• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of cable tension sensors of FAST reflector from the perspective of EMI①

    2016-12-05 01:28:02ZhuMingWangQimingDennisEganWuMingchangSunXiao
    High Technology Letters 2016年2期

    Zhu Ming(朱 明), Wang Qiming, Dennis Egan, Wu Mingchang, Sun Xiao

    (*National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, P.R.China) (**National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA)

    ?

    Evaluation of cable tension sensors of FAST reflector from the perspective of EMI①

    Zhu Ming(朱 明)②*, Wang Qiming*, Dennis Egan**, Wu Mingchang*, Sun Xiao*

    (*National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, P.R.China) (**National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA)

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

    five-hundred-meter aperture spherical radio telescope (FAST), cable tension monitoring, magnetic flux, vibrating wire, fiber Bragg, electro magnetic interference (EMI)

    0 Introduction

    Five-hundred meter aperture spherical radio Telescope (FAST), a project belonging to the National “Eleventh Five-Year” major scientific projects, will be the world’s largest single-dish radio telescope upon its completion. FAST will work in the frequency ranging from 70MHz to 3GHz[1].

    As one of the three independent innovations of FAST, a main active reflector is realized through the initiative configuration of the cable-net. The initiative configuration of the cable-net will be controlled to form series of 300m-aperture paraboloids in different regions of the 500m-aperture reflector[2].

    To acquire the initiative displacement characteristics of the telescope, a cable net structure with about 6670 main cables and 2225 pull-down cables is used as the main supporting structure to support its reflecting panels. Actuators are used to pull the cable net nodes by pull-down cables to form a series of dynamic 300m diameter paraboloids to seek and track astronomical radio sources. The cable elements will experience elastic deformation in operation. The expected long-term operation of FAST determines that the cable elements will withstand long-term, reciprocating fatigue loads. The fatigue stress range for the cable-net structure is about 500MPa which is more than twice as defined by related national standard[3]. Therefore, for the large-span, high-precision cable net structure, long-term monitoring and assessment of cable tension must be implemented for necessary and timely maintenance. Cable tension monitoring is of great significance in evaluating the condition of the supporting structure FAST reflector.

    Several types of methods for cable tension measurement have been investigated, which include magneto elastic, anchor cable, fiber Bragg grating, smart cable, frequency method, resistance strain gauge, three point loading flexure, vibrating wire strain gauge method and Fiber grating strain gauge method and so on. The FAST cable-net will experience high stress amplitude tension and must meet 30 years life; two kinds of sensors are not suitable for the cable tension monitoring requirements of FAST, which are series cable sensors and methods for applying additional stress to the cable. By principle analysis and feasibility screening, magnetic flux method, vibrating wire strain gauge method and FBG strain gauge method have been checked for FAST cable tension monitoring. In addition to the general principles and performance requirements, FAST have special requirements for EMI of electronic equipments, which must meet the standards of the ITU RA769[4], whose EMI requirements are more stringent than GJB151A[5]. Therefore, the three cable tension measurement methods should be analyzed from the perspective of EMI.

    With the background of cable tension monitoring of FAST, the paper aims to select the most appropriate cable tension monitoring sensor, which will be evaluated in the view of EMI. Firstly, the three sensors are theoretically screened by analyzing the fundamentals to decide if further analysis is necessary. Secondly, digital oscilloscope is used to collect excitation pulse and return signal of sensors. After analyzing sensor signals in the time and frequency domains, the characteristic in the frequency domain can be found. Then, the sensors are tested in the anechoic chamber for comparison. Finally, after summarizing all the analysis and testing, the three sensors are evaluated if they meet the requirement of FAST cable tension monitoring from the perspective of EMI.

    1 Principle

    The basis of magnetic flux sensor[6](Fig.1) is the magneto-elastic effect of ferromagnetic material. The internal magnetization (magnetic permeability) of ferromagnetic material varies with the external mechanical load exerted. By this principle, when correctly calibrated, the internal force of a structure can be deduced from the magnetic permeability of the component made of ferromagnetic material. The magnetic elastic instrument is used to provide excitation voltage to magnetic flux sensor and collect feedback signals.

    The basic principle of vibrating wire strain gauge (Fig.2) is that strain of surface changes correspondingly with the internal stress of the target structure.

    Furthermore, strain gauge can be used to measure the deformation of the target structure. The deformation is assumed to be the same with the change of the distance between the front and rear block of the strain gauge. The distance between the front and rear block of the strain gauge and the internal stress of the vibrating wire can be calculated from the natural frequency of the vibrating wire, which can be measured by the excited signal of the electromagnetic coil. The feedback signals from wire strain gauge can be collected by data acquisition box, which has another function of transmitting pulse signals to wire strain gauge.

    Fig.1 Magnetic flux sensor

    Fig.2 vibrating wire strain gauge

    As a type of fiber optic sensors, fiber grating sensor is a wavelength modulation type optical fiber sensor. The external physical loads modulate the wavelength of the fiber Bragg sensor[7]. The measured wavelength is used to obtain the interested load information.

    Theoretically, Fiber Bragg Grating strain gauge does not lead to EMI. Further analysis is necessary for vibrating wire strain gauge and magnetic flux sensor. The main technical parameters of vibrating wire strain gauge and magnetic flux sensor are listed in Table 1.

    2 Signal acquisition and analysis

    To find out the EMI level of vibrating wire strain gauges and magnetic flux sensors from the perspective of interference sources, typical time domain excitation pulse and return signal are collected during normal operation of these two types of sensors. Frequency spectrum of these signals is then acquired using the Fast Fourier Transformation (FFT) analysis[8].

    Table 1 Main technical parameters of vibrating wire strain gauge and magnetic flux sensor

    Any periodic signal or a finite length signal y(t) in the time domain can be represented by series of cosine functions.

    (1)

    where fkis componential frequency k, A(fk) is the amplitude of the componential frequency k, φ(fk) is the phase of the componential frequency k. Variation curve of A(fk) along with fkis the amplitude spectrum of y(t).

    The basic process of calculating the amplitude spectrum of y(t) based on FFT is as follows[9]:

    1) The time-domain signal of y(t) is sampled with interval to beN-point discrete signal y(n) suitable for further analysis.

    2) Discrete FFT algorithm is used to speed up the calculation.

    (2)

    3) The amplitude and phase of frequency fkcan be calculated as

    k≥1

    where Re(Y(k)) is the real part of Y(k), Im(Y(k)) is the imaginary part of Y(k).

    The interference from the excitation pulse and return signal of the sensor in corresponding frequency band can be estimated following the above steps.

    For vibrating the wire strain gauge, typical excitation pulse and return signal are shown in Figs3 and 4.

    Fig.3 Excitation pulse of vibrating wire strain gauge

    Fig.4 Return signal of vibrating wire strain gauge

    For magnetic flux sensors, typical excitation pulse and return signals are shown in Figs5 and 6.

    From the analysis of signals for the vibrating wire strain gauge and magnetic flux sensor, the amplitude and phase information for these two sensors are shown in Table 2.

    Fig.5 Excitation pulse of magnetic flux sensor

    Fig.6 Return signal of magnetic flux sensor

    Table 2 Amplitude and phase information of vibrating wire strain gauge and magnetic flux sensor

    SensortypeMagneticfluxsensorVibratingwirestraingaugeAmplitude12.8V38VPhase0.5s2.5ms

    The sampling frequency of time domain signals for vibrating wire strain gauge is 6kHz. For the magnetic flux sensor, the sampling frequency is 10kHz. Using Matlab software to perform FFT for excitation pulses and return signal of these two types of sensors. Corresponding frequency spectrums are acquired, as shown in Figs7~10.

    3 EMI level test

    For equipments to be used real time in radio telescopes, EMI levels are lower than the restriction of ITU-R RA.769. Currently, it is difficult to find an anechoic chamber suitable for EMI test based on ITU-R

    Fig.7 Amplitude-frequency characteristics of excitation pulse for vibrating wire strain gauge

    Fig.8 Amplitude-frequency characteristics of return signal for vibrating wire strain gauge

    Fig.9 Amplitude-frequency characteristics of excitation pulse for magnetic flux sensor

    RA.769 in the world. As estimation, the EMI levels of these two types of sensors in operation are tested in an anechoic chamber according to the test method of GJB151A. The frequency range of 30MHz~5GHz is selected to meet the FAST operating frequency range of 70MHz~3GHz. Typical specifications of selected antennas are shown in Table 3.

    Table 3 Typical specifications of EMI test antenna for GJB151A

    Fig.11 shows the inside structure and antennas of anechoic chamber. The background noise of the anechoic chamber and test system are firstly tested shown in Fig.12. GJB151A is used to control the electromagnetic emission characteristics of electronic, mechanical and electrical equipment and subsystems for military. Fig.12 also marks the EMI limits of GJB151A between 30MHz and 5GHz. However, the background noise of the anechoic chamber can fully meet the requirement of RE102_3 of GJB151.

    Fig.11 Inside structure and antennas of anechoic chamber

    Fig.12 Background noise of the anechoic chamber and test system

    An ESU40 receiver of which the frequency range is from 20Hz to 40GHz is for measuring and analyzing the electromagnetic interference. Fig.13 shows the equipment and its operator interface.

    Fig.13 ESU40 receiver and its operator interface

    To reduce the EMI from the magnetic elastic instrument and data acquisition box, which are necessary for the operation of the two types of sensors, a shielded cabinet of class C whose shielding effect can reach 100dB in 30MHz~5GHz band is manufactured according to GGBB1-1999 test standards[10].

    Fig.14 shows the result of EMI for vibrating wire strain gauge and data acquisition box. These equipments have obvious noise with nearly 50db between 70MHz and 1GHz. Then put the data acquisition box into the shield cabinets. The power and signal wires of the sensors are connected to the instrument and data acquisition box located in the shielded cabinet through power filters and signal filters which are placed on the outer wall of the shielded cabinet. The EMI result of vibrating wire strain gauge is shown in Fig.15, as compared to the RE102_3 restrictions of GJB151. No EMI levels exceeding the background noise of anechoic chamber have been tested.

    Fig.14 EMI test results of vibrating wire strain gauge and data acquisition box

    Fig.15 EMI test results of vibrating wire strain gauge when data acquisition box in shielded cabinet

    The EMI from the data acquisition box has been effectively shielded by the shielded cabinet. The result is in accordance with the previous analysis that the vibrating wire strain gauge does not produce noise which exceeds the background noise of anechoic between 70MHz and 3GHz.

    Fig.16 shows the result of EMI for magnetic flux sensor and magnetic elastic instrument. These two equipments have obvious noise between 70MHz and 1GHz. Then the magnetic elastic instrument is put into the shield cabinets. The power and signal wires of the sensors are connected to the instrument and magnetic elastic instrument located in the shielded cabinet through power filters and signal filters which are placed on the outer wall of the shielded cabinet. The EMI result of the magnetic flux sensor is shown in Fig.13, as compared to the RE102_3 restrictions of GJB151. No EMI levels exceeding the background noise of anechoic chamber have been tested. The EMI from the magnetic elastic instrument has been effectively shielded by the shielded cabinet. The result is in accordance with the previous analysis that the magnetic flux sensor does not produce noise which exceeds the background noise of anechoic between 70MHz and 3GHz.

    Fig.16 EMI test results of magnetic flux sensor and magnetic elastic instrument

    Fig.17 EMI test results of magnetic flux sensor when magnetic elastic instrument in shielded cabinet

    From the results of the EMI test for the two types of sensors, it can be known that in current test conditions the EMI test results are consistent with the results of previous theoretical and numerical analysis of the time domain signals of the two types of sensors. Analytically, the EMI for the two types of sensors is concentrated in low frequency of several kHz, and is considerably low in frequency range of 70MHz~3GHz of FAST. No EMI levels exceeding the background noise of anechoic chamber have been tested.

    4 Conclusion

    By the principle analysis, time-domain signal analysis and EMI test, the paper evaluates the feasibility of using FBG strain gauge, vibrating wire strain gauge and magnetic flux sensor to monitor the cable tension of FAST reflector from the perspective of EMI. Theoretical analysis results show that Fiber Bragg Grating strain gauge does not lead to EMI. The time domain signal acquisition and analysis of vibrating wire strain gauge and magnetic flux sensor show that EMI of the two types of sensors concentrated in low frequency of several kHz. The EMI to the FAST telescope whose observation frequency range is 70MHz~3GHz will be considerably low. The EMI test results are consistent with the results of previous theoretical and numerical analysis of the time domain signals of the two types of sensors. No EMI levels exceeding the background noise of anechoic chamber have been tested. Based on EMI, in the cases of properly filtered, FBG strain gauge, vibrating wire strain gauge and magnetic flux sensor are all suitable for the monitoring of cable tension of FAST. Under the director of these analyses, these three sensors have been used to the monitoring of cable tension for FAST.

    With the astronomical radio telescope developing toward the direction of large-scale, high-precision and

    high sensitivity, health monitoring of its main structure is growing. The evaluation of the three types commonly used monitoring sensors in this paper from the perspective of EMI has some referential significance to the selection of monitoring equipment for other radio telescope or large structures.

    [1] Nan R D, Ren G X, Zhu W B, et al. Adaptive cable mesh reflector for the FAST.ActaAstronomicaSinica, 2003, 44: 13-18

    [2] Qiu Y H. A novel design for giant radio telescopes with an active spherical main reflector.ChineseJournalofAstronomyandAstrophysics, 1998, 22(3): 361-368

    [3] Qian H L, Fan F, Shen Z Z, et al. The overall network analysis of the support structure of FAST reflector surface.JournalofHarbinInstituteofTechnology, 2005, 37(6):750-752

    [4] RECOMMENDATION ITU-R RA.769-2: Protection criteria used for radio astronomical measurements. ITU-R: ITU-Radio Communications Sector. 2003

    [5] GJB151. Military equipment and subsystems electromagnetic emissions and susceptibility requirements. China: The Commission of Science Technology and Industry for National Defense. 1997

    [6] Yamada K, Shoji S, Isobe Y. Nondestructive evaluations of iron-based material by magnetic diagnosis tools.InternationalJournalofAppliedElectromagneticsandMechanics, 2000, 11: 27-38

    [7] Zhang X S, Du Y L, Ning C X. A new monitoring method of cable tension of cable-stayed bridge—fiber Bragg grating method.JournalofCentralSouthUniversityofTechnology(English Edition). 2005, 12: 261

    [8] Zhang X M, Zhao Z H, Meng J, et al. EMI spectrum analysis based on FFT with consideration of measurement bandwidth effect.ProceedingsoftheCSEE, 2010, 30(12): 117 (In Chinese)

    [9] Tian W Y, Wu Y C, Li Z M, et al. EMI analysis of PCB excited by external incident wave using a hybrid S-matrix.InternationalJournalofAppliedElectromagneticsandMechanics. 2000, 11: 27-38

    [10] GGBB1-1999.Information Device electromagnetic leakage emission limits. China: National Security Bureau Evaluation Center. 1999

    Zhu Ming, born in 1985. He is an engineer and a Ph.D student in National Astronomical Observatories, Chinese Academy of Sciences. He received his M.S. degrees from Beijing Jiaotong University in 2008. He also received his B.S. degrees from Shandong Jiaotong University in 2006. His research interests include structure health monitoring and system reliability.

    10.3772/j.issn.1006-6748.2016.02.004

    ①Supported by the National Natural Science Foundation of China (No. 11173035, 11273036, 11303059).

    ②To whom correspondence should be addressed. E-mail: mzhu@bao.ac.cnReceived on Jan. 20, 2015

    99精国产麻豆久久婷婷| 久久性视频一级片| 亚洲第一欧美日韩一区二区三区 | 国产成人av激情在线播放| 欧美国产精品va在线观看不卡| 纯流量卡能插随身wifi吗| 亚洲精品一二三| 中文字幕人妻丝袜制服| 亚洲成国产人片在线观看| 一级毛片女人18水好多| 久久国产精品影院| 高清视频免费观看一区二区| 日本av免费视频播放| 黑人猛操日本美女一级片| av不卡在线播放| 亚洲全国av大片| 欧美黄色片欧美黄色片| 久久精品亚洲av国产电影网| 欧美大码av| 精品国产乱码久久久久久男人| 美女主播在线视频| 一级毛片精品| 免费在线观看影片大全网站| 欧美激情极品国产一区二区三区| 欧美日韩福利视频一区二区| 亚洲国产欧美网| 在线亚洲精品国产二区图片欧美| 亚洲精品粉嫩美女一区| 人人妻人人澡人人看| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 久久av网站| 视频在线观看一区二区三区| 高清在线国产一区| 亚洲精品成人av观看孕妇| 国产主播在线观看一区二区| 久久精品91无色码中文字幕| 一进一出抽搐动态| 大片电影免费在线观看免费| 美女扒开内裤让男人捅视频| 精品国产乱码久久久久久小说| 久久中文字幕人妻熟女| 久久中文看片网| 日韩成人在线观看一区二区三区| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 日韩有码中文字幕| 高清在线国产一区| www日本在线高清视频| 国产无遮挡羞羞视频在线观看| 丁香欧美五月| 久久精品aⅴ一区二区三区四区| 欧美午夜高清在线| 老司机影院毛片| 久久精品91无色码中文字幕| 黄色片一级片一级黄色片| 中文字幕色久视频| 青青草视频在线视频观看| av电影中文网址| 丰满饥渴人妻一区二区三| 亚洲伊人色综图| 在线永久观看黄色视频| 成年人免费黄色播放视频| 亚洲国产精品一区二区三区在线| 国产精品成人在线| 国产97色在线日韩免费| 高清在线国产一区| 高潮久久久久久久久久久不卡| 一级毛片精品| 一级毛片女人18水好多| 美女福利国产在线| 一本久久精品| 国产精品亚洲一级av第二区| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久国产电影| 午夜福利乱码中文字幕| 亚洲熟妇熟女久久| videosex国产| 久久亚洲真实| 视频区图区小说| 在线播放国产精品三级| 夫妻午夜视频| 我要看黄色一级片免费的| 少妇精品久久久久久久| 超色免费av| 我的亚洲天堂| 极品少妇高潮喷水抽搐| 精品福利永久在线观看| 国产亚洲午夜精品一区二区久久| 久久婷婷成人综合色麻豆| 亚洲,欧美精品.| 麻豆av在线久日| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 99在线人妻在线中文字幕 | 制服人妻中文乱码| 999久久久精品免费观看国产| 99精品欧美一区二区三区四区| 中文欧美无线码| 久久影院123| 精品一区二区三区视频在线观看免费 | 高清在线国产一区| 国产欧美日韩一区二区三区在线| 日本a在线网址| 欧美另类亚洲清纯唯美| 欧美日韩亚洲高清精品| 少妇裸体淫交视频免费看高清 | a级毛片在线看网站| 欧美精品av麻豆av| 久久久精品区二区三区| 精品久久久久久久毛片微露脸| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 久久精品国产亚洲av香蕉五月 | 日韩熟女老妇一区二区性免费视频| 久久久久精品国产欧美久久久| 91麻豆av在线| 中文字幕av电影在线播放| av一本久久久久| www.熟女人妻精品国产| 色综合婷婷激情| 一级黄色大片毛片| 色在线成人网| 国产欧美日韩精品亚洲av| av网站免费在线观看视频| 精品一区二区三区四区五区乱码| 久久热在线av| 777久久人妻少妇嫩草av网站| 国产精品影院久久| 另类亚洲欧美激情| 精品国产一区二区三区久久久樱花| 黄片大片在线免费观看| 色播在线永久视频| 亚洲精品成人av观看孕妇| 成年动漫av网址| 久久亚洲真实| 淫妇啪啪啪对白视频| 亚洲 国产 在线| 久久人妻福利社区极品人妻图片| 亚洲国产中文字幕在线视频| 久久久久久久大尺度免费视频| 90打野战视频偷拍视频| 正在播放国产对白刺激| 乱人伦中国视频| 久久99一区二区三区| 国产高清videossex| 国产一区二区三区视频了| 日韩熟女老妇一区二区性免费视频| 日韩大片免费观看网站| 亚洲色图av天堂| 欧美黑人欧美精品刺激| 国产成人欧美在线观看 | 亚洲精品国产区一区二| 久久中文字幕一级| 国产国语露脸激情在线看| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 咕卡用的链子| 国产精品免费视频内射| 热99久久久久精品小说推荐| 麻豆av在线久日| 黄片播放在线免费| 亚洲精品中文字幕在线视频| 国产一区二区激情短视频| 欧美日韩视频精品一区| 国产精品久久电影中文字幕 | 99国产综合亚洲精品| 高清毛片免费观看视频网站 | 久久精品国产a三级三级三级| 亚洲av电影在线进入| 国产成人av教育| 亚洲欧洲日产国产| 下体分泌物呈黄色| 色在线成人网| 亚洲av日韩精品久久久久久密| 日本av免费视频播放| 国产精品一区二区在线不卡| 成年人午夜在线观看视频| 无遮挡黄片免费观看| 女性生殖器流出的白浆| 制服诱惑二区| 我的亚洲天堂| 久久精品熟女亚洲av麻豆精品| 国产av又大| 精品少妇内射三级| 久久中文看片网| 日本vs欧美在线观看视频| 一级a爱视频在线免费观看| 岛国毛片在线播放| 正在播放国产对白刺激| 免费少妇av软件| 久久性视频一级片| 午夜福利影视在线免费观看| av视频免费观看在线观看| 99热国产这里只有精品6| 亚洲一区中文字幕在线| 亚洲人成77777在线视频| √禁漫天堂资源中文www| 悠悠久久av| 国产伦人伦偷精品视频| 日日夜夜操网爽| 国产不卡一卡二| 后天国语完整版免费观看| 我要看黄色一级片免费的| 午夜福利,免费看| 国产精品亚洲av一区麻豆| 精品国产超薄肉色丝袜足j| 成在线人永久免费视频| 国产日韩一区二区三区精品不卡| 无遮挡黄片免费观看| 制服诱惑二区| 国产精品国产高清国产av | 久久久国产成人免费| 岛国在线观看网站| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 1024香蕉在线观看| 亚洲伊人久久精品综合| 国产精品久久久久久精品古装| 性色av乱码一区二区三区2| 最新美女视频免费是黄的| 精品人妻1区二区| 久久久久国内视频| 激情在线观看视频在线高清 | 一进一出抽搐动态| 妹子高潮喷水视频| cao死你这个sao货| 中文字幕高清在线视频| 精品人妻熟女毛片av久久网站| 老司机午夜福利在线观看视频 | 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 91精品三级在线观看| 亚洲第一欧美日韩一区二区三区 | 高清毛片免费观看视频网站 | 老司机福利观看| 三上悠亚av全集在线观看| 99国产综合亚洲精品| 久久这里只有精品19| 国产男女超爽视频在线观看| 欧美亚洲 丝袜 人妻 在线| 国产精品久久电影中文字幕 | 亚洲精华国产精华精| 午夜久久久在线观看| 亚洲专区字幕在线| 成人国产一区最新在线观看| 久久国产精品大桥未久av| 久久这里只有精品19| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 黑丝袜美女国产一区| 十分钟在线观看高清视频www| 99九九在线精品视频| 国产一区二区三区视频了| 欧美老熟妇乱子伦牲交| 亚洲色图 男人天堂 中文字幕| 久久青草综合色| 亚洲成人免费av在线播放| 大香蕉久久网| 夜夜夜夜夜久久久久| 成年人黄色毛片网站| 免费观看人在逋| 久久这里只有精品19| 精品高清国产在线一区| 国产亚洲一区二区精品| 两个人免费观看高清视频| 亚洲av国产av综合av卡| 午夜激情久久久久久久| 水蜜桃什么品种好| 国产一卡二卡三卡精品| 欧美在线一区亚洲| 伦理电影免费视频| 国产精品亚洲一级av第二区| 免费在线观看完整版高清| 99香蕉大伊视频| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| 一夜夜www| 老司机福利观看| 午夜两性在线视频| 老汉色av国产亚洲站长工具| 一区二区av电影网| 亚洲欧美一区二区三区久久| 91精品三级在线观看| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 精品一区二区三区视频在线观看免费 | 久久人人爽av亚洲精品天堂| 热99久久久久精品小说推荐| 老司机福利观看| 免费看a级黄色片| 亚洲人成电影免费在线| 国产高清视频在线播放一区| 中亚洲国语对白在线视频| 一本综合久久免费| 久久人妻福利社区极品人妻图片| 天天躁日日躁夜夜躁夜夜| 国产精品九九99| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 黄色丝袜av网址大全| 男女无遮挡免费网站观看| 99热网站在线观看| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 亚洲伊人色综图| 日韩有码中文字幕| 男人舔女人的私密视频| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三区在线| 在线观看免费午夜福利视频| 黄色 视频免费看| 大香蕉久久成人网| 精品国产超薄肉色丝袜足j| 亚洲精品自拍成人| 国产精品一区二区精品视频观看| 日韩人妻精品一区2区三区| 五月天丁香电影| 国产av精品麻豆| 久久 成人 亚洲| 老汉色av国产亚洲站长工具| av国产精品久久久久影院| 深夜精品福利| 91老司机精品| 亚洲精品美女久久av网站| 一级毛片电影观看| 他把我摸到了高潮在线观看 | 一二三四社区在线视频社区8| 高清在线国产一区| 一进一出好大好爽视频| 成人影院久久| 人妻一区二区av| 欧美精品av麻豆av| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 久久久欧美国产精品| 国产精品久久电影中文字幕 | 亚洲精品美女久久久久99蜜臀| 黄色丝袜av网址大全| 日韩欧美一区视频在线观看| 高清在线国产一区| 国产精品免费一区二区三区在线 | 99久久99久久久精品蜜桃| 日韩熟女老妇一区二区性免费视频| av国产精品久久久久影院| 91精品三级在线观看| 久久人人爽av亚洲精品天堂| 国产欧美日韩精品亚洲av| 色视频在线一区二区三区| 欧美午夜高清在线| 久久人人爽av亚洲精品天堂| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 国产在线免费精品| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区久久久樱花| 亚洲午夜理论影院| 国内毛片毛片毛片毛片毛片| 欧美精品啪啪一区二区三区| 69av精品久久久久久 | 中文欧美无线码| 精品国产超薄肉色丝袜足j| 成人手机av| 国产日韩欧美视频二区| 国产黄频视频在线观看| 精品国产超薄肉色丝袜足j| 成人手机av| 超碰97精品在线观看| 青草久久国产| 丝袜在线中文字幕| 日本一区二区免费在线视频| 国产精品影院久久| 可以免费在线观看a视频的电影网站| tube8黄色片| 首页视频小说图片口味搜索| 国产淫语在线视频| 国产高清国产精品国产三级| 久久av网站| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 中文字幕高清在线视频| 少妇裸体淫交视频免费看高清 | 国内毛片毛片毛片毛片毛片| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三区在线| 久久人人97超碰香蕉20202| 欧美在线黄色| 国产成人影院久久av| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| 国产成人精品久久二区二区免费| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 丝袜喷水一区| 操美女的视频在线观看| 国产欧美日韩一区二区三区在线| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 自线自在国产av| 成年人黄色毛片网站| 女同久久另类99精品国产91| av超薄肉色丝袜交足视频| 欧美日韩av久久| 亚洲av第一区精品v没综合| 黑人操中国人逼视频| 成年人免费黄色播放视频| 精品第一国产精品| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx| 久久精品国产a三级三级三级| 精品熟女少妇八av免费久了| 一级a爱视频在线免费观看| 叶爱在线成人免费视频播放| 黄片播放在线免费| 欧美精品高潮呻吟av久久| 69精品国产乱码久久久| 老熟妇乱子伦视频在线观看| 欧美国产精品va在线观看不卡| 宅男免费午夜| 亚洲天堂av无毛| 9热在线视频观看99| 国产在线免费精品| 亚洲欧洲精品一区二区精品久久久| 日韩制服丝袜自拍偷拍| 性色av乱码一区二区三区2| 淫妇啪啪啪对白视频| 亚洲伊人色综图| 久久性视频一级片| 中文字幕精品免费在线观看视频| 亚洲久久久国产精品| 亚洲国产中文字幕在线视频| 精品亚洲成国产av| bbb黄色大片| 亚洲色图av天堂| 国产精品av久久久久免费| 成人18禁在线播放| 天天躁夜夜躁狠狠躁躁| 黄色丝袜av网址大全| 五月开心婷婷网| 久久久久国产一级毛片高清牌| 欧美+亚洲+日韩+国产| 香蕉丝袜av| av网站在线播放免费| 97在线人人人人妻| 最近最新免费中文字幕在线| 天堂8中文在线网| 久久精品熟女亚洲av麻豆精品| 十分钟在线观看高清视频www| 久久久久久久国产电影| 欧美日韩视频精品一区| 一级黄色大片毛片| 久久久久久久精品吃奶| 脱女人内裤的视频| av视频免费观看在线观看| 国产亚洲欧美精品永久| 国产亚洲精品第一综合不卡| 国产成人av教育| 成人特级黄色片久久久久久久 | 人人妻人人澡人人看| 婷婷成人精品国产| 成人手机av| 欧美成人午夜精品| 视频在线观看一区二区三区| 美女国产高潮福利片在线看| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 无人区码免费观看不卡 | 丰满人妻熟妇乱又伦精品不卡| 国产伦理片在线播放av一区| 99久久99久久久精品蜜桃| 天天操日日干夜夜撸| 亚洲熟女毛片儿| 国产成人av教育| 日韩视频在线欧美| 两个人看的免费小视频| 天天添夜夜摸| 侵犯人妻中文字幕一二三四区| 欧美日韩一级在线毛片| 欧美在线黄色| 日本av手机在线免费观看| 露出奶头的视频| 曰老女人黄片| 中文字幕人妻熟女乱码| 国产精品麻豆人妻色哟哟久久| 伦理电影免费视频| 国产成人精品在线电影| 国产精品1区2区在线观看. | 亚洲国产欧美在线一区| 男女无遮挡免费网站观看| 精品一区二区三区av网在线观看 | 亚洲精品av麻豆狂野| 男女之事视频高清在线观看| 国产精品亚洲一级av第二区| 亚洲国产av影院在线观看| 在线观看免费视频网站a站| 久久99热这里只频精品6学生| 国内毛片毛片毛片毛片毛片| 国产日韩欧美视频二区| 99久久精品国产亚洲精品| 考比视频在线观看| 丝袜美足系列| 1024视频免费在线观看| av线在线观看网站| 久久香蕉激情| 少妇精品久久久久久久| 青青草视频在线视频观看| 国产有黄有色有爽视频| 丰满饥渴人妻一区二区三| 亚洲成a人片在线一区二区| 两个人免费观看高清视频| 啦啦啦视频在线资源免费观看| 满18在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 人妻久久中文字幕网| 精品少妇黑人巨大在线播放| 久久精品亚洲熟妇少妇任你| 国产欧美日韩一区二区精品| 啦啦啦免费观看视频1| 精品第一国产精品| 免费观看人在逋| 动漫黄色视频在线观看| 久久久久视频综合| 一二三四社区在线视频社区8| 免费在线观看视频国产中文字幕亚洲| 日本av免费视频播放| 亚洲欧美色中文字幕在线| 天堂8中文在线网| 性色av乱码一区二区三区2| 国产无遮挡羞羞视频在线观看| 国产单亲对白刺激| 十八禁网站网址无遮挡| 欧美精品啪啪一区二区三区| 中文字幕人妻熟女乱码| h视频一区二区三区| 真人做人爱边吃奶动态| 色精品久久人妻99蜜桃| 99国产极品粉嫩在线观看| 久久ye,这里只有精品| 亚洲av电影在线进入| 精品少妇一区二区三区视频日本电影| 极品人妻少妇av视频| 国产免费av片在线观看野外av| 色综合婷婷激情| 一边摸一边抽搐一进一小说 | 极品教师在线免费播放| 天堂俺去俺来也www色官网| 亚洲成国产人片在线观看| www.999成人在线观看| 午夜福利视频精品| 久久久久国内视频| 无遮挡黄片免费观看| 黄色怎么调成土黄色| 国产成人精品无人区| 午夜视频精品福利| 色尼玛亚洲综合影院| 成在线人永久免费视频| 精品国产超薄肉色丝袜足j| 亚洲第一欧美日韩一区二区三区 | 久久ye,这里只有精品| 久久中文字幕一级| 婷婷成人精品国产| 国产激情久久老熟女| 99re6热这里在线精品视频| 岛国在线观看网站| 国产成人av教育| 国产一卡二卡三卡精品| 欧美 亚洲 国产 日韩一| tocl精华| 国产主播在线观看一区二区| 亚洲欧美一区二区三区久久| 日本av免费视频播放| 国产精品香港三级国产av潘金莲| 91精品国产国语对白视频| 久久精品成人免费网站| 亚洲国产毛片av蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 亚洲av日韩在线播放| 欧美+亚洲+日韩+国产| 最新美女视频免费是黄的| 亚洲欧美一区二区三区黑人| 12—13女人毛片做爰片一| 黑人猛操日本美女一级片| 欧美日韩亚洲综合一区二区三区_| 蜜桃国产av成人99| 欧美中文综合在线视频| 99国产综合亚洲精品| 黄色 视频免费看| svipshipincom国产片| 亚洲人成77777在线视频| 久久久久久免费高清国产稀缺| 精品久久蜜臀av无| 国产伦理片在线播放av一区| 91精品国产国语对白视频| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女 | 精品卡一卡二卡四卡免费| 国产精品成人在线| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 亚洲天堂av无毛| 国产精品久久久人人做人人爽| 91九色精品人成在线观看| 久久香蕉激情| kizo精华| 成年人午夜在线观看视频| 99久久精品国产亚洲精品| 日本黄色日本黄色录像| 女同久久另类99精品国产91|