• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on co-simulation model of forging manipulator based on virtual prototyping①

    2016-12-05 01:27:58ZhaiFugang翟富剛ZhuHanyinWuQileiKongXiangdong
    High Technology Letters 2016年2期

    Zhai Fugang (翟富剛), Zhu Hanyin*, Wu Qilei* , Kong Xiangdong

    (*School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University),Ministry of Education of China, Qinhuangdao 066004, P.R.China) (***Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University, Qinhuangdao 066004, P.R.China)

    ?

    Study on co-simulation model of forging manipulator based on virtual prototyping①

    Zhai Fugang (翟富剛)***, Zhu Hanyin****, Wu Qilei****, Kong Xiangdong②******

    (*School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, P.R.China) (**Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University),Ministry of Education of China, Qinhuangdao 066004, P.R.China) (***Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University, Qinhuangdao 066004, P.R.China)

    Based on the characteristics of integrated virtual prototype technology, the mechanical system sub-model, the hydraulic system sub-model and the control system sub-model of a forging manipulator system have been built using a variety of software, and a forging manipulator multidisciplinary co-simulation model has been also built using a method of simulation models interface. Then the simulation and experiment are finished, and the result of the experiment is in good agreement with the result of the simulation. It shows that the co-simulation model established can simulate accurately parameter changes in real time during the moving of the forging manipulator such as displacement, velocity and pressure flow, which is of important significance for the optimized design of the forging manipulator system to establish the models.

    forging manipulator, virtual prototype, co-simulation, control characteristics

    0 Introduction

    A forging manipulator is a major auxiliary equipment to realize mechanisation and automation in forging workshops[1]. It is mainly used for clamping forgings to finish cogging, upsetting, stretching and other forging processes cooperating with the press, which can increase labor productivity and improve quality of the product and reduce labor intensity[2]. In recent years, the hydraulic forging manipulator has become the mainstream of development because of compact structure, smooth working condition and convenient operation. However, with the improvement of requirements for forging process, the hydraulic forging manipulator should have more action and function, such as tongs tilting, tongs side-shifting, tongs suspension[3]. The complexity of mechanical structure of forging manipulator leads a more complex hydraulic and control system, which has become a research hotspot and difficulty[4].

    Modeling is the first step of simulation research, which determines the accuracy of the simulation results. As a whole, the forging manipulator is a system which contains mechanical, hydraulic, electric control and so on. But unfortunately, most scholars ignore the link between them when modeling research[5], that leads to poor results accuracy. The virtual prototyping (VP) is the rise of a computer aided engineering technology in the 20th century[6]. Although the core is the theory of kinematics and dynamics, the VP is not limited in application of machinery. It also includes the synthesis of many subjects such as geometric modeling, structure analysis, hydraulic transmission, electric control and so on. Since of dynamic characteristics of virtual prototype is completely close to the physical prototype, the VP has been widely used in automotive, aerospace, machinery etc. and gets huge benefits[7]. In view of this, this study aims to build a co-simulation model of forging manipulator based on VP, which includes sub-models of the mechanical system, the hydraulic system and the control system. It can play an important role for complex system modeling and optimization design of forging manipulator system.

    1 Physical prototype of forging manipulator

    The physical prototype is the basis of virtual prototype model. In this study, a capacity of 200kN/500kN.m forging manipulator is selected as physical prototype, shown in Fig.1. The parts of the hydraulic and electric control system are installed at the tail. The forging manipulator can perform seven movements, such as vehicle driving, tongs clamping, tongs rotation, tongs lifting, tongs tilting, tongs shifting and tongs swing. It is important to note that its center of gravity changes with the movement of actuator, that is the reason of virtual prototype built. As Fig.2 shows that a variety of hydraulic cylinders and motors are used to drive these actuators, which connect mechanical system and hydraulic system of the forging manipulator.

    There are several valves controlling the hydraulic cylinder or motor accordingly, which link the hydraulic system and the control system.

    Fig.1 The 200kN/500kN.m forging manipulator

    1.bump 2.unloading relief valve 3,23.accumulator 4,7,10,14,26.relief valve 5.filter 6. auxiliary pump 8,12,16,19,21.directional valve 9,25.proportional valve 11,27.motor 13,22.pilot operated check valve 15,18,20,24.cylinder 17.balance valve Fig.2 The schematic diagram of the hydraulic system

    2 Co-simulation model of forging manipulator

    Since the characteristics of virtual prototype are close to physical prototype, a co-simulation model needs to be established, which includes 3D geometry model, mechanical system sub-model, hydraulic system sub-model and control system sub-model. The relationship between these sub-models is shown in Fig.3. It can be seen that the 3D geometry model includes geometric parameters and material properties, which is a virtual device and used to show the movement of physical prototype in computer with visualization. Because of the complexity of the machinery, the sub-model of mechanical system is a multi-dynamics sub-model composed of lots of dynamics and kinematics equations, and the sub-model of hydraulic system is made up of a series of pressure and flow equations. As a connected component, the hydraulic cylinder (or motor) is used to provide force (or torque) for mechanical system sub-model, and the displacement of hydraulic cylinder (or motor) is used to solve the pressure and flow equations in real-time. And the sub-model of control system provides action signals for the valves in the hydraulic system to control motion trajectory and state of the forging manipulator. The parameter coupling relation is the basis to solve the co-simulation model of the forging manipulator.

    Fig.3 The parameter coupling principle between models

    2.1 Mechanical system modeling of the forging manipulator

    First of all, according to the engineering graphics of M-200kN/500kN, the 3D geometry model of forging manipulator is built in Pro/E, which is given to the entity information, including material density and physical properties. It also needs to import the 3D geometry model into the ADAMS (automatic dynamic analysis of mechanical system) environment to set dynamics properties, including constraint relation, applied stress, friction setting, etc. Finally, the mechanical system model of the forging manipulator is established, shown in Fig.4. As is shown, the driving wheel of cart is driven by a chain wheel on the sprocket track fixed on the ground. The gear pair is arranged between the chain wheel and the chain wheel track, and the rotation pair with dynamic friction coefficient of 0.01 and static friction coefficient of 0.02 is set between the wheels and the vehicle. The wheels walking on the tracks only play a supporting and guiding function. And the kinematic constraint of the other parts are set up according to the movement relationship of the component. In this paper, a total of 41 kinematic constraints are set up for the mechanical system sub-model of the forging manipulator, which can realize operation of all seven motions and the function of simulation.

    Fig.4 Mechanical system sub-models of forging manipulator

    2.2 Co-simulation model of the forging manipulator

    The nature of co-simulation is interconnection and interoperability of multi-discipline domain models[8]. The co-simulation is based on the unified language or the model interface. The co-simulation method based on the unified language is to establish multi-disciplinary field co-simulation with the unified language in the same software flat and adopt the same solver to solve the system. Hower, this method is not yet mature for all kinds of models and needs to be developed in order to meet the requirements of actual modeling and simulation. A method is adopted that the co-simulation is based on interface model to build the multi-disciplinary field co-simulation model, as shown in Fig.5. The hydraulic system and control system are built in AMESim (advanced modeling enviroment for performing simulation of engineering systems) environment, and all sub-models call information data of the mechanical system sub-model stored in the internal interface model to complete real-time data transmission and interaction.

    The model interface is the data channel of the multi-disciplinary co-simulation. The left of the interface shows driving parameters of the mechanical system, among which , XM1、XM2、ZM1、ZM2、SF1、SF2、XF1、CF1、CF2 and JF1 represent the driving torque of the rotating motor(number:2), the driving torque of the walking motor(number:2), the driving force of the lifting cylinder(number:2), the driving force of the tilting cylinder, the driving force of the side-shifting cylinder(number:2) and the driving force of lamping cylinder respectively. The right of the interface shows the motion parameters of the mechanical system, and the suffix _w、_v、_xrepresents rotating speed, speed and displacement of the corresponding components respectively. When the co-simulation runs, the mechanical system sub-model calculates the motion parameters equivalent to actuator automatically in different pose and load conditions of the forging manipulator and passes the data to the hydraulic system model. so the dynamic changing in the process of forging manipulator can be simulated in real time, which makes the simulation result more accurate and closer to the actual working condition. In addition, the motion trajectory and state can reappear and be monitored by calling ADAMS with 3D visualization function through interface settings. The main parameters of the co-simulation model of the forging manipulator are shown in Table 1.

    Table 1 The main parameters of the co-simulation model of the forging manipulator

    Fig.5 Forging manipulator co-simulation model

    3 Verification of the co-simulation model

    The method of verification is based on the data collected from the experiment test of physical prototype of the forging manipulator. In the same environment and conditions, the same signals as what is given in experiment are input to the co-simulation model. Comparing the simulation results obtained by the virtual test with the experimental results, the accuracy of the model is verified.

    The same environment is that the working medium and oil temperature in virtual test are the same as what are in the experiment test. In the virtual test, the oil temperature is set up to 20℃ and the working medium of the system is L-HM46 hydraulic oil. The medium property is set up as follows: oil density is 890kg/m, volume elastic modulus is 1650MPa, saturated steam pressure is 9.85kPa, gas content is 0.9% and motion viscosity is 46mm2/s(40℃). The same conditions mainly refer to the initial position of the mechanical system of the forging manipulator, the initial parameters of the hydraulic system and the given signal of the control system.

    The simulation and experimental curves of the walking motion are obtained,as is shown in Fig.6. In the figure,xrepresents the displacement of cart , v1represents the speed of cart,Srepresents the control signal given to the control valves, “100%” shows that the control valve is fully open, “0” shows that the control valve is close. It is clear that the error of the steady state value of walking displacement of cart is only 2mm under the experimental test with the value is 238mm and the simulation test with the value is 240mm, and the location accuracy reaches 99%. As is shown in Fig.6(b), the simulation curve of the walking speed of the whole trip is basically consistent with the experimental curve, which shows that the simulation model can be used to simulate the dynamic changes of the forging manipulator during walking.

    Fig.6 The simulation and experimental curve of walking cart

    The co-simulation model of the forging manipulator can not only simulate the motion trajectory and motion state of the actual physical model, but can also simulate the pressure and flow changes of the hydraulic system during the motion process, as is shown in Fig.7.

    Fig.7 The simulation and experimental curve of rotating clamp

    In Fig.7,αrepresents the angle of rotating tong,wrepresents the rotating speed of tong, P0represents the system pressure, and P1represents the inlet pressure of the rotating motor. It can be seen that the four-group simulation curves in the synchronous test are basically consistent with the experimental curves in the same given signal condition, and the location accuracy reaches 99%. At the same time, the co-simulation can simulate the pressure changes of hydraulic system of manipulator tongs well in the process of rotary motion, which is of important significance for studying the hydraulic control system of the forging manipulator.

    Hydraulic principle of clamp down action is relatively simple for that the action is completed under the self gravity and the rate of decline is controlled only by return throttle. So only the model of parallel lifting action is verified in this paper as is shown in Fig.8. In the figure, y represents the displacement of the clamp parallel lifting, v2represents the speed of clamp parallel lifting, P2represents working chamber pressure of the lifting cylinder. The curves are obtained under light load mode while the system pressure is 14MPa. As can be seen, steady displacement of parallel lifting clamp in experimental test is 1182mm, the result of virtual simulation test in the same condition is 1189 mm, so the degree of matching of displacement curve is good. As shown in Fig.8(c), due to the large

    Fig.8 Clamp parallel lift simulation and experimental curves

    clamp vertical stroke, a lot of oil is needed. When the system pressure drops to the loading pressure point set by the electromagnetic unloading relief valve, the main pump supplies the oil to the loading system, so the system pressure increases. Conversely, when the system pressure rises to what the electro-magnetic unloading relief valve has set, the main pump is unloading, and the accumulator provides oil to the system alone. So the system pressure drops. In the promotion process of clap, elevating cylinder pressure is maintained at about 7.7MPa to balance its own gravity and motion friction. Compared with the 4 group simulation curves and experimental curves, it can be seen that the simulation and experimental curves of tongs lifting agree well, which shows the simulation model of the forging manipulator established has high accuracy.

    4 Conclusions

    Based on virtual prototyping technology, a multi-discipline co-simulation model is established. The model is integrated with the multi-body dynamics solving module, hydraulic system and control system solving module. It can not only study the motion trajectory and motion state, but also study the characteristics of the hydraulic control system of forging manipulator. The establishment of co- simulation model has important significance for the optimization design of the forging manipulator system.

    The simulation model of the forging manipulator is verified by quantitative verification method. The simulation and experiment are finished, and the curves of the displacement, velocity and pressure of the synchronous test in simulation are basically consistent with the experimental curves. The results show that the co-simulation model has high accuracy, which lays the foundation for the application of the co-simulation model.

    Reference

    [1] Nowitzki W. Manipulators with mass division increase throughput and save energy in high-precision forging.MPTMetallurgicalPlantandTechnologyInternational, 2008, 31(5): 46-48

    [2] Chen K, Ma C X, Zheng M Q, et al. Optimization and mechanical accuracy reliability of a new type of forging manipulator.ChineseJournalofMechanicalEngineering(EnglishEdition), 2015, 28(2): 236-248

    [3] Xu Y D, Liu Y, Yao J T, et al. Analysis of a novel lifting mechanism for forging manipulators.ProceedingsoftheInstitutionofMechanicalEngineers,PartC:JournalofMechanicalEngineeringScience, 2015, 229(3): 528-537

    [4] Tarja T, Asko E, Taina K. Virtual prototypes reveal more development ideas: comparison between customers' evaluation of virtual and physical prototypes: This paper argues that virtual prototypes are better than physical prototypes for consumers-involved product development.VirtualandPhysicalPrototyping, 2014, 9(3): 169-180

    [5] Ren Y P, Han Q K, Zhang T X, et al. Dynamic simulation of forging manipulator based on virtual prototyping.JournalofNortheasternUniversity, 2010,31:1170-1173

    [6] Tong X X. Research of buffer equipment in forging manipulator based on virtual prototyping technology.Equipment, 2010, 4:46-48

    [7] Tie M, Fan Y S. HLA based multidisciplinary collaborative simulation framework for forging and manipulating process.LectureNotesinComputerScience, 2008,5314:1256-1264

    [8] Fu Y L, Qi X Y. AMEsimSystem Modeling and Simulation. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006

    Zhai Fugang, born in 1979, Ph.D, assistant professor, party branch secretary of the Department of Mechanical Design of Yanshan University. The primary area of research are mechanical-electrical hydraulic integration of fluid simulation, mechanical design, and heavy mechanical power transmission and control. He has published over 10 academic papers, among which there are 4 papers indexed by SCI, EI, ISTP, authorized 2 patents, and participated in more than 10 national and provincial-ministerial research projects.

    10.3772/j.issn.1006-6748.2016.02.003

    ①Supported by the National Natural Science Foundation of China (No. 51575471), and Collaborative Innovation Program Topics of Heavy Machinery of Yanshan University (2011 Program, No. ZX01-20140400-01).

    ②To whom correspondence should be addressed. E-mail: xdkong@ysu.edu.cnReceived on May 7, 2015

    人人妻人人添人人爽欧美一区卜| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 99久久中文字幕三级久久日本| 久久 成人 亚洲| 99热全是精品| 两个人免费观看高清视频| 国产av精品麻豆| 少妇丰满av| 9色porny在线观看| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 成年美女黄网站色视频大全免费 | 九色亚洲精品在线播放| 国产av一区二区精品久久| 亚洲欧美精品自产自拍| 少妇的逼好多水| 亚洲精品国产av成人精品| 中文字幕制服av| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 成人漫画全彩无遮挡| 狂野欧美激情性bbbbbb| 日韩成人伦理影院| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 一本久久精品| 国产免费又黄又爽又色| 青春草国产在线视频| 久久狼人影院| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 最近的中文字幕免费完整| 精品视频人人做人人爽| 亚洲av中文av极速乱| 午夜激情久久久久久久| 最近2019中文字幕mv第一页| 考比视频在线观看| 久久99精品国语久久久| 久久人人爽人人爽人人片va| 午夜激情福利司机影院| 国产伦理片在线播放av一区| 久久99精品国语久久久| 久久久久久久精品精品| 免费黄网站久久成人精品| 亚洲国产日韩一区二区| 欧美bdsm另类| 99久久综合免费| 亚洲精品456在线播放app| 色5月婷婷丁香| 2022亚洲国产成人精品| 综合色丁香网| 免费黄网站久久成人精品| 久久久久久久久久久免费av| 成人国语在线视频| 一本一本综合久久| 又黄又爽又刺激的免费视频.| 久久久久久久久久人人人人人人| 日韩不卡一区二区三区视频在线| 亚洲av电影在线观看一区二区三区| 老熟女久久久| 久热这里只有精品99| 久久久久久久久久久免费av| 全区人妻精品视频| 免费人妻精品一区二区三区视频| 搡女人真爽免费视频火全软件| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲内射少妇av| 中国国产av一级| 午夜久久久在线观看| 亚洲综合色网址| 黑人高潮一二区| 欧美性感艳星| 午夜福利影视在线免费观看| 九色亚洲精品在线播放| 秋霞在线观看毛片| 久久久久精品性色| 秋霞在线观看毛片| 精品人妻熟女av久视频| 在线观看免费高清a一片| 精品久久久久久久久av| 一级毛片我不卡| 青春草国产在线视频| 高清在线视频一区二区三区| 日韩欧美一区视频在线观看| 女人久久www免费人成看片| 99国产综合亚洲精品| 大话2 男鬼变身卡| 久久久午夜欧美精品| 国产成人免费观看mmmm| 国国产精品蜜臀av免费| 97超视频在线观看视频| 黑人猛操日本美女一级片| 少妇的逼好多水| 青春草亚洲视频在线观看| 免费观看性生交大片5| 国产成人免费无遮挡视频| 国语对白做爰xxxⅹ性视频网站| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品电影小说| 曰老女人黄片| 国产精品国产三级国产专区5o| 麻豆乱淫一区二区| 国产乱来视频区| 国产视频内射| 九九爱精品视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲第一av免费看| 高清视频免费观看一区二区| 日韩成人伦理影院| 亚洲人成77777在线视频| 国产熟女欧美一区二区| 午夜福利在线观看免费完整高清在| 久久99一区二区三区| 日韩一本色道免费dvd| 五月伊人婷婷丁香| 亚洲一区二区三区欧美精品| 婷婷色麻豆天堂久久| 成人手机av| 亚洲av成人精品一二三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美在线一区| 成人影院久久| 国精品久久久久久国模美| 国产成人免费无遮挡视频| 国产精品一区www在线观看| 日韩一区二区三区影片| 国产一级毛片在线| 99热这里只有精品一区| videossex国产| 精品久久久久久久久av| 日韩精品有码人妻一区| 一区在线观看完整版| 国产极品粉嫩免费观看在线 | 亚洲色图 男人天堂 中文字幕 | 久久精品国产亚洲av天美| av线在线观看网站| 99视频精品全部免费 在线| 九九在线视频观看精品| 国产精品久久久久久久电影| 在线天堂最新版资源| 大话2 男鬼变身卡| 人妻夜夜爽99麻豆av| 我的老师免费观看完整版| 日韩av不卡免费在线播放| 亚洲精品,欧美精品| 一级a做视频免费观看| 午夜免费鲁丝| 91精品国产国语对白视频| 精品久久久精品久久久| 美女内射精品一级片tv| 熟女人妻精品中文字幕| 日韩一区二区三区影片| 韩国av在线不卡| 亚洲精品国产av蜜桃| 高清毛片免费看| av在线app专区| tube8黄色片| 亚洲精品一二三| 人妻制服诱惑在线中文字幕| 亚洲性久久影院| 免费大片黄手机在线观看| 一个人看视频在线观看www免费| 日韩熟女老妇一区二区性免费视频| 国产在线免费精品| 久久久久久久久久成人| 91精品三级在线观看| 性高湖久久久久久久久免费观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品.久久久| 大香蕉久久网| 国产女主播在线喷水免费视频网站| 大香蕉久久成人网| 日日撸夜夜添| 国产国拍精品亚洲av在线观看| 大片电影免费在线观看免费| xxx大片免费视频| 欧美另类一区| 亚洲国产精品一区三区| 91久久精品国产一区二区成人| 91精品国产国语对白视频| av国产久精品久网站免费入址| 日韩免费高清中文字幕av| 久久国产亚洲av麻豆专区| 亚洲欧美清纯卡通| 大香蕉97超碰在线| a级毛片黄视频| 丝袜脚勾引网站| 水蜜桃什么品种好| 亚洲图色成人| 亚洲av在线观看美女高潮| 国产亚洲精品第一综合不卡 | 久久精品国产亚洲网站| 国产老妇伦熟女老妇高清| 好男人视频免费观看在线| 久久午夜福利片| 五月天丁香电影| 美女视频免费永久观看网站| 在线亚洲精品国产二区图片欧美 | 日本与韩国留学比较| 国产精品一国产av| 亚洲美女视频黄频| 国产黄频视频在线观看| 精品久久久久久电影网| 亚洲伊人久久精品综合| 少妇人妻 视频| 女人精品久久久久毛片| 亚洲内射少妇av| 亚洲色图综合在线观看| 热re99久久国产66热| 亚洲欧美清纯卡通| 少妇 在线观看| 亚洲成人一二三区av| 纯流量卡能插随身wifi吗| 亚洲美女搞黄在线观看| 丝袜喷水一区| 免费看不卡的av| 国产精品久久久久久久电影| 一区在线观看完整版| 日本猛色少妇xxxxx猛交久久| 性色avwww在线观看| 纯流量卡能插随身wifi吗| 国产成人午夜福利电影在线观看| 女人久久www免费人成看片| 肉色欧美久久久久久久蜜桃| 欧美日韩在线观看h| 欧美精品国产亚洲| 国产黄片视频在线免费观看| 热re99久久精品国产66热6| 亚洲图色成人| 国产免费又黄又爽又色| 黄色配什么色好看| a级毛片在线看网站| 国产一区二区在线观看av| 丰满迷人的少妇在线观看| av不卡在线播放| 亚洲国产欧美日韩在线播放| 国产精品麻豆人妻色哟哟久久| 欧美激情 高清一区二区三区| 精品熟女少妇av免费看| 日本av免费视频播放| 热re99久久精品国产66热6| 97在线人人人人妻| a级片在线免费高清观看视频| 欧美日韩综合久久久久久| 超色免费av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品久久午夜乱码| 亚洲国产色片| 久久久a久久爽久久v久久| 在线精品无人区一区二区三| av.在线天堂| 婷婷色综合大香蕉| 九色成人免费人妻av| 少妇猛男粗大的猛烈进出视频| 亚洲精品成人av观看孕妇| 日韩视频在线欧美| 尾随美女入室| 欧美三级亚洲精品| 成人手机av| 精品久久久久久久久av| 少妇猛男粗大的猛烈进出视频| 男人爽女人下面视频在线观看| 韩国av在线不卡| 国产成人精品一,二区| 国产在线视频一区二区| 99国产综合亚洲精品| 18在线观看网站| 少妇丰满av| 精品久久久久久久久av| 亚洲成人手机| a级毛片黄视频| 99热这里只有精品一区| 蜜桃在线观看..| 女人久久www免费人成看片| 亚洲精品久久久久久婷婷小说| 大码成人一级视频| 国产精品嫩草影院av在线观看| 亚洲国产成人一精品久久久| 久久毛片免费看一区二区三区| 狠狠婷婷综合久久久久久88av| 最新中文字幕久久久久| 免费不卡的大黄色大毛片视频在线观看| 青春草亚洲视频在线观看| 国产老妇伦熟女老妇高清| 亚洲精品国产av蜜桃| 伦精品一区二区三区| 久久热精品热| xxx大片免费视频| 性色avwww在线观看| 飞空精品影院首页| 尾随美女入室| 午夜福利网站1000一区二区三区| 最近最新中文字幕免费大全7| 高清不卡的av网站| 热re99久久精品国产66热6| 午夜免费观看性视频| 日本免费在线观看一区| 国产极品粉嫩免费观看在线 | 99九九线精品视频在线观看视频| 在现免费观看毛片| 97在线人人人人妻| 女性生殖器流出的白浆| 街头女战士在线观看网站| 欧美国产精品一级二级三级| 老司机亚洲免费影院| 黑人巨大精品欧美一区二区蜜桃 | 天天影视国产精品| 午夜福利在线观看免费完整高清在| 91aial.com中文字幕在线观看| 亚洲国产欧美在线一区| 在线 av 中文字幕| 久久久久久久久久久丰满| 免费大片黄手机在线观看| 街头女战士在线观看网站| 午夜激情久久久久久久| 99久国产av精品国产电影| 精品亚洲乱码少妇综合久久| 亚洲中文av在线| 日韩伦理黄色片| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 一级毛片aaaaaa免费看小| 在线看a的网站| 高清av免费在线| 97精品久久久久久久久久精品| 国产av一区二区精品久久| 永久免费av网站大全| 一级片'在线观看视频| 国产亚洲精品久久久com| 在线观看人妻少妇| 满18在线观看网站| 欧美少妇被猛烈插入视频| 一级黄片播放器| 欧美老熟妇乱子伦牲交| av在线观看视频网站免费| √禁漫天堂资源中文www| 亚洲国产最新在线播放| 欧美3d第一页| 亚洲国产精品999| 91aial.com中文字幕在线观看| 综合色丁香网| 亚洲精品456在线播放app| 九草在线视频观看| 亚洲av.av天堂| 2021少妇久久久久久久久久久| av专区在线播放| 这个男人来自地球电影免费观看 | 亚洲综合色惰| 国产在视频线精品| 久久婷婷青草| 久久99精品国语久久久| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 制服诱惑二区| 一二三四中文在线观看免费高清| 黑人巨大精品欧美一区二区蜜桃 | 精品一区二区三卡| 国产精品麻豆人妻色哟哟久久| 色网站视频免费| 黑人高潮一二区| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 精品国产乱码久久久久久小说| 一二三四中文在线观看免费高清| 久久精品国产鲁丝片午夜精品| 狠狠婷婷综合久久久久久88av| 国产成人91sexporn| 国模一区二区三区四区视频| 18禁观看日本| 中国美白少妇内射xxxbb| 边亲边吃奶的免费视频| 有码 亚洲区| 麻豆乱淫一区二区| www.av在线官网国产| 国产一区二区在线观看日韩| 高清不卡的av网站| 国产精品久久久久久久久免| 亚洲在久久综合| 欧美日韩精品成人综合77777| av在线播放精品| 亚洲人成网站在线播| 日本免费在线观看一区| 欧美少妇被猛烈插入视频| 一级黄片播放器| 久久鲁丝午夜福利片| 精品久久久久久电影网| 国产精品久久久久久av不卡| 精品99又大又爽又粗少妇毛片| 欧美老熟妇乱子伦牲交| 美女主播在线视频| 99久久综合免费| 精品亚洲成a人片在线观看| 国产成人精品无人区| 最黄视频免费看| 久久影院123| 特大巨黑吊av在线直播| 插逼视频在线观看| 一级二级三级毛片免费看| 99久久人妻综合| av.在线天堂| 一边亲一边摸免费视频| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看| 成年女人在线观看亚洲视频| 91午夜精品亚洲一区二区三区| 97在线视频观看| 亚洲精品第二区| 91精品一卡2卡3卡4卡| freevideosex欧美| 国产黄片视频在线免费观看| 久久久久久久国产电影| 夫妻性生交免费视频一级片| 成人国产av品久久久| 欧美3d第一页| 亚洲中文av在线| 亚洲一级一片aⅴ在线观看| 国产黄色视频一区二区在线观看| 久久av网站| 亚洲av成人精品一二三区| 日韩亚洲欧美综合| 精品视频人人做人人爽| 亚洲美女黄色视频免费看| 毛片一级片免费看久久久久| 一个人免费看片子| 街头女战士在线观看网站| 欧美日韩国产mv在线观看视频| 青春草视频在线免费观看| av播播在线观看一区| 亚洲欧美清纯卡通| 色5月婷婷丁香| 十分钟在线观看高清视频www| 秋霞在线观看毛片| 波野结衣二区三区在线| 久久久精品94久久精品| 九九爱精品视频在线观看| 久久久久久久久久久久大奶| 精品少妇久久久久久888优播| tube8黄色片| 久久99蜜桃精品久久| 欧美日韩国产mv在线观看视频| 亚洲人成网站在线观看播放| 中文欧美无线码| 日韩欧美精品免费久久| 两个人免费观看高清视频| 日本与韩国留学比较| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| 久久精品国产自在天天线| 国产片特级美女逼逼视频| 亚洲性久久影院| 精品久久蜜臀av无| 日本黄色片子视频| 熟女电影av网| 天堂8中文在线网| 亚洲第一av免费看| 男人操女人黄网站| 五月天丁香电影| 国产免费现黄频在线看| 国产精品三级大全| 99久久人妻综合| 久久99精品国语久久久| 一区二区三区精品91| 色婷婷av一区二区三区视频| 久久久精品区二区三区| 中文字幕人妻丝袜制服| xxxhd国产人妻xxx| 亚洲第一av免费看| 久久久久精品久久久久真实原创| 国产片特级美女逼逼视频| 国产精品.久久久| 丰满乱子伦码专区| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 亚洲五月色婷婷综合| 成年美女黄网站色视频大全免费 | 精品视频人人做人人爽| 亚洲国产av影院在线观看| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 黄色毛片三级朝国网站| 亚洲丝袜综合中文字幕| 有码 亚洲区| 欧美成人午夜免费资源| 免费人妻精品一区二区三区视频| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 又粗又硬又长又爽又黄的视频| 国产欧美日韩一区二区三区在线 | 热99国产精品久久久久久7| 亚洲精品一二三| 黑人高潮一二区| 亚洲精品国产av蜜桃| 久久久午夜欧美精品| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 免费大片18禁| 午夜免费男女啪啪视频观看| 国产国拍精品亚洲av在线观看| 国产在线一区二区三区精| 午夜av观看不卡| 亚洲精品成人av观看孕妇| 国产免费福利视频在线观看| 国产免费视频播放在线视频| 欧美老熟妇乱子伦牲交| 国国产精品蜜臀av免费| 精品视频人人做人人爽| av又黄又爽大尺度在线免费看| 老熟女久久久| 观看av在线不卡| 三级国产精品片| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 色5月婷婷丁香| 97在线视频观看| 日韩视频在线欧美| 亚洲国产精品专区欧美| 欧美 日韩 精品 国产| 亚洲av国产av综合av卡| a 毛片基地| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 日韩熟女老妇一区二区性免费视频| 在线观看国产h片| 青春草视频在线免费观看| 人人妻人人澡人人看| 国产精品久久久久久精品古装| 国产女主播在线喷水免费视频网站| 精品少妇内射三级| 亚洲,欧美,日韩| 成人18禁高潮啪啪吃奶动态图 | www.av在线官网国产| 日日摸夜夜添夜夜爱| videosex国产| 中文字幕av电影在线播放| 国产精品一区二区三区四区免费观看| 极品人妻少妇av视频| 丝瓜视频免费看黄片| 2022亚洲国产成人精品| 狂野欧美白嫩少妇大欣赏| 久久99一区二区三区| 国产亚洲精品久久久com| 国产免费现黄频在线看| 国产综合精华液| 久久久欧美国产精品| 日韩av免费高清视频| 精品一区二区三卡| 大码成人一级视频| 免费黄频网站在线观看国产| 我的女老师完整版在线观看| 新久久久久国产一级毛片| 99久久中文字幕三级久久日本| av黄色大香蕉| 99热网站在线观看| 国产乱人偷精品视频| 久久精品久久久久久噜噜老黄| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 成人二区视频| 哪个播放器可以免费观看大片| 国产精品久久久久久精品古装| 国产黄频视频在线观看| 国产日韩欧美视频二区| 日韩av不卡免费在线播放| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 一本一本综合久久| 大话2 男鬼变身卡| 精品一区二区三区视频在线| 三级国产精品欧美在线观看| 亚洲精品日本国产第一区| 男女免费视频国产| 老司机亚洲免费影院| 天天操日日干夜夜撸| 人妻少妇偷人精品九色| 国产黄色免费在线视频| 性色av一级| 精品久久久久久久久亚洲| 亚洲av不卡在线观看| 最新中文字幕久久久久| 欧美成人午夜免费资源| 亚洲国产精品专区欧美| 丝袜喷水一区| 欧美精品国产亚洲| 免费人成在线观看视频色| 日本猛色少妇xxxxx猛交久久| 亚洲丝袜综合中文字幕| 免费av中文字幕在线| 国产午夜精品一二区理论片| 久久影院123| 99国产精品免费福利视频| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 黄色毛片三级朝国网站| 成人亚洲欧美一区二区av| 一本久久精品| 精品人妻偷拍中文字幕| 亚洲欧美日韩另类电影网站| 日韩不卡一区二区三区视频在线| 乱人伦中国视频| 免费不卡的大黄色大毛片视频在线观看| 丁香六月天网| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲 | 69精品国产乱码久久久| 纯流量卡能插随身wifi吗| 国产国语露脸激情在线看| 亚洲精品一区蜜桃| 亚洲一级一片aⅴ在线观看|