• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on co-simulation model of forging manipulator based on virtual prototyping①

    2016-12-05 01:27:58ZhaiFugang翟富剛ZhuHanyinWuQileiKongXiangdong
    High Technology Letters 2016年2期

    Zhai Fugang (翟富剛), Zhu Hanyin*, Wu Qilei* , Kong Xiangdong

    (*School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University),Ministry of Education of China, Qinhuangdao 066004, P.R.China) (***Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University, Qinhuangdao 066004, P.R.China)

    ?

    Study on co-simulation model of forging manipulator based on virtual prototyping①

    Zhai Fugang (翟富剛)***, Zhu Hanyin****, Wu Qilei****, Kong Xiangdong②******

    (*School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University),Ministry of Education of China, Qinhuangdao 066004, P.R.China) (***Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University, Qinhuangdao 066004, P.R.China)

    Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipulator system have been built using a variety of software, and a forging manipulator multidisciplinary co-simulation model has been also built using a method of simulation models interface. Then the simulation and experiment are finished, and the result of the experiment is in good agreement with the result of the simulation. It shows that the co-simulation model established can simulate accurately parameter changes in real time during the moving of the forging manipulator such as displacement, velocity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.

    forging manipulator, virtual prototype, co-simulation, control characteristics

    0 Introduction

    A forging manipulator is a major auxiliary equipment to realize mechanisation and automation in forging workshops[1]. It is mainly used for clamping forgings to finish cogging, upsetting, stretching and other forging processes cooperating with the press, which can increase labor productivity and improve quality of the product and reduce labor intensity[2]. In recent years, the hydraulic forging manipulator has become the mainstream of development because of compact structure, smooth working condition and convenient operation. However, with the improvement of requirements for forging process, the hydraulic forging manipulator should have more action and function, such as tongs tilting, tongs side-shifting, tongs suspension[3]. The complexity of mechanical structure of forging manipulator leads a more complex hydraulic and control system, which has become a research hotspot and difficulty[4].

    Modeling is the first step of simulation research, which determines the accuracy of the simulation results. As a whole, the forging manipulator is a system which contains mechanical, hydraulic, electric control and so on. But unfortunately, most scholars ignore the link between them when modeling research[5], that leads to poor results accuracy. The virtual prototyping (VP) is the rise of a computer aided engineering technology in the 20th century[6]. Although the core is the theory of kinematics and dynamics, the VP is not limited in application of machinery. It also includes the synthesis of many subjects such as geometric modeling, structure analysis, hydraulic transmission, electric control and so on. Since of dynamic characteristics of virtual prototype is completely close to the physical prototype, the VP has been widely used in automotive, aerospace, machinery etc. and gets huge benefits[7]. In view of this, this study aims to build a co-simulation model of forging manipulator based on VP, which includes sub-models of the mechanical system, the hydraulic system and the control system. It can play an important role for complex system modeling and optimization design of forging manipulator system.

    1 Physical prototype of forging manipulator

    The physical prototype is the basis of virtual prototype model. In this study, a capacity of 200kN/500kN.m forging manipulator is selected as physical prototype, shown in Fig.1. The parts of the hydraulic and electric control system are installed at the tail. The forging manipulator can perform seven movements, such as vehicle driving, tongs clamping, tongs rotation, tongs lifting, tongs tilting, tongs shifting and tongs swing. It is important to note that its center of gravity changes with the movement of actuator, that is the reason of virtual prototype built. As Fig.2 shows that a variety of hydraulic cylinders and motors are used to drive these actuators, which connect mechanical system and hydraulic system of the forging manipulator.

    There are several valves controlling the hydraulic cylinder or motor accordingly, which link the hydraulic system and the control system.

    Fig.1 The 200kN/500kN.m forging manipulator

    1.bump 2.unloading relief valve 3,23.accumulator 4,7,10,14,26.relief valve 5.filter 6. auxiliary pump 8,12,16,19,21.directional valve 9,25.proportional valve 11,27.motor 13,22.pilot operated check valve 15,18,20,24.cylinder 17.balance valve Fig.2 The schematic diagram of the hydraulic system

    2 Co-simulation model of forging manipulator

    Since the characteristics of virtual prototype are close to physical prototype, a co-simulation model needs to be established, which includes 3D geometry model, mechanical system sub-model, hydraulic system sub-model and control system sub-model. The relationship between these sub-models is shown in Fig.3. It can be seen that the 3D geometry model includes geometric parameters and material properties, which is a virtual device and used to show the movement of physical prototype in computer with visualization. Because of the complexity of the machinery, the sub-model of mechanical system is a multi-dynamics sub-model composed of lots of dynamics and kinematics equations, and the sub-model of hydraulic system is made up of a series of pressure and flow equations. As a connected component, the hydraulic cylinder (or motor) is used to provide force (or torque) for mechanical system sub-model, and the displacement of hydraulic cylinder (or motor) is used to solve the pressure and flow equations in real-time. And the sub-model of control system provides action signals for the valves in the hydraulic system to control motion trajectory and state of the forging manipulator. The parameter coupling relation is the basis to solve the co-simulation model of the forging manipulator.

    Fig.3 The parameter coupling principle between models

    2.1 Mechanical system modeling of the forging manipulator

    First of all, according to the engineering graphics of M-200kN/500kN, the 3D geometry model of forging manipulator is built in Pro/E, which is given to the entity information, including material density and physical properties. It also needs to import the 3D geometry model into the ADAMS (automatic dynamic analysis of mechanical system) environment to set dynamics properties, including constraint relation, applied stress, friction setting, etc. Finally, the mechanical system model of the forging manipulator is established, shown in Fig.4. As is shown, the driving wheel of cart is driven by a chain wheel on the sprocket track fixed on the ground. The gear pair is arranged between the chain wheel and the chain wheel track, and the rotation pair with dynamic friction coefficient of 0.01 and static friction coefficient of 0.02 is set between the wheels and the vehicle. The wheels walking on the tracks only play a supporting and guiding function. And the kinematic constraint of the other parts are set up according to the movement relationship of the component. In this paper, a total of 41 kinematic constraints are set up for the mechanical system sub-model of the forging manipulator, which can realize operation of all seven motions and the function of simulation.

    Fig.4 Mechanical system sub-models of forging manipulator

    2.2 Co-simulation model of the forging manipulator

    The nature of co-simulation is interconnection and interoperability of multi-discipline domain models[8]. The co-simulation is based on the unified language or the model interface. The co-simulation method based on the unified language is to establish multi-disciplinary field co-simulation with the unified language in the same software flat and adopt the same solver to solve the system. Hower, this method is not yet mature for all kinds of models and needs to be developed in order to meet the requirements of actual modeling and simulation. A method is adopted that the co-simulation is based on interface model to build the multi-disciplinary field co-simulation model, as shown in Fig.5. The hydraulic system and control system are built in AMESim (advanced modeling enviroment for performing simulation of engineering systems) environment, and all sub-models call information data of the mechanical system sub-model stored in the internal interface model to complete real-time data transmission and interaction.

    The model interface is the data channel of the multi-disciplinary co-simulation. The left of the interface shows driving parameters of the mechanical system, among which , XM1、XM2、ZM1、ZM2、SF1、SF2、XF1、CF1、CF2 and JF1 represent the driving torque of the rotating motor(number:2), the driving torque of the walking motor(number:2), the driving force of the lifting cylinder(number:2), the driving force of the tilting cylinder, the driving force of the side-shifting cylinder(number:2) and the driving force of lamping cylinder respectively. The right of the interface shows the motion parameters of the mechanical system, and the suffix _w、_v、_xrepresents rotating speed, speed and displacement of the corresponding components respectively. When the co-simulation runs, the mechanical system sub-model calculates the motion parameters equivalent to actuator automatically in different pose and load conditions of the forging manipulator and passes the data to the hydraulic system model. so the dynamic changing in the process of forging manipulator can be simulated in real time, which makes the simulation result more accurate and closer to the actual working condition. In addition, the motion trajectory and state can reappear and be monitored by calling ADAMS with 3D visualization function through interface settings. The main parameters of the co-simulation model of the forging manipulator are shown in Table 1.

    Table 1 The main parameters of the co-simulation model of the forging manipulator

    Fig.5 Forging manipulator co-simulation model

    3 Verification of the co-simulation model

    The method of verification is based on the data collected from the experiment test of physical prototype of the forging manipulator. In the same environment and conditions, the same signals as what is given in experiment are input to the co-simulation model. Comparing the simulation results obtained by the virtual test with the experimental results, the accuracy of the model is verified.

    The same environment is that the working medium and oil temperature in virtual test are the same as what are in the experiment test. In the virtual test, the oil temperature is set up to 20℃ and the working medium of the system is L-HM46 hydraulic oil. The medium property is set up as follows: oil density is 890kg/m, volume elastic modulus is 1650MPa, saturated steam pressure is 9.85kPa, gas content is 0.9% and motion viscosity is 46mm2/s(40℃). The same conditions mainly refer to the initial position of the mechanical system of the forging manipulator, the initial parameters of the hydraulic system and the given signal of the control system.

    The simulation and experimental curves of the walking motion are obtained,as is shown in Fig.6. In the figure,xrepresents the displacement of cart , v1represents the speed of cart,Srepresents the control signal given to the control valves, “100%” shows that the control valve is fully open, “0” shows that the control valve is close. It is clear that the error of the steady state value of walking displacement of cart is only 2mm under the experimental test with the value is 238mm and the simulation test with the value is 240mm, and the location accuracy reaches 99%. As is shown in Fig.6(b), the simulation curve of the walking speed of the whole trip is basically consistent with the experimental curve, which shows that the simulation model can be used to simulate the dynamic changes of the forging manipulator during walking.

    Fig.6 The simulation and experimental curve of walking cart

    The co-simulation model of the forging manipulator can not only simulate the motion trajectory and motion state of the actual physical model, but can also simulate the pressure and flow changes of the hydraulic system during the motion process, as is shown in Fig.7.

    Fig.7 The simulation and experimental curve of rotating clamp

    In Fig.7,αrepresents the angle of rotating tong,wrepresents the rotating speed of tong, P0represents the system pressure, and P1represents the inlet pressure of the rotating motor. It can be seen that the four-group simulation curves in the synchronous test are basically consistent with the experimental curves in the same given signal condition, and the location accuracy reaches 99%. At the same time, the co-simulation can simulate the pressure changes of hydraulic system of manipulator tongs well in the process of rotary motion, which is of important significance for studying the hydraulic control system of the forging manipulator.

    Hydraulic principle of clamp down action is relatively simple for that the action is completed under the self gravity and the rate of decline is controlled only by return throttle. So only the model of parallel lifting action is verified in this paper as is shown in Fig.8. In the figure, y represents the displacement of the clamp parallel lifting, v2represents the speed of clamp parallel lifting, P2represents working chamber pressure of the lifting cylinder. The curves are obtained under light load mode while the system pressure is 14MPa. As can be seen, steady displacement of parallel lifting clamp in experimental test is 1182mm, the result of virtual simulation test in the same condition is 1189 mm, so the degree of matching of displacement curve is good. As shown in Fig.8(c), due to the large

    Fig.8 Clamp parallel lift simulation and experimental curves

    clamp vertical stroke, a lot of oil is needed. When the system pressure drops to the loading pressure point set by the electromagnetic unloading relief valve, the main pump supplies the oil to the loading system, so the system pressure increases. Conversely, when the system pressure rises to what the electro-magnetic unloading relief valve has set, the main pump is unloading, and the accumulator provides oil to the system alone. So the system pressure drops. In the promotion process of clap, elevating cylinder pressure is maintained at about 7.7MPa to balance its own gravity and motion friction. Compared with the 4 group simulation curves and experimental curves, it can be seen that the simulation and experimental curves of tongs lifting agree well, which shows the simulation model of the forging manipulator established has high accuracy.

    4 Conclusions

    Based on virtual prototyping technology, a multi-discipline co-simulation model is established. The model is integrated with the multi-body dynamics solving module, hydraulic system and control system solving module. It can not only study the motion trajectory and motion state, but also study the characteristics of the hydraulic control system of forging manipulator. The establishment of co- simulation model has important significance for the optimization design of the forging manipulator system.

    The simulation model of the forging manipulator is verified by quantitative verification method. The simulation and experiment are finished, and the curves of the displacement, velocity and pressure of the synchronous test in simulation are basically consistent with the experimental curves. The results show that the co-simulation model has high accuracy, which lays the foundation for the application of the co-simulation model.

    Reference

    [1] Nowitzki W. Manipulators with mass division increase throughput and save energy in high-precision forging.MPTMetallurgicalPlantandTechnologyInternational, 2008, 31(5): 46-48

    [2] Chen K, Ma C X, Zheng M Q, et al. Optimization and mechanical accuracy reliability of a new type of forging manipulator.ChineseJournalofMechanicalEngineering(EnglishEdition), 2015, 28(2): 236-248

    [3] Xu Y D, Liu Y, Yao J T, et al. Analysis of a novel lifting mechanism for forging manipulators.ProceedingsoftheInstitutionofMechanicalEngineers,PartC:JournalofMechanicalEngineeringScience, 2015, 229(3): 528-537

    [4] Tarja T, Asko E, Taina K. Virtual prototypes reveal more development ideas: comparison between customers' evaluation of virtual and physical prototypes: This paper argues that virtual prototypes are better than physical prototypes for consumers-involved product development.VirtualandPhysicalPrototyping, 2014, 9(3): 169-180

    [5] Ren Y P, Han Q K, Zhang T X, et al. Dynamic simulation of forging manipulator based on virtual prototyping.JournalofNortheasternUniversity, 2010,31:1170-1173

    [6] Tong X X. Research of buffer equipment in forging manipulator based on virtual prototyping technology.Equipment, 2010, 4:46-48

    [7] Tie M, Fan Y S. HLA based multidisciplinary collaborative simulation framework for forging and manipulating process.LectureNotesinComputerScience, 2008,5314:1256-1264

    [8] Fu Y L, Qi X Y. AMEsimSystem Modeling and Simulation. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006

    Zhai Fugang, born in 1979, Ph.D, assistant professor, party branch secretary of the Department of Mechanical Design of Yanshan University. The primary area of research are mechanical-electrical hydraulic integration of fluid simulation, mechanical design, and heavy mechanical power transmission and control. He has published over 10 academic papers, among which there are 4 papers indexed by SCI, EI, ISTP, authorized 2 patents, and participated in more than 10 national and provincial-ministerial research projects.

    10.3772/j.issn.1006-6748.2016.02.003

    ①Supported by the National Natural Science Foundation of China (No. 51575471), and Collaborative Innovation Program Topics of Heavy Machinery of Yanshan University (2011 Program, No. ZX01-20140400-01).

    ②To whom correspondence should be addressed. E-mail: xdkong@ysu.edu.cnReceived on May 7, 2015

    岛国毛片在线播放| 久久久精品免费免费高清| 精品国产一区二区三区久久久樱花| av在线播放精品| 最近最新中文字幕大全免费视频| 性色av一级| 国产av又大| 日韩视频在线欧美| 中文字幕av电影在线播放| 国产av精品麻豆| 国产亚洲一区二区精品| 亚洲国产欧美在线一区| 日韩一卡2卡3卡4卡2021年| 麻豆国产av国片精品| 伊人亚洲综合成人网| 久久女婷五月综合色啪小说| 国产又色又爽无遮挡免| 欧美av亚洲av综合av国产av| 久久久久久久国产电影| 精品少妇一区二区三区视频日本电影| 咕卡用的链子| 亚洲av成人一区二区三| 亚洲欧洲精品一区二区精品久久久| 成人三级做爰电影| 亚洲国产av影院在线观看| 亚洲精品日韩在线中文字幕| 肉色欧美久久久久久久蜜桃| 国产精品.久久久| 国产精品久久久人人做人人爽| 精品国内亚洲2022精品成人 | 精品免费久久久久久久清纯 | 伦理电影免费视频| 亚洲av男天堂| 少妇人妻久久综合中文| 两性夫妻黄色片| 亚洲精华国产精华精| 国产免费福利视频在线观看| 亚洲九九香蕉| 黄色视频,在线免费观看| 啦啦啦 在线观看视频| 久久久精品免费免费高清| av欧美777| 精品国产一区二区三区四区第35| 精品亚洲成国产av| 亚洲伊人色综图| 纯流量卡能插随身wifi吗| 亚洲国产欧美日韩在线播放| 成年av动漫网址| 飞空精品影院首页| 国产成人欧美| 不卡一级毛片| 久久久久久免费高清国产稀缺| 久久久精品区二区三区| 少妇猛男粗大的猛烈进出视频| 一级毛片电影观看| 精品国产一区二区三区久久久樱花| 大香蕉久久网| 啦啦啦 在线观看视频| 精品乱码久久久久久99久播| 在线亚洲精品国产二区图片欧美| 久久久久国产精品人妻一区二区| 美女福利国产在线| 久久青草综合色| 久久热在线av| 老司机福利观看| e午夜精品久久久久久久| 日韩有码中文字幕| 99热国产这里只有精品6| 亚洲精品自拍成人| 中文字幕人妻丝袜制服| 麻豆乱淫一区二区| 99九九在线精品视频| 成人18禁高潮啪啪吃奶动态图| 桃花免费在线播放| av片东京热男人的天堂| 久久精品亚洲av国产电影网| 伊人亚洲综合成人网| 国产伦人伦偷精品视频| 欧美激情高清一区二区三区| 亚洲成av片中文字幕在线观看| 在线永久观看黄色视频| 久久久精品免费免费高清| 午夜福利视频在线观看免费| 精品人妻1区二区| 中文字幕制服av| 欧美日韩黄片免| 亚洲五月色婷婷综合| 伦理电影免费视频| 久久久久视频综合| 日韩大片免费观看网站| 国产麻豆69| 午夜老司机福利片| 精品熟女少妇八av免费久了| 男女免费视频国产| a级毛片在线看网站| 亚洲精品在线美女| 在线观看免费午夜福利视频| 老鸭窝网址在线观看| 一级片免费观看大全| 91麻豆精品激情在线观看国产 | 国产日韩欧美视频二区| 亚洲五月色婷婷综合| 国产一级毛片在线| 丝袜在线中文字幕| 欧美日韩精品网址| 一级a爱视频在线免费观看| 亚洲专区字幕在线| 亚洲va日本ⅴa欧美va伊人久久 | 国产亚洲精品久久久久5区| 亚洲成人国产一区在线观看| 日本精品一区二区三区蜜桃| 国产免费av片在线观看野外av| avwww免费| 欧美黑人欧美精品刺激| 国产伦理片在线播放av一区| 国产av一区二区精品久久| 成年动漫av网址| 国产主播在线观看一区二区| 搡老岳熟女国产| 国产精品麻豆人妻色哟哟久久| av线在线观看网站| 久久久精品区二区三区| 亚洲三区欧美一区| 亚洲va日本ⅴa欧美va伊人久久 | 一边摸一边抽搐一进一出视频| 中文字幕精品免费在线观看视频| 国产精品久久久久成人av| 欧美国产精品va在线观看不卡| 9191精品国产免费久久| 青青草视频在线视频观看| 国产亚洲欧美精品永久| 丰满人妻熟妇乱又伦精品不卡| 国产男人的电影天堂91| 亚洲综合色网址| 精品久久蜜臀av无| 各种免费的搞黄视频| 人妻久久中文字幕网| 法律面前人人平等表现在哪些方面 | 国产免费福利视频在线观看| 国产免费福利视频在线观看| 精品国产一区二区三区久久久樱花| 女人久久www免费人成看片| 美女高潮喷水抽搐中文字幕| 十八禁网站网址无遮挡| 国产一区二区三区在线臀色熟女 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品中文字幕在线视频| 午夜两性在线视频| 秋霞在线观看毛片| 激情视频va一区二区三区| 亚洲熟女毛片儿| 亚洲精品国产区一区二| 一本久久精品| 黑人操中国人逼视频| 色老头精品视频在线观看| 欧美国产精品va在线观看不卡| 国产老妇伦熟女老妇高清| 欧美日韩精品网址| 亚洲精品成人av观看孕妇| 国产高清视频在线播放一区 | 日韩人妻精品一区2区三区| 亚洲av日韩在线播放| cao死你这个sao货| 男女下面插进去视频免费观看| 欧美日韩成人在线一区二区| 波多野结衣一区麻豆| 欧美日韩视频精品一区| 国产区一区二久久| 国产精品 欧美亚洲| 天天躁日日躁夜夜躁夜夜| 免费在线观看视频国产中文字幕亚洲 | 两个人看的免费小视频| 正在播放国产对白刺激| 国产一区二区 视频在线| 在线精品无人区一区二区三| 婷婷成人精品国产| 97在线人人人人妻| 久久精品熟女亚洲av麻豆精品| 男人添女人高潮全过程视频| 免费少妇av软件| 精品乱码久久久久久99久播| 18禁国产床啪视频网站| 午夜福利一区二区在线看| 19禁男女啪啪无遮挡网站| 母亲3免费完整高清在线观看| 嫁个100分男人电影在线观看| 两性夫妻黄色片| 热99re8久久精品国产| 中文字幕色久视频| 老司机福利观看| 亚洲精品国产色婷婷电影| 国产精品秋霞免费鲁丝片| 亚洲国产中文字幕在线视频| 搡老乐熟女国产| 人人妻人人添人人爽欧美一区卜| 国产免费视频播放在线视频| 中文字幕精品免费在线观看视频| 少妇 在线观看| 欧美亚洲日本最大视频资源| 欧美av亚洲av综合av国产av| 1024香蕉在线观看| 欧美另类一区| netflix在线观看网站| 老熟妇仑乱视频hdxx| 在线观看免费视频网站a站| 日韩,欧美,国产一区二区三区| 日韩,欧美,国产一区二区三区| 国产成人精品无人区| 国产国语露脸激情在线看| 日韩大片免费观看网站| 精品一区在线观看国产| 一级毛片精品| 两性午夜刺激爽爽歪歪视频在线观看 | 淫妇啪啪啪对白视频 | 9191精品国产免费久久| 午夜两性在线视频| 国产在线一区二区三区精| 国产欧美日韩一区二区三 | 人人妻人人澡人人爽人人夜夜| 黄色视频,在线免费观看| 国产精品成人在线| 夜夜夜夜夜久久久久| 精品第一国产精品| 久久国产亚洲av麻豆专区| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲高清精品| 国产一卡二卡三卡精品| 日韩视频一区二区在线观看| 各种免费的搞黄视频| 精品少妇一区二区三区视频日本电影| 成人亚洲精品一区在线观看| 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 欧美另类一区| 热re99久久精品国产66热6| 美女福利国产在线| 日本猛色少妇xxxxx猛交久久| 女警被强在线播放| 狠狠狠狠99中文字幕| 欧美变态另类bdsm刘玥| 91字幕亚洲| 狂野欧美激情性bbbbbb| 美女福利国产在线| 国产男女内射视频| bbb黄色大片| 国产成人精品无人区| 少妇裸体淫交视频免费看高清 | 亚洲黑人精品在线| 高清视频免费观看一区二区| 午夜免费成人在线视频| 99热全是精品| 精品少妇内射三级| 人妻久久中文字幕网| 亚洲人成电影免费在线| 免费女性裸体啪啪无遮挡网站| 亚洲视频免费观看视频| 女人高潮潮喷娇喘18禁视频| 777久久人妻少妇嫩草av网站| 亚洲av片天天在线观看| 777米奇影视久久| 成年人黄色毛片网站| 亚洲七黄色美女视频| 亚洲av美国av| 久久精品aⅴ一区二区三区四区| 亚洲精品国产av蜜桃| 无限看片的www在线观看| 欧美久久黑人一区二区| 一本色道久久久久久精品综合| 午夜精品久久久久久毛片777| 叶爱在线成人免费视频播放| 国产精品影院久久| 欧美人与性动交α欧美软件| 桃红色精品国产亚洲av| 日韩,欧美,国产一区二区三区| 亚洲国产看品久久| 动漫黄色视频在线观看| 青春草视频在线免费观看| 亚洲精品美女久久久久99蜜臀| 国内毛片毛片毛片毛片毛片| 黄频高清免费视频| 叶爱在线成人免费视频播放| 国产免费福利视频在线观看| 精品免费久久久久久久清纯 | 日韩熟女老妇一区二区性免费视频| 国产欧美日韩精品亚洲av| 国产91精品成人一区二区三区 | 悠悠久久av| 不卡一级毛片| 久久久久网色| 一二三四在线观看免费中文在| 蜜桃国产av成人99| 三上悠亚av全集在线观看| 建设人人有责人人尽责人人享有的| 丰满饥渴人妻一区二区三| 欧美日韩亚洲高清精品| 国产亚洲一区二区精品| 91成人精品电影| 久久精品熟女亚洲av麻豆精品| 午夜福利视频在线观看免费| 一区二区日韩欧美中文字幕| 人人妻人人爽人人添夜夜欢视频| 久久久水蜜桃国产精品网| 亚洲人成77777在线视频| 99国产精品一区二区蜜桃av | 色婷婷av一区二区三区视频| 欧美一级毛片孕妇| 正在播放国产对白刺激| 国产1区2区3区精品| 亚洲专区字幕在线| 国产亚洲一区二区精品| 纯流量卡能插随身wifi吗| 秋霞在线观看毛片| 好男人电影高清在线观看| 亚洲国产毛片av蜜桃av| 人妻一区二区av| 亚洲精品一二三| 久久国产精品男人的天堂亚洲| 一区福利在线观看| 国产一区二区激情短视频 | 国产成人啪精品午夜网站| 久久午夜综合久久蜜桃| 欧美乱码精品一区二区三区| 色老头精品视频在线观看| 一区二区三区激情视频| 亚洲欧美色中文字幕在线| av有码第一页| 中文欧美无线码| 一本—道久久a久久精品蜜桃钙片| 王馨瑶露胸无遮挡在线观看| 999精品在线视频| 久久天堂一区二区三区四区| cao死你这个sao货| 美女主播在线视频| 美女扒开内裤让男人捅视频| 人人妻人人添人人爽欧美一区卜| 日韩 亚洲 欧美在线| 巨乳人妻的诱惑在线观看| 国产精品自产拍在线观看55亚洲 | 欧美日韩精品网址| 国产在线一区二区三区精| 亚洲精品美女久久av网站| 亚洲精品久久久久久婷婷小说| 黑人猛操日本美女一级片| 成年人午夜在线观看视频| 国产在线观看jvid| 女人久久www免费人成看片| 狠狠婷婷综合久久久久久88av| 少妇人妻久久综合中文| 在线观看舔阴道视频| 在线观看人妻少妇| 欧美日韩中文字幕国产精品一区二区三区 | 两性夫妻黄色片| 美女扒开内裤让男人捅视频| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区四区第35| 国产精品av久久久久免费| 人人妻人人澡人人看| 窝窝影院91人妻| 天天躁夜夜躁狠狠躁躁| 欧美日本中文国产一区发布| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 亚洲五月色婷婷综合| 精品视频人人做人人爽| 51午夜福利影视在线观看| 国产成人免费观看mmmm| 亚洲 欧美一区二区三区| 午夜视频精品福利| 亚洲久久久国产精品| 18在线观看网站| 亚洲国产精品一区三区| 亚洲专区国产一区二区| 国产精品国产av在线观看| 成人手机av| 亚洲av电影在线观看一区二区三区| 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 国产成人精品无人区| 一级片'在线观看视频| 老司机在亚洲福利影院| 欧美变态另类bdsm刘玥| 国产精品久久久久久人妻精品电影 | 国产亚洲av高清不卡| 午夜福利一区二区在线看| 1024视频免费在线观看| 免费久久久久久久精品成人欧美视频| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院| 久久九九热精品免费| 欧美乱码精品一区二区三区| 国产精品久久久av美女十八| 纵有疾风起免费观看全集完整版| 亚洲人成电影免费在线| 真人做人爱边吃奶动态| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 成人影院久久| 亚洲精品国产区一区二| 考比视频在线观看| 国产黄频视频在线观看| 久久久久久久久免费视频了| 飞空精品影院首页| 最近中文字幕2019免费版| 老司机午夜福利在线观看视频 | 久久久久网色| 久久狼人影院| 久久久久久久久久久久大奶| 欧美大码av| 亚洲精品在线美女| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 午夜福利一区二区在线看| 久久精品成人免费网站| 9色porny在线观看| 每晚都被弄得嗷嗷叫到高潮| 视频区欧美日本亚洲| 日韩中文字幕视频在线看片| 亚洲欧美精品综合一区二区三区| 国产不卡av网站在线观看| 欧美成狂野欧美在线观看| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91| 欧美少妇被猛烈插入视频| 国产精品一二三区在线看| 在线天堂中文资源库| 极品人妻少妇av视频| 男人爽女人下面视频在线观看| 人妻 亚洲 视频| 免费观看a级毛片全部| 亚洲欧美一区二区三区久久| 成年动漫av网址| 亚洲一区二区三区欧美精品| 亚洲精品久久午夜乱码| 波多野结衣av一区二区av| e午夜精品久久久久久久| 一进一出抽搐动态| 国产成+人综合+亚洲专区| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 97在线人人人人妻| 一进一出抽搐动态| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影 | 欧美成狂野欧美在线观看| 水蜜桃什么品种好| 久久人妻熟女aⅴ| 国产av国产精品国产| 美女高潮喷水抽搐中文字幕| 2018国产大陆天天弄谢| 国产成人欧美| 成年美女黄网站色视频大全免费| 高清av免费在线| 蜜桃国产av成人99| 午夜福利免费观看在线| 亚洲avbb在线观看| 欧美亚洲日本最大视频资源| 久久人妻福利社区极品人妻图片| 中国美女看黄片| 窝窝影院91人妻| 国产主播在线观看一区二区| 久久性视频一级片| 黄片播放在线免费| 国产高清视频在线播放一区 | 亚洲五月色婷婷综合| 另类亚洲欧美激情| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 女警被强在线播放| 婷婷丁香在线五月| 国产深夜福利视频在线观看| 超色免费av| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲男人天堂网一区| 中文字幕色久视频| 国产亚洲精品第一综合不卡| 中文欧美无线码| 99国产精品一区二区三区| 99re6热这里在线精品视频| 大码成人一级视频| 一边摸一边抽搐一进一出视频| 久久久水蜜桃国产精品网| 亚洲国产欧美在线一区| 亚洲五月色婷婷综合| 亚洲性夜色夜夜综合| 午夜免费鲁丝| 青春草视频在线免费观看| 中文字幕人妻熟女乱码| 午夜激情av网站| 久久精品人人爽人人爽视色| 国产成人啪精品午夜网站| 好男人电影高清在线观看| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 免费少妇av软件| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 欧美激情极品国产一区二区三区| 可以免费在线观看a视频的电影网站| 欧美亚洲日本最大视频资源| 亚洲av日韩在线播放| 午夜免费鲁丝| 一区福利在线观看| 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 99久久人妻综合| 亚洲激情五月婷婷啪啪| 免费一级毛片在线播放高清视频 | 国产日韩欧美视频二区| 亚洲av电影在线进入| 日韩一卡2卡3卡4卡2021年| 麻豆乱淫一区二区| 国产欧美亚洲国产| 夫妻午夜视频| 国产成人欧美| 久久99一区二区三区| 日本av手机在线免费观看| 男人添女人高潮全过程视频| 亚洲欧美成人综合另类久久久| 日韩中文字幕欧美一区二区| 捣出白浆h1v1| 亚洲男人天堂网一区| 欧美xxⅹ黑人| 精品国内亚洲2022精品成人 | 大香蕉久久成人网| tocl精华| 99国产精品一区二区蜜桃av | 青春草视频在线免费观看| 国产精品成人在线| 国产av国产精品国产| 日韩 欧美 亚洲 中文字幕| 亚洲美女黄色视频免费看| 亚洲一区中文字幕在线| 欧美激情 高清一区二区三区| 免费不卡黄色视频| 亚洲欧美激情在线| 国产精品一区二区在线观看99| 男女国产视频网站| 久热爱精品视频在线9| 热99久久久久精品小说推荐| 免费不卡黄色视频| 99热全是精品| 国产免费福利视频在线观看| av国产精品久久久久影院| 亚洲专区中文字幕在线| 最新的欧美精品一区二区| 精品久久久精品久久久| www.999成人在线观看| 老司机午夜十八禁免费视频| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| 国产av国产精品国产| 岛国毛片在线播放| 91麻豆精品激情在线观看国产 | 免费在线观看完整版高清| 国产精品av久久久久免费| 人人澡人人妻人| 久久久水蜜桃国产精品网| 夜夜骑夜夜射夜夜干| 亚洲国产精品一区二区三区在线| 99国产精品一区二区三区| 麻豆av在线久日| 成人国产一区最新在线观看| 一级毛片电影观看| 久久国产精品大桥未久av| 色婷婷久久久亚洲欧美| 亚洲天堂av无毛| 国产xxxxx性猛交| 久久综合国产亚洲精品| 免费女性裸体啪啪无遮挡网站| 亚洲三区欧美一区| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久人人做人人爽| 在线观看免费高清a一片| 一级,二级,三级黄色视频| 黑人巨大精品欧美一区二区蜜桃| 男女高潮啪啪啪动态图| 91成年电影在线观看| 侵犯人妻中文字幕一二三四区| 18禁黄网站禁片午夜丰满| 欧美变态另类bdsm刘玥| 午夜91福利影院| 欧美亚洲 丝袜 人妻 在线| 十八禁高潮呻吟视频| 人人澡人人妻人| 亚洲欧美一区二区三区黑人| 妹子高潮喷水视频| 桃花免费在线播放| 日本精品一区二区三区蜜桃| 国产老妇伦熟女老妇高清| 青草久久国产| 少妇精品久久久久久久| 日本av手机在线免费观看| 国产成人精品无人区| 亚洲 国产 在线| 欧美日韩亚洲国产一区二区在线观看 | 国产色视频综合| 搡老岳熟女国产| 国产1区2区3区精品| 男女边摸边吃奶| 在线观看人妻少妇| 日日爽夜夜爽网站| 麻豆av在线久日| 在线观看一区二区三区激情| 亚洲 欧美一区二区三区| 国产精品 国内视频| 亚洲少妇的诱惑av| 人人澡人人妻人| 老鸭窝网址在线观看| 十八禁高潮呻吟视频| 脱女人内裤的视频| 亚洲激情五月婷婷啪啪| 亚洲欧美色中文字幕在线| 窝窝影院91人妻|