Beijing: Tsinghua University Press, 2010. 43-49 (In Chinese)

    [15] Bar-Shalom Y, Willett P K, Tian X. Tracking and Data Fusion: A Handbook of Algorithms. Storrs: YBS Publishing, 2011

    Hu Zhentao, born in 1979. He received his Ph.D degree in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of College of Computer and Information Engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    10.3772/j.issn.1006-6748.2016.02.005

    ①Supported by the National Natural Science Foundation of China (No.61300214), the Science and Technology Innovation Team Support Plan of Education Department of Henan Province (13IRTSTHN021), the Post-doctoral Science Foundation of China (No.2014M551999), and the Funding Scheme of Young Key Teacher of Henan Province Universities (No.2013GGJS-026).

    ②To whom correspondence should be addressed. E-mail: hym_henu@163.comReceived on Apr. 1, 2015

    伊人久久精品亚洲午夜| 特级一级黄色大片| 亚洲av不卡在线观看| 春色校园在线视频观看| 超碰av人人做人人爽久久| 午夜福利欧美成人| av中文乱码字幕在线| 在线a可以看的网站| 亚洲在线观看片| 国产精品久久久久久久久免| 99久久精品国产国产毛片| 观看美女的网站| 日日撸夜夜添| 亚洲真实伦在线观看| 亚洲中文字幕一区二区三区有码在线看| 日韩在线高清观看一区二区三区 | 最近最新免费中文字幕在线| 亚洲一级一片aⅴ在线观看| 久久热精品热| 一个人看视频在线观看www免费| 观看免费一级毛片| 亚洲 国产 在线| 99热这里只有是精品50| 国产69精品久久久久777片| 国产精华一区二区三区| 免费观看人在逋| 国产av不卡久久| 久久精品国产清高在天天线| 亚洲真实伦在线观看| 免费在线观看影片大全网站| 两性午夜刺激爽爽歪歪视频在线观看| 天堂网av新在线| 亚洲av不卡在线观看| 久久午夜亚洲精品久久| 男女之事视频高清在线观看| 亚洲精品粉嫩美女一区| 国产91精品成人一区二区三区| 美女大奶头视频| 午夜福利高清视频| 欧美区成人在线视频| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 最近中文字幕高清免费大全6 | 又黄又爽又刺激的免费视频.| 十八禁网站免费在线| 日本色播在线视频| 最好的美女福利视频网| 日韩一本色道免费dvd| 国产一级毛片七仙女欲春2| 老熟妇乱子伦视频在线观看| 欧美日本视频| 少妇的逼水好多| 久久久精品大字幕| 中文字幕人妻熟人妻熟丝袜美| xxxwww97欧美| 在线看三级毛片| 韩国av在线不卡| 久久久国产成人免费| 在线观看午夜福利视频| 日韩欧美免费精品| 高清日韩中文字幕在线| 国产主播在线观看一区二区| 亚洲精品日韩av片在线观看| 男人舔奶头视频| 亚洲专区中文字幕在线| 国产精品一区二区三区四区免费观看 | 成熟少妇高潮喷水视频| 99久久精品国产国产毛片| 69av精品久久久久久| 一区二区三区四区激情视频 | 欧洲精品卡2卡3卡4卡5卡区| 少妇人妻精品综合一区二区 | 亚洲国产色片| 日韩高清综合在线| 一个人免费在线观看电影| 久久久精品欧美日韩精品| 亚洲国产欧美人成| 高清日韩中文字幕在线| 搡女人真爽免费视频火全软件 | 国产亚洲欧美98| 男人和女人高潮做爰伦理| 亚洲精品影视一区二区三区av| 中国美女看黄片| 色精品久久人妻99蜜桃| 色播亚洲综合网| 18禁在线播放成人免费| or卡值多少钱| 床上黄色一级片| 国产亚洲91精品色在线| 精品久久久久久久久av| 国产精品一区二区三区四区久久| 88av欧美| 久久人人爽人人爽人人片va| 国产精品一及| 国产av不卡久久| 琪琪午夜伦伦电影理论片6080| 成年女人永久免费观看视频| АⅤ资源中文在线天堂| 国产亚洲91精品色在线| 亚洲国产欧洲综合997久久,| 美女高潮喷水抽搐中文字幕| 88av欧美| 免费av毛片视频| 国产私拍福利视频在线观看| 美女免费视频网站| 欧美bdsm另类| 一a级毛片在线观看| 精品国产三级普通话版| 我的女老师完整版在线观看| 99热只有精品国产| 精品乱码久久久久久99久播| 精品国产三级普通话版| 99久久精品热视频| 久久精品国产自在天天线| 3wmmmm亚洲av在线观看| 黄片wwwwww| avwww免费| 黄色女人牲交| 他把我摸到了高潮在线观看| 我的女老师完整版在线观看| 久久精品国产清高在天天线| 国内揄拍国产精品人妻在线| 国内揄拍国产精品人妻在线| 国产伦精品一区二区三区视频9| 无遮挡黄片免费观看| 久久人人精品亚洲av| 一级a爱片免费观看的视频| 男女下面进入的视频免费午夜| 成人三级黄色视频| 精品人妻视频免费看| 尾随美女入室| 亚洲中文日韩欧美视频| 小蜜桃在线观看免费完整版高清| 99在线视频只有这里精品首页| 一夜夜www| 精品国产三级普通话版| 久久精品久久久久久噜噜老黄 | 啦啦啦观看免费观看视频高清| 国产久久久一区二区三区| 亚洲男人的天堂狠狠| 亚洲美女搞黄在线观看 | 51国产日韩欧美| 一进一出抽搐动态| bbb黄色大片| 午夜精品久久久久久毛片777| 亚洲最大成人手机在线| 1024手机看黄色片| 性插视频无遮挡在线免费观看| 亚洲黑人精品在线| 欧美成人性av电影在线观看| 99九九线精品视频在线观看视频| 国产一区二区三区在线臀色熟女| 黄色视频,在线免费观看| 深爱激情五月婷婷| 精品免费久久久久久久清纯| 日本爱情动作片www.在线观看 | 日日撸夜夜添| 五月玫瑰六月丁香| 欧美性感艳星| 亚洲av一区综合| 午夜亚洲福利在线播放| 日韩av在线大香蕉| 欧美xxxx黑人xx丫x性爽| 久久久久国内视频| 国产淫片久久久久久久久| 在线看三级毛片| 欧美日韩亚洲国产一区二区在线观看| 亚洲美女搞黄在线观看 | 18禁黄网站禁片午夜丰满| 无人区码免费观看不卡| 少妇人妻精品综合一区二区 | x7x7x7水蜜桃| 国产中年淑女户外野战色| 欧美3d第一页| 内地一区二区视频在线| 性欧美人与动物交配| 如何舔出高潮| 久久精品国产鲁丝片午夜精品 | 人人妻人人澡欧美一区二区| av天堂在线播放| 国产精品久久久久久亚洲av鲁大| 在线国产一区二区在线| 国产美女午夜福利| 色综合亚洲欧美另类图片| 麻豆成人av在线观看| 又爽又黄a免费视频| 男人和女人高潮做爰伦理| 久久人人爽人人爽人人片va| 日韩一本色道免费dvd| 久久久久国产精品人妻aⅴ院| 成人高潮视频无遮挡免费网站| 亚洲精品456在线播放app | 白带黄色成豆腐渣| 亚洲第一区二区三区不卡| 在线观看av片永久免费下载| 搡老岳熟女国产| 久久精品久久久久久噜噜老黄 | 精品人妻偷拍中文字幕| www日本黄色视频网| 日日撸夜夜添| 亚洲国产欧美人成| 免费观看人在逋| 亚洲欧美清纯卡通| 国内精品久久久久久久电影| 国产成人av教育| 成人二区视频| 国产大屁股一区二区在线视频| 成人一区二区视频在线观看| 欧美日本视频| 欧美日韩国产亚洲二区| 国产伦一二天堂av在线观看| 免费无遮挡裸体视频| 成人av一区二区三区在线看| 精品久久久久久,| 婷婷六月久久综合丁香| 少妇的逼好多水| 偷拍熟女少妇极品色| 高清毛片免费观看视频网站| 精品一区二区三区视频在线| 欧美3d第一页| 精品一区二区三区av网在线观看| 又黄又爽又刺激的免费视频.| 尾随美女入室| 亚洲电影在线观看av| av天堂在线播放| 在线免费观看的www视频| 欧美日韩中文字幕国产精品一区二区三区| 女人十人毛片免费观看3o分钟| 男插女下体视频免费在线播放| 日本撒尿小便嘘嘘汇集6| 又爽又黄a免费视频| 搡老熟女国产l中国老女人| 网址你懂的国产日韩在线| 两个人的视频大全免费| 亚洲国产精品sss在线观看| 一a级毛片在线观看| 床上黄色一级片| 最近中文字幕高清免费大全6 | 亚洲人成网站在线播| 免费观看精品视频网站| 亚洲av五月六月丁香网| 午夜福利18| 亚洲精品色激情综合| 日韩欧美免费精品| 国产真实乱freesex| 欧美日韩亚洲国产一区二区在线观看| 国产精品电影一区二区三区| 欧美最新免费一区二区三区| 国产男靠女视频免费网站| 美女黄网站色视频| or卡值多少钱| 搡老妇女老女人老熟妇| 久久亚洲真实| 男女视频在线观看网站免费| 久久午夜亚洲精品久久| 免费看av在线观看网站| 欧美极品一区二区三区四区| 日韩欧美国产在线观看| 国产伦精品一区二区三区四那| 在线播放无遮挡| 国语自产精品视频在线第100页| 亚洲av中文字字幕乱码综合| 中文字幕免费在线视频6| 国产淫片久久久久久久久| 听说在线观看完整版免费高清| 久久婷婷人人爽人人干人人爱| 亚洲专区中文字幕在线| h日本视频在线播放| 免费在线观看日本一区| 久久国产精品人妻蜜桃| 欧美中文日本在线观看视频| 国产人妻一区二区三区在| 国产精品三级大全| 久久久成人免费电影| 亚洲av.av天堂| 99九九线精品视频在线观看视频| 在线观看午夜福利视频| 国产美女午夜福利| 亚洲欧美精品综合久久99| 窝窝影院91人妻| 亚洲av二区三区四区| 97碰自拍视频| 久久亚洲精品不卡| 国产精品免费一区二区三区在线| 亚洲狠狠婷婷综合久久图片| 免费观看的影片在线观看| 蜜桃亚洲精品一区二区三区| 国产精品一区二区免费欧美| 国产免费男女视频| 国产高潮美女av| 黄片wwwwww| 精品一区二区三区av网在线观看| 国产伦一二天堂av在线观看| 国内精品美女久久久久久| 亚洲真实伦在线观看| 久久婷婷人人爽人人干人人爱| 国产一区二区在线av高清观看| 成人无遮挡网站| 中出人妻视频一区二区| 精品一区二区三区av网在线观看| 免费看光身美女| 亚洲 国产 在线| 免费电影在线观看免费观看| 我要看日韩黄色一级片| 亚洲欧美清纯卡通| 日本撒尿小便嘘嘘汇集6| 日韩欧美国产在线观看| 伦精品一区二区三区| 国产午夜福利久久久久久| 五月伊人婷婷丁香| 国产精品三级大全| 国产亚洲av嫩草精品影院| 久久草成人影院| 日韩一区二区视频免费看| h日本视频在线播放| 国产一区二区三区av在线 | 亚洲av第一区精品v没综合| 18禁黄网站禁片午夜丰满| 十八禁国产超污无遮挡网站| 国语自产精品视频在线第100页| 欧美bdsm另类| 岛国在线免费视频观看| 成人鲁丝片一二三区免费| 赤兔流量卡办理| 久久热精品热| 哪里可以看免费的av片| 久久九九热精品免费| 精品久久久噜噜| 1000部很黄的大片| 九色成人免费人妻av| 午夜爱爱视频在线播放| 亚洲在线自拍视频| 成人av一区二区三区在线看| 精品久久国产蜜桃| 亚洲人与动物交配视频| 麻豆一二三区av精品| 国产爱豆传媒在线观看| 哪里可以看免费的av片| 亚洲国产色片| 国产av麻豆久久久久久久| 1000部很黄的大片| 国产黄a三级三级三级人| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久久久丰满 | 亚洲成人久久性| 丰满乱子伦码专区| 久久久久久久精品吃奶| 极品教师在线视频| 欧美精品啪啪一区二区三区| 国内揄拍国产精品人妻在线| 欧美zozozo另类| 国产久久久一区二区三区| 亚洲av二区三区四区| 97超视频在线观看视频| 人妻少妇偷人精品九色| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 欧美性感艳星| 欧美中文日本在线观看视频| 不卡视频在线观看欧美| 深夜a级毛片| 亚洲黑人精品在线| av黄色大香蕉| 国内精品美女久久久久久| 亚洲内射少妇av| x7x7x7水蜜桃| 国产精品国产高清国产av| 一进一出好大好爽视频| 日韩高清综合在线| 直男gayav资源| 麻豆成人av在线观看| 国产欧美日韩精品亚洲av| 午夜激情福利司机影院| 免费av观看视频| 午夜福利18| 毛片一级片免费看久久久久 | 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| 日本成人三级电影网站| 国产黄片美女视频| 国产精品爽爽va在线观看网站| 久久国产精品人妻蜜桃| 亚洲经典国产精华液单| 国产精品一区二区三区四区久久| 久久精品国产99精品国产亚洲性色| 日本黄大片高清| 欧美一区二区亚洲| 中文字幕久久专区| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 亚洲av不卡在线观看| 三级男女做爰猛烈吃奶摸视频| 色综合站精品国产| 欧美丝袜亚洲另类 | a级毛片a级免费在线| 午夜爱爱视频在线播放| 欧美日韩国产亚洲二区| 男人舔女人下体高潮全视频| 最后的刺客免费高清国语| 日韩大尺度精品在线看网址| 国产av在哪里看| 欧美成人a在线观看| 亚洲三级黄色毛片| 久久久久久九九精品二区国产| 精品久久久久久久久av| 午夜激情欧美在线| 尾随美女入室| 久久这里只有精品中国| 久久久久国内视频| 联通29元200g的流量卡| 日本色播在线视频| 久久久久国内视频| 午夜亚洲福利在线播放| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 国产男人的电影天堂91| 亚洲成a人片在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线av高清观看| 欧美丝袜亚洲另类 | 18禁在线播放成人免费| 人妻久久中文字幕网| 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 久久草成人影院| 午夜福利在线观看免费完整高清在 | 精品人妻视频免费看| 日韩高清综合在线| 在线播放无遮挡| 免费av毛片视频| 在线免费观看不下载黄p国产 | a级毛片免费高清观看在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区性色av| or卡值多少钱| 人妻久久中文字幕网| 国产精品一区二区性色av| 免费观看人在逋| 中文在线观看免费www的网站| 久久精品人妻少妇| 色精品久久人妻99蜜桃| 国产精品野战在线观看| 日本五十路高清| 欧美成人一区二区免费高清观看| 中文字幕久久专区| 精华霜和精华液先用哪个| 亚洲最大成人手机在线| 国产午夜精品论理片| 久久中文看片网| 无人区码免费观看不卡| 变态另类成人亚洲欧美熟女| 亚洲国产欧美人成| 极品教师在线视频| 日本三级黄在线观看| 18禁黄网站禁片午夜丰满| 欧美激情久久久久久爽电影| 久久人人爽人人爽人人片va| 亚洲欧美激情综合另类| 一区二区三区激情视频| 精品免费久久久久久久清纯| 日日夜夜操网爽| 国产伦精品一区二区三区视频9| 久久久久性生活片| 永久网站在线| 最近中文字幕高清免费大全6 | 国产极品精品免费视频能看的| 我要搜黄色片| 黄色欧美视频在线观看| 亚洲精品成人久久久久久| 一进一出抽搐动态| 国产亚洲精品久久久久久毛片| 在线观看美女被高潮喷水网站| 九色国产91popny在线| 美女大奶头视频| 国产成人aa在线观看| 一区二区三区激情视频| 两个人视频免费观看高清| 日韩欧美在线乱码| 国产精品国产三级国产av玫瑰| 最新在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 嫩草影院新地址| 国产亚洲精品综合一区在线观看| 亚洲综合色惰| 女人被狂操c到高潮| 亚洲专区中文字幕在线| 久久久久九九精品影院| 国内精品一区二区在线观看| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 久久久成人免费电影| 亚洲精品456在线播放app | 一本久久中文字幕| 色综合色国产| 搡老妇女老女人老熟妇| 国产亚洲精品综合一区在线观看| 精品午夜福利在线看| 国产av一区在线观看免费| 3wmmmm亚洲av在线观看| 国内精品久久久久久久电影| 欧美日韩黄片免| 中国美女看黄片| 国产精品一区二区三区四区免费观看 | 白带黄色成豆腐渣| 国产精品爽爽va在线观看网站| 免费在线观看日本一区| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片 | 欧美xxxx性猛交bbbb| 日本-黄色视频高清免费观看| 嫁个100分男人电影在线观看| 少妇的逼水好多| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 3wmmmm亚洲av在线观看| 干丝袜人妻中文字幕| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 免费人成在线观看视频色| 日韩欧美精品v在线| 午夜福利在线观看吧| 日日夜夜操网爽| 欧美日韩精品成人综合77777| 欧美xxxx黑人xx丫x性爽| 亚洲第一电影网av| 悠悠久久av| 制服丝袜大香蕉在线| 干丝袜人妻中文字幕| 一级黄色大片毛片| 国产av不卡久久| 国产日本99.免费观看| 黄色一级大片看看| 他把我摸到了高潮在线观看| 99在线视频只有这里精品首页| 欧美高清成人免费视频www| 精品久久久久久久久亚洲 | 日韩大尺度精品在线看网址| 国内精品美女久久久久久| 国产精品,欧美在线| 国产成人av教育| 亚洲最大成人中文| 日韩欧美三级三区| 中文字幕精品亚洲无线码一区| 熟妇人妻久久中文字幕3abv| 亚洲美女视频黄频| 久久久久九九精品影院| 国产伦精品一区二区三区四那| 婷婷精品国产亚洲av在线| 亚洲av一区综合| 亚洲久久久久久中文字幕| 日本-黄色视频高清免费观看| 欧美性感艳星| 亚洲精华国产精华液的使用体验 | 99热这里只有精品一区| 美女大奶头视频| 久久精品国产99精品国产亚洲性色| 国产高清视频在线播放一区| 日韩高清综合在线| 欧美日韩综合久久久久久 | 日本黄色片子视频| 国产三级中文精品| 1024手机看黄色片| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 免费人成视频x8x8入口观看| 久久久久国产精品人妻aⅴ院| 成人午夜高清在线视频| 在线观看舔阴道视频| 久久人人爽人人爽人人片va| 精品久久久噜噜| 国产欧美日韩精品亚洲av| 一本精品99久久精品77| 国产精品久久久久久精品电影| 直男gayav资源| 黄色女人牲交| 色尼玛亚洲综合影院| 国产高清激情床上av| 亚洲国产精品久久男人天堂| 日韩精品有码人妻一区| 午夜福利成人在线免费观看| 精品久久久久久,| 成年免费大片在线观看| 国产精品无大码| 又爽又黄无遮挡网站| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 国产一区二区三区av在线 | av中文乱码字幕在线| 夜夜夜夜夜久久久久| 国产三级在线视频| 日本黄色片子视频| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 精品午夜福利视频在线观看一区| 亚洲精品日韩av片在线观看| 色av中文字幕| 成人国产麻豆网| 免费黄网站久久成人精品| 久久精品国产亚洲av香蕉五月| 99久久成人亚洲精品观看| 99热只有精品国产| 欧美最黄视频在线播放免费| 国产精品三级大全| 成人精品一区二区免费| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 一个人观看的视频www高清免费观看| 亚洲av二区三区四区| 99久久精品国产国产毛片|