• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed cubature Kalman filter based on observation bootstrap sampling①

    2016-12-05 01:31:02HuZhentao胡振濤HuYumeiZhengShanshanLiXianGuoZhen
    High Technology Letters 2016年2期

    Hu Zhentao (胡振濤), Hu Yumei, Zheng Shanshan, Li Xian, Guo Zhen

    (Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)

    ?

    Distributed cubature Kalman filter based on observation bootstrap sampling①

    Hu Zhentao (胡振濤), Hu Yumei②, Zheng Shanshan, Li Xian, Guo Zhen

    (Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P.R.China)

    Aiming at the adverse effect caused by observation noise on system state estimation precision, a novel distributed cubature Kalman filter (CKF) based on observation bootstrap sampling is proposed. Firstly, combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling, an observation bootstrap sampling strategy is designed. The objective is to deal with the adverse influence of observation uncertainty by increasing observations information. Secondly, the strategy is dynamically introduced into the cubature Kalman filter, and the distributed fusion framework of filtering realization is constructed. Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system. Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness.

    state estimation, cubature Kalman filter (CKF), observation bootstrap sampling, distributed weighted fusion

    0 Introduction

    The state estimation problems of a nonlinear system widely exist in the field of signal processing, integrated navigation, target location and tracking, etc[1]. The implementation principle for existing state estimator is, under the framework of recursive Bayesian estimation, to take the advantage of all observation information to construct a state posterior probability distribution function, and then to obtain state optimal estimation according to the minimum variance criterion. While Kalman filter (KF)[2]is the typical implementation for linear Gaussian system. However, with regard to nonlinear features of estimated system, the optimal solution usually cannot be resolved. Therefore, a large number of suboptimal approximation algorithms are proposed such as the extended Kalman filter (EKF)[3,4], of which realization mechanism is to realize the local linearization of state equation and observation equation. It only calculates the posterior mean and covariance accurately to the first order with all higher order moments truncated. If the estimated system nonlinearities are very strong, EKF usually can not obtain good filtering result and even lead to filtering divergence phenomenon[5].

    Considering that the probability density distribution is easier to be approximated than nonlinear function[6], the application of sampling method for approximating posterior probability distribution to solve the state estimation problem of nonlinear system is increasingly attracting widely attention. The sampling method is mainly divided into two categories: stochastic sampling and deterministic sampling. The stochastic sampling nonlinear filter, namely particle filter (PF)[7,8], is a kind of Monte Carlo method. In the filtering process, a set of stochastic points with weight, sampled from the state space, are adopted to approximate state probability density function. As a result, the optimal estimation is approximated highly, and it needs not to be subject to the constraints of linear and Gaussian assumption. However, a large number of particles are needed to ensure the filtering precision and convergence, the calculation of stochastic sampling nonlinear filter is heavier than deterministic sampling filter. Moreover, the stochastic sampling mechanism often leads particles to degeneracy after a few iterations. The adverse effect caused by particle degeneracy is mitigated in a certain degree through re-sampling, but the re-sampling process results in the reduction of particles diversity. The typical implementation of deterministic sampling filter mainly includes unscented Kalman filter(UKF)[9,10]and cubature Kalman filter (CKF)[11,12]. UKF approaches nonlinear state posterior distribution by UT transformation strategy, and it has higher universality for nonlinear system with Gaussian noise. But whether the selection parameter is reasonable or not in UKF, it affects the estimation precision of system state directly. In addition, the problem that filtering variance is not positive definite may occur. In essence, a third-degree spherical-radial cubature rule to compute integrals numerically is derived in CKF. Nonlinear state posterior distribution is approximated through a set of points with deterministic space position distribution and weight. In the process of sampling and filtering, the weight in CKF is positive, so as to ensure that the filtering covariance is positive definite matrix.

    The distributed weighted optimal fusion technology is one of the effective methods to improve state estimation precision. Through the synergy between sensors to extend the measuring range, improving the information redundancy and credibility, and then the objective of improving state estimation precision is achieved. The fusion structure includes the centralized, distributed and hybrid while the distributed structure with fault-tolerant is the popular method used in implementation. In addition, achieving multi-source information will inevitably lead to the increase of the burden of hardware resource (especially sensor). Aiming at improving filtering precision without increasing hardware cost, realization of the distributed filter for nonlinear system state estimation has always been focused by experts and scholars in related field. To solve the above problem, an observation bootstrap strategy has been designed through combining the latest observation with the prior statistical information from observation noise modeling. On this basis, the bootstrap observation set is built and then applied to CKF filtering framework. Combined with distributed weighted optimal fusion technology[14,15], a novel distributed cubature Kalman filter based on observation bootstrap sampling (DCKF-OBS) is proposed. Its advantage is to improve state estimation precision without increasing hardware cost (the number of sensor and accuracy), through reducing the uncertainty of latest observation information.

    1 Observation bootstrap strategy

    Considering the general nonlinear discrete-time dynamical system, the system equation and observation equation are given as follows:

    xk=f(xk-1)+wk-1

    (1)

    zk=hk(xk)+vk

    (2)

    Aiming at reducing the adverse effect caused by the uncertainty and unicity of single sensor observation, the bootstrap sampling points of sensor observation are obtained through improving the degree of freedom according to the observation bootstrap strategy:

    (3)

    (4)

    (5)

    2 Cubature Kalman filter

    The optimal solution to solve nonlinear filtering problem needs to get a complete description of conditional probability density function. In CKF implementation, a third-degree spherical-radial cubature rule is extended to compute a standard Gaussian weighted integral of f(x) as follows. As a result, conditional posterior probability is obtained[13]:

    (6)

    Step A Time update step

    1) Evaluate cubature points

    Pk|k=Sk|k(Sk|k)Τ

    (7)

    (8)

    (9)

    (10)

    (11)

    Step B Observation update step

    1) Evaluate cubature points

    Pk+1|k=Sk+1|k×(Sk+1|k)Τ

    (12)

    (13)

    (14)

    (15)

    (16)

    (17)

    4) Evaluate the filtering gain Kk+1at time k+1

    (18)

    (19)

    (20)

    In essence, the nonlinear state posterior distribution is approximated through a set of points with deterministic space position distribution and weight in CKF. In the process of sampling and filtering, weight in CKF is positive all the time, which ensures that the estimate covariance is positive definiteness. In addition, in the aspect of real-time, because of deterministic sampling and less samples, CKF is superior to PF. In the aspect of precision, the numerical integral based on third-degree spherical-radial cubature rule is adopted in CKF, to approximate Gaussian weighted integral. Its approximation precision of probability distribution after nonlinear transformation is superior to UKF adopted unscented transformation[13].

    3 Distributed cubature Kalman filter based on observation bootstrap sampling

    In the distributed state fusion structure, each sensor observation is assigned to one estimator independently, namely taking use of the observation of each sensor to filter, then the local estimation is delivered to the center node for fusion. The global state estimate and its covariance are given as

    (21)

    (22)

    (23)

    1.Initializestateestimationanditserrorcovariance^xi0|0=x0andPi0|0=P0.2.GeneratethebootstrapobservationsetZk+1accordingtoEq.(3).3.Calculatethelocalestimation^xik+1|k+1anditserrorcovariancePiik+1|k+1,accordingtophysicalobservationzk+1,bootstrapobservationsetZk+1andEq.(7)toEq.(20).Notethatthebootstrapobservationerrorco-varianceisgivenasPzzk+1|k=∑Li=1Zjk+1|k(Zjk+1|k)Τ/L-^zk+1|k(^zk+1|k)Τ +σ2vk+1+λσ2vik+1.4.Solvetheglobalestimation^xgk+1|k+1ac-cordingtoEq.(21)toEq.(23).5.Let^xk+1|k+1=^xgk+1|k+1andPk+1|k+1=Pgk+1|k+1,sothecurrentstateestimationisobtained.6.IncreasekandcontinuetoStep2.

    4 Simulation result and analysis

    To verify the validity of DCKF-OBS, the Monte Carlo simulations of target tracking are presented in the Cartesian coordinate system. It adopts the typical uniform motion model and nonlinear observation model, and the number of Monte Carlo is 200. The root mean square error(RMSE) is used to evaluate the property of the algorithm in filtering precision. In this simulation environment, motion state equation and observation equation are given as

    xk=Fk|k-1xk-1+Γk-1wk-1

    Fig.1 Horizontal direction

    Fig.2 Vertical direction

    The quantitative comparison of mean state estimation RMSEs of the three algorithms are given in Table 1. The number of bootstrap observation is 30, and it is known clearly that the RMSE value of DCKF-OBS is the lowest. Fig.1, Fig.2 and Table 1 all indicate that the mean value of the RMSEs of DCKF-OBS is the lowest. The filtering precision of CKF is higher than UKF, and the DCKF-OBS is superior to the others. The analysis is elaborated in Section 2 and Section 3.

    Table 1 The RMSEs comparison when the number of bootstrap observation is 30

    The comparison of the mean value of state estimation RMSEs is given in Fig.3 and Fig.4 in the condition of different number of bootstrap observation. As shown in the figures, with the number of bootstrap observation increasing, the mean value of state estimation RMSEs decreases. At the stage of bootstrap observation number from 5 to 35, the mean value of RMSEs decreases sharply, and state estimation precision increases obviously. At the stage of bootstrap observation number from 35 to 50, the mean value of RMSEs is flat. Namely the effect on enhancing state estimation precision through increasing the number of bootstrap observation is slight. Moreover, with the increasing number of bootstrap observation, the hardware undertakes a larger amount of calculation. Therefore, performance indexes such as precision, real-time and calculation should be considered in practice. So as to select the appropriate number of bootstrap observation involved in filtering, and as a result, the superior precision of system state estimation is achieved. The RMSEs quantitative comparison of DCKF-OBS is given in Table 2 with different number of bootstrap observation.

    Fig.3 Horizontal direction

    Fig.4 Vertical direction

    Table 2 The RMSEs comparison of DCKF-OBS with different number of bootstrap observation

    5 Conclusions

    The estimation of nonlinear system is a widely considered field in engineering application, while the filter algorithm and the sensor accuracy are two dominant factors influencing the state estimation precision. Considering the two factors above, a novel distributed cubature Kalman filtering algorithm based on observation bootstrap sampling is proposed under the condition of single sensor observation system. In this algorithm, firstly, on the basis of physical observation, the bootstrap observation set of system state is obtained though bootstrap strategy. Secondly, the physical observation and bootstrap observation respectively participate in cubature Kalman filtering process, so that the local state estimation is achieved. And then global state estimation is achieved through adopting the information fusion theory to fuse local state estimations. The simulation experiments indicate that the DCKF-OBS is superior to CKF by comparing the state estimation RMSE. Furthermore, the state estimation precision is improved continually, along with the increase of the number of bootstrap observation. While the number is greater than 15, the state estimation precision increases slightly. The algorithm applies to nonlinear non-Gauss state estimation problem with single sensor observation system.

    [1] Xu S , Su X X, Liu S G. Dimension-wise adaptive spare grid quadrature nonlinear filter.ActaAutomaticaSinica, 2014, 40(6): 1249-1264

    [2] Nikoukhah R, Campbell S L, Delebecque F. Kalman filtering for general discrete-time linear systems.IEEETransactionsonAutomaticControl, 1999, 44(10):1829-1839

    [3] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters.IEEETransactionsonSignalProcessing, 2012, 60(2): 545-555

    [4] Huang S, Dissanayake G. Convergence and consistency analysis for extended Kalman filter based SLAM.IEEETransactionsonRobotics, 2007, 23(5): 1036-1049

    [5] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation.ProceedingsoftheIEEE, 2004, 92(3): 401-422

    [6] Wang X, Liang Y, Pan Q, et al. Nonlinear Gaussian smoothers with colored measurement noise.IEEETransactionsonAutomaticControl, 2015, 60(3): 870-876

    [7] Hu Z T, Liu X X, Hu Y M. Particle filter based on the lifting scheme of observations.IETRadar,Sonar&Navigation, 2014, 9(1): 48-54

    [8] Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo.ProceedingsoftheIEEE, 2007, 95(5): 899-924

    [9] Gustafsson F, Hendeby G. Some relations between extended and unscented Kalman filters.IEEETransactionsonSignalProcessing, 2012, 60(2): 545- 555

    [10] Chang L B, Hu B Q, Li A , et al. Transformed unscented Kalman filter.IEEETransactionsonAutomaticControl, 2013 ,58(1): 252-257

    [11] Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations.IEEETransactionsonSignalProcessing, 2010, 58(10): 4977-4993

    [12] Ding Z, Balaji B. Comparison of the unscented and cubature Kalman filters for radar tracking applications. In: Proceedings of the IET International Conference on Radar Systems, Glasgow, UK, 2012. 1-5

    [13] Arasaratnam I, Haykin S. Cubature Kalman filters.IEEETransactionsonAutomaticControl, 2009, 54(6): 1254-1269

    [14] Han C Z, Zhu H Y, Duan Z S. Multi-source Information Fusion. Beijing: Tsinghua University Press, 2010. 43-49 (In Chinese)

    [15] Bar-Shalom Y, Willett P K, Tian X. Tracking and Data Fusion: A Handbook of Algorithms. Storrs: YBS Publishing, 2011

    Hu Zhentao, born in 1979. He received his Ph.D degree in Control Science and Engineering from Northwestern Polytechnical University in 2010. He also received his B.S. and M.S. degrees from Henan University in 2003 and 2006 respectively. Now, he is an assistant professor of College of Computer and Information Engineering, Henan University. His research interests include complex system modeling and estimation, target tracking and particle filter, etc.

    10.3772/j.issn.1006-6748.2016.02.005

    ①Supported by the National Natural Science Foundation of China (No.61300214), the Science and Technology Innovation Team Support Plan of Education Department of Henan Province (13IRTSTHN021), the Post-doctoral Science Foundation of China (No.2014M551999), and the Funding Scheme of Young Key Teacher of Henan Province Universities (No.2013GGJS-026).

    ②To whom correspondence should be addressed. E-mail: hym_henu@163.comReceived on Apr. 1, 2015

    亚洲av不卡在线观看| 午夜激情福利司机影院| 综合色丁香网| 婷婷色av中文字幕| 99国产精品免费福利视频| 日本91视频免费播放| av在线播放精品| 久久 成人 亚洲| 秋霞在线观看毛片| 久久婷婷青草| 少妇被粗大的猛进出69影院 | 岛国毛片在线播放| 亚洲精品乱久久久久久| 黄片无遮挡物在线观看| 最新中文字幕久久久久| 在线天堂最新版资源| 精品少妇内射三级| 久久久久久久久久久久大奶| 亚洲精品456在线播放app| 亚洲精品日本国产第一区| 狂野欧美激情性bbbbbb| 亚洲国产av新网站| av在线老鸭窝| 午夜激情久久久久久久| 在线观看免费日韩欧美大片 | 国产国拍精品亚洲av在线观看| 高清不卡的av网站| 在线观看美女被高潮喷水网站| 国产高清不卡午夜福利| av国产精品久久久久影院| 日本-黄色视频高清免费观看| av在线app专区| 高清在线视频一区二区三区| 人妻少妇偷人精品九色| 五月开心婷婷网| 亚洲美女黄色视频免费看| 日韩一区二区视频免费看| 精品人妻在线不人妻| 人人妻人人澡人人爽人人夜夜| 成年人免费黄色播放视频| 人体艺术视频欧美日本| 亚洲欧洲精品一区二区精品久久久 | 免费看av在线观看网站| 免费黄网站久久成人精品| 一级毛片 在线播放| 欧美bdsm另类| 免费观看a级毛片全部| 99热全是精品| 你懂的网址亚洲精品在线观看| 午夜精品国产一区二区电影| 国产色爽女视频免费观看| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| 亚洲四区av| 日韩中字成人| 日本-黄色视频高清免费观看| 欧美日韩精品成人综合77777| 国产精品女同一区二区软件| 狂野欧美激情性bbbbbb| 国产一级毛片在线| 国产精品女同一区二区软件| 黄色配什么色好看| 久久久久国产精品人妻一区二区| 精品国产一区二区久久| 十八禁网站网址无遮挡| 美女视频免费永久观看网站| 国产毛片在线视频| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 亚洲四区av| 久久久久国产精品人妻一区二区| 国产片内射在线| 国产精品一区二区在线观看99| 麻豆乱淫一区二区| 免费av中文字幕在线| 各种免费的搞黄视频| 国产av国产精品国产| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 下体分泌物呈黄色| 女人精品久久久久毛片| 高清黄色对白视频在线免费看| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 日韩一本色道免费dvd| 久久狼人影院| 黄色欧美视频在线观看| 满18在线观看网站| 亚洲av男天堂| 色吧在线观看| 国产av码专区亚洲av| 久久精品国产鲁丝片午夜精品| 18禁在线播放成人免费| 亚洲国产av影院在线观看| 亚洲av男天堂| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 男女高潮啪啪啪动态图| a级片在线免费高清观看视频| 下体分泌物呈黄色| 国模一区二区三区四区视频| 99久久人妻综合| 亚洲中文av在线| 69精品国产乱码久久久| 黄片播放在线免费| 日韩免费高清中文字幕av| 亚洲综合色网址| 岛国毛片在线播放| 新久久久久国产一级毛片| 一本大道久久a久久精品| 少妇熟女欧美另类| 精品一品国产午夜福利视频| 日产精品乱码卡一卡2卡三| 伦理电影免费视频| 热re99久久精品国产66热6| 国产又色又爽无遮挡免| 久久久久久久久久久免费av| 一区二区三区乱码不卡18| 亚洲av福利一区| 制服诱惑二区| av网站免费在线观看视频| 日韩av在线免费看完整版不卡| 国产精品人妻久久久影院| 免费不卡的大黄色大毛片视频在线观看| 亚洲人成网站在线观看播放| 亚洲av免费高清在线观看| 中文字幕最新亚洲高清| 亚洲怡红院男人天堂| 黄片播放在线免费| 亚洲av免费高清在线观看| 国产精品女同一区二区软件| 国产成人精品福利久久| 亚洲av免费高清在线观看| 日韩av免费高清视频| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 啦啦啦啦在线视频资源| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 中文字幕制服av| 国产精品熟女久久久久浪| 成年人午夜在线观看视频| 免费少妇av软件| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 极品人妻少妇av视频| 欧美xxⅹ黑人| 女人久久www免费人成看片| 久久久a久久爽久久v久久| 又黄又爽又刺激的免费视频.| 欧美97在线视频| 少妇精品久久久久久久| 97超碰精品成人国产| 欧美日韩综合久久久久久| 尾随美女入室| 国产精品偷伦视频观看了| 国产精品久久久久久久电影| 91精品三级在线观看| 建设人人有责人人尽责人人享有的| 成人国产麻豆网| 人体艺术视频欧美日本| 黄片无遮挡物在线观看| 国产极品粉嫩免费观看在线 | 制服丝袜香蕉在线| 一本色道久久久久久精品综合| 老司机影院成人| 久久这里有精品视频免费| 夜夜看夜夜爽夜夜摸| 日本午夜av视频| 大话2 男鬼变身卡| 国产精品国产av在线观看| 春色校园在线视频观看| 男女高潮啪啪啪动态图| 日韩不卡一区二区三区视频在线| 最近手机中文字幕大全| 日韩在线高清观看一区二区三区| 亚洲国产精品专区欧美| 久久精品久久精品一区二区三区| 国产精品嫩草影院av在线观看| a级毛片免费高清观看在线播放| 国产在线视频一区二区| 在线观看一区二区三区激情| 国产精品嫩草影院av在线观看| 亚洲欧美日韩另类电影网站| 日韩精品免费视频一区二区三区 | 日本黄色日本黄色录像| 在线观看人妻少妇| 亚洲美女搞黄在线观看| 欧美成人午夜免费资源| 精品一区二区三卡| 免费观看av网站的网址| 99热网站在线观看| 国产女主播在线喷水免费视频网站| 九九爱精品视频在线观看| 亚洲精品色激情综合| 2022亚洲国产成人精品| 国产一区二区三区av在线| 久久韩国三级中文字幕| tube8黄色片| 美女大奶头黄色视频| 成人漫画全彩无遮挡| 国产精品一二三区在线看| av专区在线播放| 国产欧美日韩一区二区三区在线 | 国语对白做爰xxxⅹ性视频网站| 日韩一本色道免费dvd| 精品人妻偷拍中文字幕| 观看美女的网站| 蜜桃久久精品国产亚洲av| 永久网站在线| 亚洲国产精品一区三区| 91成人精品电影| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 亚洲不卡免费看| 亚洲人成网站在线观看播放| 九草在线视频观看| 大又大粗又爽又黄少妇毛片口| 免费看av在线观看网站| 国产在线一区二区三区精| 午夜福利视频在线观看免费| 欧美人与善性xxx| 国产熟女午夜一区二区三区 | 成年美女黄网站色视频大全免费 | 久久久久久久久久成人| 天天躁夜夜躁狠狠久久av| av播播在线观看一区| 狠狠婷婷综合久久久久久88av| 丝袜喷水一区| 国产亚洲av片在线观看秒播厂| 国产爽快片一区二区三区| 日韩欧美一区视频在线观看| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 亚洲国产欧美日韩在线播放| 狂野欧美白嫩少妇大欣赏| 美女cb高潮喷水在线观看| 99久久综合免费| 亚洲欧美日韩另类电影网站| 国产av码专区亚洲av| 国产视频首页在线观看| av在线老鸭窝| 成人免费观看视频高清| 亚洲av男天堂| 在线播放无遮挡| 又黄又爽又刺激的免费视频.| 久久精品熟女亚洲av麻豆精品| 一级毛片黄色毛片免费观看视频| 国产精品秋霞免费鲁丝片| 狂野欧美激情性xxxx在线观看| 久久久久国产精品人妻一区二区| 人妻 亚洲 视频| 永久免费av网站大全| 亚洲精品日韩在线中文字幕| 婷婷色综合大香蕉| 你懂的网址亚洲精品在线观看| 久久久精品免费免费高清| 国产精品一区二区三区四区免费观看| 一级毛片黄色毛片免费观看视频| 日韩av在线免费看完整版不卡| 日韩av免费高清视频| 如何舔出高潮| 人妻夜夜爽99麻豆av| 免费av中文字幕在线| 老司机影院成人| 美女福利国产在线| 国产高清有码在线观看视频| 国产日韩一区二区三区精品不卡 | 亚洲欧洲日产国产| 精品少妇久久久久久888优播| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品| 各种免费的搞黄视频| 在线观看美女被高潮喷水网站| 一区二区三区精品91| 久久免费观看电影| 亚洲色图 男人天堂 中文字幕 | 80岁老熟妇乱子伦牲交| 色94色欧美一区二区| 少妇被粗大的猛进出69影院 | 视频中文字幕在线观看| 9色porny在线观看| 一区二区三区乱码不卡18| 美女中出高潮动态图| 精品国产乱码久久久久久小说| 中文字幕精品免费在线观看视频 | 黑人欧美特级aaaaaa片| 亚洲美女视频黄频| 亚洲av中文av极速乱| 亚洲熟女精品中文字幕| 日韩中文字幕视频在线看片| 欧美精品亚洲一区二区| 夜夜看夜夜爽夜夜摸| 午夜免费鲁丝| 久久这里有精品视频免费| 国产一区二区在线观看av| 麻豆乱淫一区二区| 久久99一区二区三区| 高清av免费在线| 国产av国产精品国产| 亚洲国产精品一区三区| 一级a做视频免费观看| xxxhd国产人妻xxx| 性色av一级| 欧美变态另类bdsm刘玥| 成人手机av| 色婷婷久久久亚洲欧美| 插逼视频在线观看| 丝袜美足系列| 看免费成人av毛片| 成人国产av品久久久| 天堂8中文在线网| 人妻少妇偷人精品九色| 成人二区视频| 热99久久久久精品小说推荐| 在线看a的网站| 国产成人精品福利久久| av.在线天堂| 丰满饥渴人妻一区二区三| 亚洲成人一二三区av| 一级爰片在线观看| 中国美白少妇内射xxxbb| 色94色欧美一区二区| 制服诱惑二区| 国产黄片视频在线免费观看| 日韩 亚洲 欧美在线| 丝袜喷水一区| videosex国产| 97超碰精品成人国产| 国产极品粉嫩免费观看在线 | 狂野欧美激情性xxxx在线观看| 欧美成人精品欧美一级黄| 在线观看一区二区三区激情| 色视频在线一区二区三区| 国产精品免费大片| 国模一区二区三区四区视频| 熟女人妻精品中文字幕| 国产精品久久久久久精品电影小说| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 亚洲精品久久久久久婷婷小说| 少妇的逼好多水| 王馨瑶露胸无遮挡在线观看| 国产亚洲午夜精品一区二区久久| 精品久久久精品久久久| 亚洲少妇的诱惑av| 国产av精品麻豆| 亚洲精品中文字幕在线视频| 欧美另类一区| 精品一区二区免费观看| 国产男人的电影天堂91| 免费av中文字幕在线| 亚洲,一卡二卡三卡| 精品久久久精品久久久| 国产在线一区二区三区精| 国产成人精品在线电影| 一级,二级,三级黄色视频| 婷婷色综合大香蕉| 久久久精品94久久精品| 日韩人妻高清精品专区| 91久久精品国产一区二区三区| 成年av动漫网址| 狠狠婷婷综合久久久久久88av| 国产毛片在线视频| av免费观看日本| 黑丝袜美女国产一区| 午夜福利,免费看| 天天操日日干夜夜撸| 国产一区二区在线观看av| 插阴视频在线观看视频| 极品少妇高潮喷水抽搐| 精品少妇黑人巨大在线播放| 男人操女人黄网站| 99久久中文字幕三级久久日本| 美女主播在线视频| 丰满少妇做爰视频| 热99久久久久精品小说推荐| 日韩制服骚丝袜av| 国产精品久久久久久精品电影小说| 午夜免费观看性视频| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| 高清视频免费观看一区二区| 少妇猛男粗大的猛烈进出视频| 国产免费又黄又爽又色| 久久亚洲国产成人精品v| 超色免费av| 亚洲综合色网址| 下体分泌物呈黄色| 一级毛片aaaaaa免费看小| 亚洲成人一二三区av| 一级毛片aaaaaa免费看小| 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| 国语对白做爰xxxⅹ性视频网站| 国产伦精品一区二区三区视频9| 观看美女的网站| 少妇 在线观看| 99久久精品国产国产毛片| 国产精品嫩草影院av在线观看| 一边摸一边做爽爽视频免费| 亚洲,欧美,日韩| 一级毛片aaaaaa免费看小| 精品熟女少妇av免费看| 亚洲色图 男人天堂 中文字幕 | 熟女av电影| 欧美日韩成人在线一区二区| 视频中文字幕在线观看| 久久久久久久大尺度免费视频| 日韩在线高清观看一区二区三区| 免费人妻精品一区二区三区视频| 亚洲欧洲精品一区二区精品久久久 | 日韩欧美精品免费久久| 欧美亚洲日本最大视频资源| 精品熟女少妇av免费看| 国产免费福利视频在线观看| 亚洲一级一片aⅴ在线观看| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 男的添女的下面高潮视频| 黄片播放在线免费| 香蕉精品网在线| 国产精品久久久久久久电影| 激情五月婷婷亚洲| 在线观看www视频免费| 色94色欧美一区二区| 亚洲综合色网址| 少妇人妻精品综合一区二区| 99国产精品免费福利视频| 99热网站在线观看| 一本一本综合久久| 少妇被粗大的猛进出69影院 | 中文欧美无线码| 美女内射精品一级片tv| 久久这里有精品视频免费| 亚洲色图 男人天堂 中文字幕 | xxx大片免费视频| 日本黄色片子视频| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 国产精品一二三区在线看| 日韩一区二区视频免费看| 国产精品无大码| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | 亚洲精品一二三| 国产色婷婷99| av在线观看视频网站免费| 亚洲高清免费不卡视频| 少妇精品久久久久久久| 街头女战士在线观看网站| 中文字幕精品免费在线观看视频 | 久久久久久久久久成人| 免费不卡的大黄色大毛片视频在线观看| 国产老妇伦熟女老妇高清| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 婷婷色av中文字幕| 黑丝袜美女国产一区| 18禁在线播放成人免费| 丝袜喷水一区| 日本与韩国留学比较| av电影中文网址| 另类亚洲欧美激情| 精品久久久久久久久亚洲| 我要看黄色一级片免费的| 国产成人精品福利久久| 亚洲精品色激情综合| 国产一级毛片在线| 国产精品久久久久久久电影| 99九九线精品视频在线观看视频| 国产亚洲av片在线观看秒播厂| 男人操女人黄网站| 午夜激情福利司机影院| 亚洲国产精品一区二区三区在线| av卡一久久| 99国产精品免费福利视频| 91久久精品国产一区二区三区| 午夜影院在线不卡| 菩萨蛮人人尽说江南好唐韦庄| 青春草国产在线视频| 91久久精品电影网| 99久久综合免费| 欧美+日韩+精品| 多毛熟女@视频| 久久久久久久亚洲中文字幕| 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 中文字幕人妻丝袜制服| 欧美另类一区| 亚洲第一av免费看| 婷婷色综合大香蕉| 亚洲精品第二区| 亚洲av日韩在线播放| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 国产精品无大码| 青春草国产在线视频| 亚洲av中文av极速乱| 美女国产高潮福利片在线看| 国产在线视频一区二区| 国产精品国产三级国产av玫瑰| 日韩一区二区三区影片| 老司机影院毛片| 国产视频首页在线观看| 国产日韩欧美在线精品| 亚洲av成人精品一二三区| 国产亚洲精品久久久com| 女人久久www免费人成看片| √禁漫天堂资源中文www| 乱人伦中国视频| 18在线观看网站| a级毛片黄视频| 天堂中文最新版在线下载| 嫩草影院入口| 熟女av电影| 一级二级三级毛片免费看| 精品亚洲成国产av| 成人国产麻豆网| 少妇 在线观看| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看| 亚洲五月色婷婷综合| 色网站视频免费| 日日爽夜夜爽网站| 精品人妻在线不人妻| 久久久久久伊人网av| 特大巨黑吊av在线直播| 91aial.com中文字幕在线观看| 下体分泌物呈黄色| 全区人妻精品视频| 一二三四中文在线观看免费高清| kizo精华| 色哟哟·www| 日日啪夜夜爽| 免费人妻精品一区二区三区视频| 国产片特级美女逼逼视频| 制服丝袜香蕉在线| 丰满少妇做爰视频| 赤兔流量卡办理| 免费大片18禁| 高清视频免费观看一区二区| 18禁在线播放成人免费| 久久毛片免费看一区二区三区| 亚洲av福利一区| 国产深夜福利视频在线观看| 汤姆久久久久久久影院中文字幕| a级毛片黄视频| 国产成人精品无人区| 在线观看美女被高潮喷水网站| 九色亚洲精品在线播放| 99视频精品全部免费 在线| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 欧美性感艳星| 成人综合一区亚洲| 一区二区av电影网| av线在线观看网站| 日韩制服骚丝袜av| 99热这里只有精品一区| 视频区图区小说| 高清毛片免费看| 亚洲熟女精品中文字幕| 午夜激情av网站| av.在线天堂| a级毛片黄视频| 男女边摸边吃奶| 人妻少妇偷人精品九色| 人成视频在线观看免费观看| 午夜老司机福利剧场| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 国产视频首页在线观看| 免费看不卡的av| 国产视频首页在线观看| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 午夜福利视频在线观看免费| 免费播放大片免费观看视频在线观看| 如何舔出高潮| 欧美日韩在线观看h| 亚洲国产精品成人久久小说| av网站免费在线观看视频| 亚洲精品日本国产第一区| 母亲3免费完整高清在线观看 | 精品酒店卫生间| 搡老乐熟女国产| 亚洲国产精品999| 丰满乱子伦码专区| 在线观看人妻少妇| 少妇人妻 视频| 亚洲不卡免费看| 国产精品国产三级国产av玫瑰| 国产日韩欧美在线精品| 免费久久久久久久精品成人欧美视频 | 观看美女的网站| 岛国毛片在线播放| 国产亚洲最大av| kizo精华| 国产黄片视频在线免费观看| 午夜福利,免费看| 热re99久久国产66热| 老司机影院毛片| 久久午夜福利片| 精品酒店卫生间| 男男h啪啪无遮挡| 日韩一区二区视频免费看| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 久久精品国产自在天天线| 晚上一个人看的免费电影| 免费观看a级毛片全部| 亚洲av不卡在线观看| 欧美bdsm另类|