• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of cable tension sensors of FAST reflector from the perspective of EMI①

    2016-12-05 01:28:02ZhuMingWangQimingDennisEganWuMingchangSunXiao
    High Technology Letters 2016年2期

    Zhu Ming(朱 明), Wang Qiming, Dennis Egan, Wu Mingchang, Sun Xiao

    (*National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, P.R.China) (**National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA)

    ?

    Evaluation of cable tension sensors of FAST reflector from the perspective of EMI①

    Zhu Ming(朱 明)②*, Wang Qiming*, Dennis Egan**, Wu Mingchang*, Sun Xiao*

    (*National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, P.R.China) (**National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA)

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

    five-hundred-meter aperture spherical radio telescope (FAST), cable tension monitoring, magnetic flux, vibrating wire, fiber Bragg, electro magnetic interference (EMI)

    0 Introduction

    Five-hundred meter aperture spherical radio Telescope (FAST), a project belonging to the National “Eleventh Five-Year” major scientific projects, will be the world’s largest single-dish radio telescope upon its completion. FAST will work in the frequency ranging from 70MHz to 3GHz[1].

    As one of the three independent innovations of FAST, a main active reflector is realized through the initiative configuration of the cable-net. The initiative configuration of the cable-net will be controlled to form series of 300m-aperture paraboloids in different regions of the 500m-aperture reflector[2].

    To acquire the initiative displacement characteristics of the telescope, a cable net structure with about 6670 main cables and 2225 pull-down cables is used as the main supporting structure to support its reflecting panels. Actuators are used to pull the cable net nodes by pull-down cables to form a series of dynamic 300m diameter paraboloids to seek and track astronomical radio sources. The cable elements will experience elastic deformation in operation. The expected long-term operation of FAST determines that the cable elements will withstand long-term, reciprocating fatigue loads. The fatigue stress range for the cable-net structure is about 500MPa which is more than twice as defined by related national standard[3]. Therefore, for the large-span, high-precision cable net structure, long-term monitoring and assessment of cable tension must be implemented for necessary and timely maintenance. Cable tension monitoring is of great significance in evaluating the condition of the supporting structure FAST reflector.

    Several types of methods for cable tension measurement have been investigated, which include magneto elastic, anchor cable, fiber Bragg grating, smart cable, frequency method, resistance strain gauge, three point loading flexure, vibrating wire strain gauge method and Fiber grating strain gauge method and so on. The FAST cable-net will experience high stress amplitude tension and must meet 30 years life; two kinds of sensors are not suitable for the cable tension monitoring requirements of FAST, which are series cable sensors and methods for applying additional stress to the cable. By principle analysis and feasibility screening, magnetic flux method, vibrating wire strain gauge method and FBG strain gauge method have been checked for FAST cable tension monitoring. In addition to the general principles and performance requirements, FAST have special requirements for EMI of electronic equipments, which must meet the standards of the ITU RA769[4], whose EMI requirements are more stringent than GJB151A[5]. Therefore, the three cable tension measurement methods should be analyzed from the perspective of EMI.

    With the background of cable tension monitoring of FAST, the paper aims to select the most appropriate cable tension monitoring sensor, which will be evaluated in the view of EMI. Firstly, the three sensors are theoretically screened by analyzing the fundamentals to decide if further analysis is necessary. Secondly, digital oscilloscope is used to collect excitation pulse and return signal of sensors. After analyzing sensor signals in the time and frequency domains, the characteristic in the frequency domain can be found. Then, the sensors are tested in the anechoic chamber for comparison. Finally, after summarizing all the analysis and testing, the three sensors are evaluated if they meet the requirement of FAST cable tension monitoring from the perspective of EMI.

    1 Principle

    The basis of magnetic flux sensor[6](Fig.1) is the magneto-elastic effect of ferromagnetic material. The internal magnetization (magnetic permeability) of ferromagnetic material varies with the external mechanical load exerted. By this principle, when correctly calibrated, the internal force of a structure can be deduced from the magnetic permeability of the component made of ferromagnetic material. The magnetic elastic instrument is used to provide excitation voltage to magnetic flux sensor and collect feedback signals.

    The basic principle of vibrating wire strain gauge (Fig.2) is that strain of surface changes correspondingly with the internal stress of the target structure.

    Furthermore, strain gauge can be used to measure the deformation of the target structure. The deformation is assumed to be the same with the change of the distance between the front and rear block of the strain gauge. The distance between the front and rear block of the strain gauge and the internal stress of the vibrating wire can be calculated from the natural frequency of the vibrating wire, which can be measured by the excited signal of the electromagnetic coil. The feedback signals from wire strain gauge can be collected by data acquisition box, which has another function of transmitting pulse signals to wire strain gauge.

    Fig.1 Magnetic flux sensor

    Fig.2 vibrating wire strain gauge

    As a type of fiber optic sensors, fiber grating sensor is a wavelength modulation type optical fiber sensor. The external physical loads modulate the wavelength of the fiber Bragg sensor[7]. The measured wavelength is used to obtain the interested load information.

    Theoretically, Fiber Bragg Grating strain gauge does not lead to EMI. Further analysis is necessary for vibrating wire strain gauge and magnetic flux sensor. The main technical parameters of vibrating wire strain gauge and magnetic flux sensor are listed in Table 1.

    2 Signal acquisition and analysis

    To find out the EMI level of vibrating wire strain gauges and magnetic flux sensors from the perspective of interference sources, typical time domain excitation pulse and return signal are collected during normal operation of these two types of sensors. Frequency spectrum of these signals is then acquired using the Fast Fourier Transformation (FFT) analysis[8].

    Table 1 Main technical parameters of vibrating wire strain gauge and magnetic flux sensor

    Any periodic signal or a finite length signal y(t) in the time domain can be represented by series of cosine functions.

    (1)

    where fkis componential frequency k, A(fk) is the amplitude of the componential frequency k, φ(fk) is the phase of the componential frequency k. Variation curve of A(fk) along with fkis the amplitude spectrum of y(t).

    The basic process of calculating the amplitude spectrum of y(t) based on FFT is as follows[9]:

    1) The time-domain signal of y(t) is sampled with interval to beN-point discrete signal y(n) suitable for further analysis.

    2) Discrete FFT algorithm is used to speed up the calculation.

    (2)

    3) The amplitude and phase of frequency fkcan be calculated as

    k≥1

    where Re(Y(k)) is the real part of Y(k), Im(Y(k)) is the imaginary part of Y(k).

    The interference from the excitation pulse and return signal of the sensor in corresponding frequency band can be estimated following the above steps.

    For vibrating the wire strain gauge, typical excitation pulse and return signal are shown in Figs3 and 4.

    Fig.3 Excitation pulse of vibrating wire strain gauge

    Fig.4 Return signal of vibrating wire strain gauge

    For magnetic flux sensors, typical excitation pulse and return signals are shown in Figs5 and 6.

    From the analysis of signals for the vibrating wire strain gauge and magnetic flux sensor, the amplitude and phase information for these two sensors are shown in Table 2.

    Fig.5 Excitation pulse of magnetic flux sensor

    Fig.6 Return signal of magnetic flux sensor

    Table 2 Amplitude and phase information of vibrating wire strain gauge and magnetic flux sensor

    SensortypeMagneticfluxsensorVibratingwirestraingaugeAmplitude12.8V38VPhase0.5s2.5ms

    The sampling frequency of time domain signals for vibrating wire strain gauge is 6kHz. For the magnetic flux sensor, the sampling frequency is 10kHz. Using Matlab software to perform FFT for excitation pulses and return signal of these two types of sensors. Corresponding frequency spectrums are acquired, as shown in Figs7~10.

    3 EMI level test

    For equipments to be used real time in radio telescopes, EMI levels are lower than the restriction of ITU-R RA.769. Currently, it is difficult to find an anechoic chamber suitable for EMI test based on ITU-R

    Fig.7 Amplitude-frequency characteristics of excitation pulse for vibrating wire strain gauge

    Fig.8 Amplitude-frequency characteristics of return signal for vibrating wire strain gauge

    Fig.9 Amplitude-frequency characteristics of excitation pulse for magnetic flux sensor

    RA.769 in the world. As estimation, the EMI levels of these two types of sensors in operation are tested in an anechoic chamber according to the test method of GJB151A. The frequency range of 30MHz~5GHz is selected to meet the FAST operating frequency range of 70MHz~3GHz. Typical specifications of selected antennas are shown in Table 3.

    Table 3 Typical specifications of EMI test antenna for GJB151A

    Fig.11 shows the inside structure and antennas of anechoic chamber. The background noise of the anechoic chamber and test system are firstly tested shown in Fig.12. GJB151A is used to control the electromagnetic emission characteristics of electronic, mechanical and electrical equipment and subsystems for military. Fig.12 also marks the EMI limits of GJB151A between 30MHz and 5GHz. However, the background noise of the anechoic chamber can fully meet the requirement of RE102_3 of GJB151.

    Fig.11 Inside structure and antennas of anechoic chamber

    Fig.12 Background noise of the anechoic chamber and test system

    An ESU40 receiver of which the frequency range is from 20Hz to 40GHz is for measuring and analyzing the electromagnetic interference. Fig.13 shows the equipment and its operator interface.

    Fig.13 ESU40 receiver and its operator interface

    To reduce the EMI from the magnetic elastic instrument and data acquisition box, which are necessary for the operation of the two types of sensors, a shielded cabinet of class C whose shielding effect can reach 100dB in 30MHz~5GHz band is manufactured according to GGBB1-1999 test standards[10].

    Fig.14 shows the result of EMI for vibrating wire strain gauge and data acquisition box. These equipments have obvious noise with nearly 50db between 70MHz and 1GHz. Then put the data acquisition box into the shield cabinets. The power and signal wires of the sensors are connected to the instrument and data acquisition box located in the shielded cabinet through power filters and signal filters which are placed on the outer wall of the shielded cabinet. The EMI result of vibrating wire strain gauge is shown in Fig.15, as compared to the RE102_3 restrictions of GJB151. No EMI levels exceeding the background noise of anechoic chamber have been tested.

    Fig.14 EMI test results of vibrating wire strain gauge and data acquisition box

    Fig.15 EMI test results of vibrating wire strain gauge when data acquisition box in shielded cabinet

    The EMI from the data acquisition box has been effectively shielded by the shielded cabinet. The result is in accordance with the previous analysis that the vibrating wire strain gauge does not produce noise which exceeds the background noise of anechoic between 70MHz and 3GHz.

    Fig.16 shows the result of EMI for magnetic flux sensor and magnetic elastic instrument. These two equipments have obvious noise between 70MHz and 1GHz. Then the magnetic elastic instrument is put into the shield cabinets. The power and signal wires of the sensors are connected to the instrument and magnetic elastic instrument located in the shielded cabinet through power filters and signal filters which are placed on the outer wall of the shielded cabinet. The EMI result of the magnetic flux sensor is shown in Fig.13, as compared to the RE102_3 restrictions of GJB151. No EMI levels exceeding the background noise of anechoic chamber have been tested. The EMI from the magnetic elastic instrument has been effectively shielded by the shielded cabinet. The result is in accordance with the previous analysis that the magnetic flux sensor does not produce noise which exceeds the background noise of anechoic between 70MHz and 3GHz.

    Fig.16 EMI test results of magnetic flux sensor and magnetic elastic instrument

    Fig.17 EMI test results of magnetic flux sensor when magnetic elastic instrument in shielded cabinet

    From the results of the EMI test for the two types of sensors, it can be known that in current test conditions the EMI test results are consistent with the results of previous theoretical and numerical analysis of the time domain signals of the two types of sensors. Analytically, the EMI for the two types of sensors is concentrated in low frequency of several kHz, and is considerably low in frequency range of 70MHz~3GHz of FAST. No EMI levels exceeding the background noise of anechoic chamber have been tested.

    4 Conclusion

    By the principle analysis, time-domain signal analysis and EMI test, the paper evaluates the feasibility of using FBG strain gauge, vibrating wire strain gauge and magnetic flux sensor to monitor the cable tension of FAST reflector from the perspective of EMI. Theoretical analysis results show that Fiber Bragg Grating strain gauge does not lead to EMI. The time domain signal acquisition and analysis of vibrating wire strain gauge and magnetic flux sensor show that EMI of the two types of sensors concentrated in low frequency of several kHz. The EMI to the FAST telescope whose observation frequency range is 70MHz~3GHz will be considerably low. The EMI test results are consistent with the results of previous theoretical and numerical analysis of the time domain signals of the two types of sensors. No EMI levels exceeding the background noise of anechoic chamber have been tested. Based on EMI, in the cases of properly filtered, FBG strain gauge, vibrating wire strain gauge and magnetic flux sensor are all suitable for the monitoring of cable tension of FAST. Under the director of these analyses, these three sensors have been used to the monitoring of cable tension for FAST.

    With the astronomical radio telescope developing toward the direction of large-scale, high-precision and

    high sensitivity, health monitoring of its main structure is growing. The evaluation of the three types commonly used monitoring sensors in this paper from the perspective of EMI has some referential significance to the selection of monitoring equipment for other radio telescope or large structures.

    [1] Nan R D, Ren G X, Zhu W B, et al. Adaptive cable mesh reflector for the FAST.ActaAstronomicaSinica, 2003, 44: 13-18

    [2] Qiu Y H. A novel design for giant radio telescopes with an active spherical main reflector.ChineseJournalofAstronomyandAstrophysics, 1998, 22(3): 361-368

    [3] Qian H L, Fan F, Shen Z Z, et al. The overall network analysis of the support structure of FAST reflector surface.JournalofHarbinInstituteofTechnology, 2005, 37(6):750-752

    [4] RECOMMENDATION ITU-R RA.769-2: Protection criteria used for radio astronomical measurements. ITU-R: ITU-Radio Communications Sector. 2003

    [5] GJB151. Military equipment and subsystems electromagnetic emissions and susceptibility requirements. China: The Commission of Science Technology and Industry for National Defense. 1997

    [6] Yamada K, Shoji S, Isobe Y. Nondestructive evaluations of iron-based material by magnetic diagnosis tools.InternationalJournalofAppliedElectromagneticsandMechanics, 2000, 11: 27-38

    [7] Zhang X S, Du Y L, Ning C X. A new monitoring method of cable tension of cable-stayed bridge—fiber Bragg grating method.JournalofCentralSouthUniversityofTechnology(English Edition). 2005, 12: 261

    [8] Zhang X M, Zhao Z H, Meng J, et al. EMI spectrum analysis based on FFT with consideration of measurement bandwidth effect.ProceedingsoftheCSEE, 2010, 30(12): 117 (In Chinese)

    [9] Tian W Y, Wu Y C, Li Z M, et al. EMI analysis of PCB excited by external incident wave using a hybrid S-matrix.InternationalJournalofAppliedElectromagneticsandMechanics. 2000, 11: 27-38

    [10] GGBB1-1999.Information Device electromagnetic leakage emission limits. China: National Security Bureau Evaluation Center. 1999

    Zhu Ming, born in 1985. He is an engineer and a Ph.D student in National Astronomical Observatories, Chinese Academy of Sciences. He received his M.S. degrees from Beijing Jiaotong University in 2008. He also received his B.S. degrees from Shandong Jiaotong University in 2006. His research interests include structure health monitoring and system reliability.

    10.3772/j.issn.1006-6748.2016.02.004

    ①Supported by the National Natural Science Foundation of China (No. 11173035, 11273036, 11303059).

    ②To whom correspondence should be addressed. E-mail: mzhu@bao.ac.cnReceived on Jan. 20, 2015

    久久精品熟女亚洲av麻豆精品| 3wmmmm亚洲av在线观看| 激情五月婷婷亚洲| 热99国产精品久久久久久7| 日本黄色片子视频| 尾随美女入室| 国产精品一国产av| 黄色怎么调成土黄色| 亚洲精品第二区| 大又大粗又爽又黄少妇毛片口| 99视频精品全部免费 在线| 日韩精品有码人妻一区| 久久精品久久精品一区二区三区| 热re99久久精品国产66热6| 少妇被粗大的猛进出69影院 | 日韩av不卡免费在线播放| 亚洲av.av天堂| av在线播放精品| 韩国高清视频一区二区三区| 国产毛片在线视频| av在线观看视频网站免费| 多毛熟女@视频| 女性被躁到高潮视频| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 成人国产av品久久久| 久久鲁丝午夜福利片| 大香蕉久久成人网| 视频中文字幕在线观看| 亚洲国产成人一精品久久久| 欧美最新免费一区二区三区| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 啦啦啦啦在线视频资源| 国产成人freesex在线| av在线观看视频网站免费| 成人影院久久| 蜜桃国产av成人99| 亚洲,欧美,日韩| 只有这里有精品99| 高清不卡的av网站| 亚洲少妇的诱惑av| 国产高清不卡午夜福利| 黑人高潮一二区| av电影中文网址| 国产在线一区二区三区精| 性高湖久久久久久久久免费观看| 日日撸夜夜添| 五月天丁香电影| 在线观看一区二区三区激情| 精品国产露脸久久av麻豆| 亚洲人成网站在线播| 日韩欧美精品免费久久| 久久久久久久亚洲中文字幕| 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 99久国产av精品国产电影| 老女人水多毛片| 国产有黄有色有爽视频| 免费久久久久久久精品成人欧美视频 | 亚洲美女视频黄频| 中文字幕精品免费在线观看视频 | 免费观看在线日韩| 中文精品一卡2卡3卡4更新| 久久久久网色| 一区二区日韩欧美中文字幕 | 亚洲av成人精品一二三区| 91精品国产国语对白视频| 熟妇人妻不卡中文字幕| 熟女电影av网| √禁漫天堂资源中文www| 国产成人aa在线观看| 一区二区日韩欧美中文字幕 | 国产极品粉嫩免费观看在线 | 日本黄色日本黄色录像| 国产精品无大码| 欧美日韩视频高清一区二区三区二| 热re99久久精品国产66热6| 国产探花极品一区二区| 日日撸夜夜添| 熟女人妻精品中文字幕| 午夜福利,免费看| 欧美精品一区二区免费开放| 两个人的视频大全免费| 国产亚洲最大av| 日韩一区二区三区影片| 欧美激情国产日韩精品一区| 最黄视频免费看| 午夜福利视频精品| 在线观看一区二区三区激情| 交换朋友夫妻互换小说| 国产成人av激情在线播放 | 国产女主播在线喷水免费视频网站| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| 免费人成在线观看视频色| 日韩人妻高清精品专区| 中国国产av一级| 成人二区视频| 久久精品人人爽人人爽视色| 免费久久久久久久精品成人欧美视频 | 精品久久久精品久久久| h视频一区二区三区| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久 | 一边摸一边做爽爽视频免费| 最新中文字幕久久久久| 乱人伦中国视频| 亚洲不卡免费看| 麻豆成人av视频| freevideosex欧美| 国产成人免费观看mmmm| 高清不卡的av网站| 午夜激情福利司机影院| 欧美成人午夜免费资源| 日本91视频免费播放| 亚洲精华国产精华液的使用体验| 波野结衣二区三区在线| 欧美日韩一区二区视频在线观看视频在线| 午夜av观看不卡| 午夜激情久久久久久久| 免费观看无遮挡的男女| 中文乱码字字幕精品一区二区三区| 亚洲国产欧美日韩在线播放| 精品视频人人做人人爽| 成人亚洲精品一区在线观看| 一级,二级,三级黄色视频| 久久久久视频综合| 啦啦啦视频在线资源免费观看| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| a级毛片免费高清观看在线播放| a级毛色黄片| 一个人看视频在线观看www免费| 99热国产这里只有精品6| 精品国产国语对白av| 免费少妇av软件| 亚洲精品日韩在线中文字幕| 毛片一级片免费看久久久久| 99久久精品一区二区三区| freevideosex欧美| 一级毛片我不卡| 美女中出高潮动态图| 亚洲精品自拍成人| 久久午夜福利片| 亚洲av成人精品一区久久| 天天躁夜夜躁狠狠久久av| 黄色怎么调成土黄色| 亚洲精品一区蜜桃| freevideosex欧美| 国产在视频线精品| 人妻一区二区av| 国产欧美日韩综合在线一区二区| 久久久久网色| 成人免费观看视频高清| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 在线看a的网站| 成人影院久久| 久久久a久久爽久久v久久| 久久久久久久久久久久大奶| 99久久综合免费| 日本欧美视频一区| 午夜av观看不卡| 一级毛片我不卡| 赤兔流量卡办理| 观看av在线不卡| 一本大道久久a久久精品| 国产精品国产av在线观看| 日韩中字成人| 黄色视频在线播放观看不卡| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图 | 国产熟女欧美一区二区| 美女xxoo啪啪120秒动态图| 国产深夜福利视频在线观看| 国产极品天堂在线| av电影中文网址| 久久毛片免费看一区二区三区| 国产一区二区在线观看日韩| 国产成人aa在线观看| 免费大片黄手机在线观看| 亚洲精品乱久久久久久| 如何舔出高潮| 精品人妻偷拍中文字幕| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 日日撸夜夜添| 晚上一个人看的免费电影| 精品熟女少妇av免费看| 中文字幕av电影在线播放| 日韩视频在线欧美| 日韩制服骚丝袜av| 我要看黄色一级片免费的| 韩国高清视频一区二区三区| 精品久久久久久久久av| av又黄又爽大尺度在线免费看| 中文字幕精品免费在线观看视频 | 丰满饥渴人妻一区二区三| 久久久久久久国产电影| 国产高清三级在线| 熟女av电影| 天堂中文最新版在线下载| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美清纯卡通| 欧美精品高潮呻吟av久久| 国产免费福利视频在线观看| 亚洲美女视频黄频| av国产精品久久久久影院| a 毛片基地| 亚洲国产精品国产精品| 在线观看www视频免费| 国产成人午夜福利电影在线观看| 你懂的网址亚洲精品在线观看| 日韩大片免费观看网站| 人妻人人澡人人爽人人| 亚洲不卡免费看| 亚洲av二区三区四区| 日韩中字成人| 校园人妻丝袜中文字幕| 亚洲国产欧美日韩在线播放| 久久毛片免费看一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲欧美清纯卡通| 看十八女毛片水多多多| 一级a做视频免费观看| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看 | 3wmmmm亚洲av在线观看| 亚洲五月色婷婷综合| 性高湖久久久久久久久免费观看| 精品一区在线观看国产| 少妇精品久久久久久久| 人人妻人人澡人人看| 久久久久国产精品人妻一区二区| 高清午夜精品一区二区三区| 久久 成人 亚洲| av专区在线播放| 少妇人妻久久综合中文| 亚洲成人一二三区av| 永久网站在线| 精品国产国语对白av| 97超碰精品成人国产| 久久久久久伊人网av| 国产视频内射| 久久热精品热| 亚洲av免费高清在线观看| 国产一区二区三区综合在线观看 | 欧美日韩av久久| 波野结衣二区三区在线| 亚洲欧美日韩卡通动漫| 日韩成人伦理影院| 一级a做视频免费观看| 伊人久久国产一区二区| 一区二区三区精品91| 国产精品嫩草影院av在线观看| 国产精品一区二区三区四区免费观看| 中文字幕最新亚洲高清| 一级毛片aaaaaa免费看小| 亚洲av成人精品一二三区| 国产视频内射| 亚洲精品日韩在线中文字幕| 午夜激情av网站| .国产精品久久| 99九九线精品视频在线观看视频| 日韩欧美一区视频在线观看| 大码成人一级视频| 午夜福利视频在线观看免费| 日本wwww免费看| 国产亚洲一区二区精品| 日韩av不卡免费在线播放| 亚洲综合精品二区| 亚洲经典国产精华液单| 久久精品久久精品一区二区三区| 久久久久久久久久成人| av天堂久久9| 国产成人精品一,二区| 久久精品国产自在天天线| 亚洲欧美日韩另类电影网站| 91午夜精品亚洲一区二区三区| 人妻人人澡人人爽人人| 色网站视频免费| 免费观看性生交大片5| 人妻 亚洲 视频| 我的女老师完整版在线观看| 亚洲精品一区蜜桃| 亚洲怡红院男人天堂| 啦啦啦啦在线视频资源| 亚洲精品,欧美精品| 成年人午夜在线观看视频| 最近中文字幕2019免费版| 亚洲精品久久午夜乱码| 亚洲性久久影院| √禁漫天堂资源中文www| 午夜福利视频在线观看免费| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 99热网站在线观看| 精品99又大又爽又粗少妇毛片| 国产精品国产三级专区第一集| av女优亚洲男人天堂| 全区人妻精品视频| 国产在视频线精品| 国产av精品麻豆| av国产精品久久久久影院| 在线播放无遮挡| √禁漫天堂资源中文www| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 亚洲不卡免费看| 男女边摸边吃奶| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院 | 日本与韩国留学比较| 亚洲欧美中文字幕日韩二区| 久久99一区二区三区| 国模一区二区三区四区视频| 国产av精品麻豆| 国产精品久久久久久av不卡| 久久久久久久久久久免费av| 91久久精品国产一区二区成人| 高清视频免费观看一区二区| 18禁在线播放成人免费| 欧美人与善性xxx| 久久久久人妻精品一区果冻| av在线老鸭窝| 久久久午夜欧美精品| 校园人妻丝袜中文字幕| 另类精品久久| 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频| av线在线观看网站| 大陆偷拍与自拍| 激情五月婷婷亚洲| 老司机亚洲免费影院| 午夜福利,免费看| 国产精品无大码| 91精品伊人久久大香线蕉| 99热这里只有精品一区| 在线看a的网站| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 国产精品久久久久久久电影| 午夜91福利影院| 女性生殖器流出的白浆| 毛片一级片免费看久久久久| 久久国产精品大桥未久av| av卡一久久| 成人免费观看视频高清| av国产久精品久网站免费入址| 伦理电影大哥的女人| 亚洲色图综合在线观看| 久久精品人人爽人人爽视色| 午夜老司机福利剧场| 久久av网站| 狂野欧美激情性xxxx在线观看| 另类亚洲欧美激情| 18禁在线播放成人免费| 不卡视频在线观看欧美| 亚洲,一卡二卡三卡| 91精品三级在线观看| 在线观看美女被高潮喷水网站| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 亚洲在久久综合| 精品少妇久久久久久888优播| 色5月婷婷丁香| 欧美性感艳星| 亚洲欧美色中文字幕在线| av播播在线观看一区| 少妇猛男粗大的猛烈进出视频| 亚洲精品乱码久久久v下载方式| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 久久热精品热| 亚洲综合精品二区| 免费大片黄手机在线观看| 国产亚洲午夜精品一区二区久久| 中文字幕制服av| 亚洲av欧美aⅴ国产| 成人无遮挡网站| 人妻制服诱惑在线中文字幕| 一级片'在线观看视频| 亚洲人成网站在线播| 精品国产露脸久久av麻豆| 亚洲综合色网址| 精品99又大又爽又粗少妇毛片| 这个男人来自地球电影免费观看 | 国产色婷婷99| 国产极品粉嫩免费观看在线 | 久久鲁丝午夜福利片| 黑人猛操日本美女一级片| 国产亚洲精品第一综合不卡 | 亚洲国产av新网站| 韩国av在线不卡| 成人毛片60女人毛片免费| 热re99久久国产66热| 国产在线视频一区二区| 久久影院123| 亚洲三级黄色毛片| 国产成人免费观看mmmm| 狠狠精品人妻久久久久久综合| 久久99精品国语久久久| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 久久97久久精品| 尾随美女入室| 黑人猛操日本美女一级片| 亚洲三级黄色毛片| 色吧在线观看| 亚洲人成网站在线播| av播播在线观看一区| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 国精品久久久久久国模美| 亚洲精品一二三| 一级a做视频免费观看| 午夜福利视频在线观看免费| av福利片在线| 妹子高潮喷水视频| 永久免费av网站大全| 99久久综合免费| 99国产精品免费福利视频| a级毛片免费高清观看在线播放| 在线观看一区二区三区激情| 亚洲怡红院男人天堂| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 国产精品熟女久久久久浪| 国产成人精品在线电影| 校园人妻丝袜中文字幕| 国产又色又爽无遮挡免| 免费不卡的大黄色大毛片视频在线观看| 女的被弄到高潮叫床怎么办| 这个男人来自地球电影免费观看 | 自线自在国产av| 国产精品一国产av| 亚洲精品成人av观看孕妇| 天天操日日干夜夜撸| 在线观看免费高清a一片| a级片在线免费高清观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| a级毛色黄片| 满18在线观看网站| 插阴视频在线观看视频| 成年人免费黄色播放视频| 中文字幕最新亚洲高清| 免费少妇av软件| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 亚洲美女黄色视频免费看| 免费观看的影片在线观看| 人妻制服诱惑在线中文字幕| 久久综合国产亚洲精品| 成人手机av| 亚洲,一卡二卡三卡| 国产毛片在线视频| 男女边吃奶边做爰视频| 国产成人精品一,二区| 精品一区二区免费观看| 如何舔出高潮| 日本av免费视频播放| 一级黄片播放器| 22中文网久久字幕| 中文字幕精品免费在线观看视频 | 九九在线视频观看精品| 热re99久久国产66热| 大香蕉久久网| 9色porny在线观看| 熟女av电影| 97在线视频观看| 国产免费又黄又爽又色| 99久久中文字幕三级久久日本| 亚洲av在线观看美女高潮| 波野结衣二区三区在线| 久久久精品94久久精品| 一级爰片在线观看| 亚洲国产av影院在线观看| 久久久久久久大尺度免费视频| 91国产中文字幕| 啦啦啦啦在线视频资源| 国产精品一国产av| 国产欧美日韩一区二区三区在线 | 自线自在国产av| 日韩伦理黄色片| 欧美丝袜亚洲另类| av在线观看视频网站免费| 少妇熟女欧美另类| 午夜日本视频在线| 一级黄片播放器| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 亚洲av欧美aⅴ国产| 国产片特级美女逼逼视频| 满18在线观看网站| 亚洲av免费高清在线观看| 制服丝袜香蕉在线| 国产精品久久久久成人av| 夜夜看夜夜爽夜夜摸| 美女cb高潮喷水在线观看| 成人亚洲欧美一区二区av| 午夜91福利影院| 美女脱内裤让男人舔精品视频| 成人无遮挡网站| 国产av精品麻豆| 一级毛片我不卡| 在线天堂最新版资源| 一本久久精品| av.在线天堂| 色婷婷久久久亚洲欧美| 满18在线观看网站| 在现免费观看毛片| 高清黄色对白视频在线免费看| 国内精品宾馆在线| 免费观看av网站的网址| 春色校园在线视频观看| 欧美三级亚洲精品| 热99国产精品久久久久久7| 欧美xxⅹ黑人| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 在线 av 中文字幕| 亚洲av欧美aⅴ国产| 欧美精品亚洲一区二区| 亚洲精品乱码久久久久久按摩| 亚洲人与动物交配视频| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 国产精品成人在线| 91精品国产九色| 日韩精品有码人妻一区| 久久精品国产亚洲av天美| 国产av精品麻豆| 在线观看免费高清a一片| 欧美日韩综合久久久久久| 夜夜骑夜夜射夜夜干| 三级国产精品欧美在线观看| 色婷婷久久久亚洲欧美| 亚洲av欧美aⅴ国产| 亚洲欧美日韩另类电影网站| 免费人妻精品一区二区三区视频| 超碰97精品在线观看| 成人黄色视频免费在线看| 三上悠亚av全集在线观看| 极品人妻少妇av视频| 丝袜喷水一区| 一级片'在线观看视频| 久久这里有精品视频免费| 九色成人免费人妻av| 久久久精品免费免费高清| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三| av国产精品久久久久影院| 国产在线免费精品| 久久韩国三级中文字幕| 成人免费观看视频高清| 人妻人人澡人人爽人人| 满18在线观看网站| 最近2019中文字幕mv第一页| 亚洲一区二区三区欧美精品| 免费看av在线观看网站| 国产国语露脸激情在线看| 精品亚洲成a人片在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲第一av免费看| 精品午夜福利在线看| 久久婷婷青草| 制服人妻中文乱码| 人妻制服诱惑在线中文字幕| 好男人视频免费观看在线| 狠狠婷婷综合久久久久久88av| 老司机影院成人| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久久久免| 日韩制服骚丝袜av| 亚洲av成人精品一区久久| 精品久久国产蜜桃| 国产成人一区二区在线| 91久久精品国产一区二区成人| 黑丝袜美女国产一区| 在线 av 中文字幕| 国产av码专区亚洲av| 下体分泌物呈黄色| 国产精品偷伦视频观看了| 免费黄网站久久成人精品| 成人国语在线视频| 日韩一区二区视频免费看| 亚洲av电影在线观看一区二区三区| www.av在线官网国产| av电影中文网址| 日韩av不卡免费在线播放| 麻豆精品久久久久久蜜桃| 99热国产这里只有精品6| 久久久国产欧美日韩av| 国产男女内射视频| 18+在线观看网站| 男女国产视频网站| www.av在线官网国产| 中文字幕av电影在线播放| 欧美三级亚洲精品| 少妇人妻精品综合一区二区| 国产熟女午夜一区二区三区 | 少妇人妻久久综合中文| 亚洲欧美色中文字幕在线| 欧美另类一区| 国产在线免费精品| 亚洲四区av| 免费高清在线观看视频在线观看| 亚洲人成网站在线播| 自拍欧美九色日韩亚洲蝌蚪91| 日韩在线高清观看一区二区三区| 亚洲欧美日韩卡通动漫|