• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bionic jumping dynamics of the musculoskeletal leg mechanism for quadruped robots①

    2016-12-05 01:27:56LeiJingtao雷靜桃WuJiandong
    High Technology Letters 2016年2期
    關鍵詞:多元化價值觀

    Lei Jingtao(雷靜桃), Wu Jiandong

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    ?

    Bionic jumping dynamics of the musculoskeletal leg mechanism for quadruped robots①

    Lei Jingtao(雷靜桃)②, Wu Jiandong

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    As the pneumatic artificial muscle (PAM) has flexibility properties similar to biological muscle which is widely used in robotics as one kind of actuators, the bionic mechanism driven by PAMs becomes a hot spot in robotics. In this paper, a kind of musculoskeletal leg mechanism driven by PAMs is presented, which has three joints driven by four PAMs. The jumping movement is divided into three phases. The forward and inverse kinematics of the leg mechanism in different jumping phases is derived. Considering the ground reaction force between feet and environment, the dynamic in different jumping phases is analyzed by Lagrange method, then the relationship between PAM driving force and the joints angular displacement, angular velocity, angular acceleration during one jumping cycle is obtained, which will lay a foundation for the jumping experiment of the musculoskeletal leg mechanism.

    musculoskeletal, pneumatic artificial muscle (PAM), jumping, biomechanics, dynamics

    0 Introduction

    From the biological movement, the bionic running or jumping movement style is advantaged in the mobility and environmental suitability. The bionic robot is one of the important researching directions, and the bionic jumping or running robots have been paid more attention in recent years[1].

    The jumping movement is characterized by large instantaneous forces and short duration. For example, the duration time for vertical jumping is about 2s. Musculoskeletal system driven by PAMs can achieve jumping movement. The pneumatic muscle allows dynamic and agile movements for a robot with the property of light-weight and large amount of energy converted in short period of motion.

    PAMs have been widely used in various robotic systems[2]. The muscles were adopted to actuate the robot because of high power to weight ratio and properties similar to biological muscles.

    In the musculoskeletal system, PAM is widely adopted as an actuator for walking robots instead of the electric servomotor. PAM is similar to biological muscles in shape and working principles, which can meet the flexibility requirements. PAMs have many desirable characteristics, such as flexibility similar to biological muscles, high power to weight ratio, high power to volume ratio, and inherent compliance and have therefore been widely used in various robotic systems[2].

    The musculoskeletal system gives animals the ability to move in a huge variety of environments. Some researchers have paid more attention to the musculoskeletal legged system. Niiyama presented a pneumatically actuated bipedal robot “Mowgli”, whose artificial musculoskeletal system consists of six McKibben pneumatic muscle actuators. The robot can achieve vertical jumping with disturbance. Mowgli can reach jump heights of more than 50% of its body height and can land softly[2]. A kind of bipedal running robot using musculoskeletal system is presented. The configuration of the muscles is compatible with the human. The muscle activition of the musculoskeletal leg is determined by measuring the muscle activity and kinetic data of human[3]. Yamada developed a quadruped robot, which was designed by simulating the musculoskeletal system of quadruped animal. Different muscle configurations were analyzed. Some experiments were conducted to investigate emergent phenomena[4-6]. A kind of quadruped robot driven by PAMs is presented. The force characteristic is studied. The PAMs are controlled using pulse-width modulation with closed-loop position feedback[7,8]. Hosoda[9]developed one kind of biped robot, which has a bio-mimetic muscular-skeleton system driven by McKibben PAMs to realize stable bouncing. Kenichi[10]developed a kind of quadruped robot with the minimalistic and light-weight body for achieving fast locomotion. The McKibben PAMs have been used as actuators to provide high frequency and wide stride motion, and to avoid problems of overheating. A frog-inspired hopping leg driven by PAMs is presented, and the kinematic analysis is performed in landing and airboren phase respectively. Vertical jumping simulation is performed[11,12].

    A kind of musculoskeletal leg mechanism inspired by the running or jumping movement of animal is developed, which has 3 DOF driven by four PAMs for running or jumping quadruped robot. The jumping movement is divided into three phases, which are takeoff phase, jumping phase and landing phase. The forward and inverse kinematics of the musculoskeletal leg mechanism is derived. Considering the contact force between foot and environment, the dynamic is derived. The relationship between the PAM driving force and the joint angular displacement, angular velocity, angular acceleration is obtained. Meanwhile, the PAM driving force can be determined.

    1 Quadruped robot with musculoskeletal leg mechanism

    The quadruped robot system is designed by inspiring from the quadruped animals, such as, dog, cheetah, which is composed of one bionic flexible body and four legs, as shown in Fig.1.

    Fig.1 Quadruped robot

    PAM plays an important role in realizing coordinated movement of joints. There are four PAMs in the leg mechanism. PAM can imitate the behavior of biological muscle. The musculoskeletal leg mechanism is designed as shown in Fig.2. The leg mechanism has three rotational joints, which are side-swing hip joint, walking hip joint and knee joint. The side-swing hip joint is driven by one PAM, the walking hip joint is driven by one PAM, and the knee joint is driven by two PAMs[13].

    Fig.2 Musculoskeletal leg mechanism

    The movable range of each joint is designed similarly to those of quadruped creatures. The movable range of the side-swing hip joint is 15°, the walking hip joint is 10° and the knee joint is 60°, respectively.

    The hip joint’s flexion/extension is driven by two muscles. The hip joint can achieve side-swing and forward/backward-swing. The knee joint’s flexion/extension is driven by two muscles, in order to increase the rotate range of the knee joint. PAM has the characteristics: tending to contract, and hard to elongate. This characteristic is considered to arrange the PAMs for driving the knee joint. So the mechanical stretch structure is designed at the upper end of the PAM, which can compensate the lack of the PAM elongation.

    2 Kinematic of leg mechanism

    Kinematic is to determine the relationship between the joint varieties and feet pose. One jumping cycle is divided into three phase, which are takeoff phase, jumping phase and landing phase, as shown in Fig.3.

    Fig.3 One jumping cycle

    2.1 Takeoff phase or landing phase

    During the takeoff phase and landing phase, because the movement of leg mechanism is the same, the kinematic of leg mechanism in takeoff phase and land phase can be analyzed with the same method.

    When the robot is in turning gait or spinning gait, the side-swing hip joint is mainly used to assist the body to achieve turning movement, so it needs not to be considered in the jumping kinematics analysis.

    During the takeoff phase and landing phase, if there is not relative slippage between the feet and the ground, the movement of foot relative to the ground can be looked as passive rotary joint. The fixed reference frame system is located at the foot-end, and the hip joint is looked as the end of the open chain. The kinematic of the leg mechanism in the takeoff phase is to express the special positions of hip joint relative to the foot-end. The leg mechanism can be looked as an open chain with 3DOF.

    The Denavit-Hartenberg method is adopted to analyze the kinematics. The D-H coordinate systems are shown in Fig.4. The coordinate system {0} and {1} are located at foot-end. The coordinate system {2} is located at knee joint, and the coordinate system {3} is located at forward walking hip joint.

    Fig.4 Coordinate frames of leg in the takeoff phase

    According to the D-H coordinate systems, the link parameters can be determined as shown in Table 1.

    Table 1 D-H parameters of the leg mechanism

    The position and orientation of frame {3} with respect to frame {0} can be described by the 4×4 homogeneous transformation matrix:

    (1)

    where s2=sinθ2, c2=cosθ2, s4=sinθ4, c4=cosθ4, s34=sin(θ3+θ4), c34=cos(θ3+θ4).

    According to the expected trajectory of the frame {3}, the joint angular displacement can be derived by the inverse kinematics as

    2.2 Jumping phase

    During the airborne jumping phase, the movement of the leg mechanism can be seen as the resultant movement of the motion of the center of mass and links motion relative to the center of mass. So the fixed reference frame system is located at the center of mass, and the D-H coordinate systems are shown in Fig.5.

    Fig.5 Coordinate frames of leg in the jumping phase

    According to the D-H coordinate systems, the link parameters can be determined shown in Table 2.

    Table 2 D-H parameters of the leg mechanism

    The position and orientation of the foot-end with respect to frame {0} can be described by a 4×4 homogeneous transformation matrix:

    (2)

    The joint angular displacement can be derived by the inverse kinematics as follows:

    (3)

    3 Dynamics of leg mechanism

    The dynamics of the robot manipulator driven by PAMs is nonlinear[14]. The jumping dynamics of the musculoskeletal leg mechanism in different phases can be derived by the Lagrange method. As the jumping movement of the leg mechanism is not related with the side-swing hip joint, the leg can be simplified as one 2DOF mechanism.

    3.1 Takeoff phase or landing phase

    The dynamic of leg in the takeoff phase and the landing phase are the same. There are ground reaction forces between feet and environment, which can provide thrust force to move forward to maintain the posture. The dynamics of the leg can be described in the joint space, which has the following form:

    (4)

    τFis the vector of contact forces mapped to the joints by transposed Jacobian matrix. The mapping relationship between the contact forces and the joint torques can be expressed by Jacobian matrix:

    τF=JT(q)F

    (5)

    where

    The generalized ground reaction force F consists of force component and moment component at the contact point between foot and environment.

    where fz=0,nx=0,ny=0

    According to the moment principle of leg mechanism, the component of force is

    3.2 Jumping phase

    (6)

    4 PAM driving force

    According to the joint driving torque, the needed PAM force for driving joint movement can be derived by the geometric method.

    4.1 PAM driving force of walking hip joint

    The force analysis of walking hip joint is shown in Fig.6.

    Fig.6 Force analysis of the walking hip joint

    According to the geometric relationship, there is the static equilibrium equation:

    τ2=F2d2-Fkdk

    (7)

    Since the antagonistic forceFkgenerated by the PAM is smaller, which can be neglected, so the driving force of joint 2 is:

    因此,在目前多元化社會思潮和多元化價值觀念的影響下,加強醫(yī)院各科室精神文明建設尤為重要。醫(yī)務人員只有積極踐行社會主義核心價值觀,才能避免被非主流的思想觀念和價值觀念所誤導,才能保障我國的醫(yī)療衛(wèi)生事業(yè)始終保持正確的價值取向和發(fā)展方向,健康穩(wěn)定可持續(xù)發(fā)展。

    where

    4.2 PAM driving force of knee Joint

    The force analysis of knee joint is shown in Fig.7.

    Fig.7 Force analysis of the knee joint

    τ3=F4d4-F3d3

    (8)

    When PAM4 drives the joint 3, the antagonistic force F3that is generated by PAM3 is smaller, which can be neglected, so driving force of joint 3 is:

    5 PAM inner pressure

    For the musculoskeletal leg mechanism driven by PAMs, it is necessary to analyze the relationship between the PAM inner pressure and the PAM driving force.

    Generally, it is difficult to obtain the precise position control of the robotics system driven by PAMs. In contrast, the force/torque is relatively ease to be controlled by controlling the PAM gas pressure.

    (9)

    where p is the inner pressure of the PAM.

    6 Analysis results

    The structural parameters of the musculoskeletal leg mechanism are shown in Table 3.

    Table 3 Structural and gait parameters

    The PAMs from Festo company are selected as actuators, whose maximum shrinkage amount is 20% of the initial length. The structure parameters are shown in Table 4.

    Table 4 PAM parameters

    One jumping cycle is set as 1.8s. The foot-end trajectory during one jumping cycle is determined as shown in Fig.8(a). Then the joint angular displacement, angular velocity and angular acceleration of the leg mechanism can be calculated as shown in Fig.8(b)~(d).

    (a) The foot-end trajectory

    (b) Joint angular displacement

    (c) Joint angular velocity

    (d) Joint angular acceleration Fig.8 Kinematic results during one jumping cycle

    The jumping dynamics results of leg during one cycle can be calculated.

    The ground reaction forces are shown in Fig.9(a)~(b). As the jumping is analyzed in this paper, and the jumping is only related to joint 2 and joint 3, so the driving torque of joint 1 is zero. The joint torque is shown in Fig.9(c). The driving forces of PAMs are shown in Fig.9.(d)~(f).

    (a) Ground reaction force

    (b) Ground reaction torque

    (c) Joint torques

    (d) PAM2 driving force

    (e) PAM3 driving force

    (f) PAM4 driving force

    Fig.9 Dynamics results during one jumping cycle

    7 Conclusions

    This paper focuses on the kinematics and dynamics of the musculoskeletal leg mechanism. A kind of musculoskeletal leg mechanism driven by PAMs is presented, which can be implemented to the quadruped robot. The jumping movement is divided into three phases. The kinematics of the leg mechanism in different phases are analyzed to determine the relationship between the joint angular displacement and the foot trajectory. The ground reaction force between feet and environment is considered to derive the dynamics. The future work will focus on the control algorithm and continuous jumping experiments of the musculoskeletal leg mechanism.

    [1] Sayama K, Masuta H, Lim Hum-ok. Development of one-legged jumping robot with artificial musculoskeletal system. In: Proceedings of the 9th International Conference on Ubiquitous Robots and Ambient Intelligence, Daejeon, Korea, 2012.608-613

    [2] Andrikopoulos G, Nikolakopoulos G, Manesis S, et al. A survey on applications of pneumatic artificial muscles. In: Proceedings of the 19th Mediterranean Conference on Control & Automation, Corfu, Greece, 2011.1439-1446

    [3] Niiyama R, Nagakubo A, Kuniyoshi Y. Mowgli: A bipedal jumping and landing robot with an artificial musculoskeletal system . In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007. 2546-2551

    [4] Niiyama R, Nishikawa S, Kuniyoshi Y. Athlete robot with applied human muscle activation patterns for bipedal running. In: Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, USA, 2010. 498-503

    [5] Yamada Y, Nishikawa S, Shida K, et al. Neural-body coupling for emergent locomotion: A musculoskeletal quadruped robot with spinobulbar model. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011. 1499-1506

    [6] Nishikawa S, Yamada Y, Shida K, et al. Dynamic motions by a quadruped musculoskeletal robot with angle-dependent moment arms. In: Proceedings of the International Workshop on Bio-Inspired Robots, Nantes, France, 2011

    [7] Yamada Y, Nishikawa S, Shida K, et al. Emergent locomotion patterns from a quadruped pneumatic musculoskeletal robot with spinobulbar model. In: Proceedings of the International Workshop on Bio-Inspired Robots, Nantes, France, 2011

    [8] Aschenbeck K S, Kern N I, Bachmann R J, et al. Design of a quadruped robot driven by air muscles. In: Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006. 875-880

    [9] Hosoda K, Takayama H, Takuma T, et al. Bouncing monopod with bio-mimetic muscular-skeleton system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008. 3083-3088

    [10] Kenichi N, Andre R, Alexander S, et al. Development of a minimalistic pneumatic quadruped robot for fast locomotion. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 2012. 307-311

    [11] Zhang W, Fan J Z, Cai H G. Design of a novel frog-inspired hopping leg. In: Proceedings of the IEEE International Conference on Information and Automation, Shenyang, China. 2012. 277-282

    [12] Zhong J, Fan J Z, Zhao J, et al. Kinematic analysis of jumping leg driven by artificial muscles. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, Chengdu, China, 2012.1004-1008

    [13] Lei J T, Wu J D, Yu H Y. Analysis on the musculoskeletal leg mechanism driven by PAMs. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, Tianjin, China, 2014.1659-1663

    [14] Amato F, Colacino D, Cosentino C, et al. Robust and optimal tracking control for manipulator arm driven by pneumatic muscle actuators. In: Proceedings of the IEEE International Conference on Mechatronics, Vicenza, Italy, 2013. 827-834

    [15] Pujana-Arrese A, Mendizabal A, Arenas J, et al. Modelling in modelica and position control of a 1-DoF set-up powered by pneumatic muscles.Mechatronics, 2010, 20(5):535-552

    Lei Jingtao, born in 1970. She received her Ph.D degree from Beihang University in 2007. She also received her B.S. and M.S. degrees from Henan University of Science and Technology in 1991 and 1996 respectively. Her research interests include the robot mechanisms and robot modular technology.

    10.3772/j.issn.1006-6748.2016.02.002

    ①Supported by the National Natural Science Foundation of China (No. 51375289), Shanghai Municipal National Natural Science Foundation of China (No.13ZR1415500) and Innovation Fund of Shanghai Education Commission (No.13YZ020).

    ②To whom correspondence should be addressed. E-mail: jtlei2000@163.comReceived on June 19, 2015

    猜你喜歡
    多元化價值觀
    巧用“多元化”,賦能“雙減”作業(yè)
    我的價值觀
    永榮錦江瞄準差異化多元化
    圖說 我們的價值觀
    圖說我們的價值觀(三德)
    多元化——寫作教學中不可缺少的「原則」
    滿足多元化、高品質出行
    中國公路(2017年8期)2017-07-21 14:26:20
    知名企業(yè)的價值觀
    價值觀就在你我的身邊
    學習月刊(2015年9期)2015-07-09 05:33:44
    湯姆鞋的價值觀
    另类亚洲欧美激情| 人成视频在线观看免费观看| 2018国产大陆天天弄谢| 街头女战士在线观看网站| 成年人免费黄色播放视频| 极品少妇高潮喷水抽搐| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 精品99又大又爽又粗少妇毛片| 亚洲情色 制服丝袜| 搡女人真爽免费视频火全软件| 精品人妻熟女毛片av久久网站| 女的被弄到高潮叫床怎么办| 久久青草综合色| 少妇人妻 视频| 男的添女的下面高潮视频| 亚洲欧美成人精品一区二区| 日韩av免费高清视频| 亚洲天堂av无毛| 中文字幕人妻丝袜制服| 亚洲,欧美精品.| 久热久热在线精品观看| 日韩欧美精品免费久久| 日本vs欧美在线观看视频| 一级片免费观看大全| 女性生殖器流出的白浆| av视频免费观看在线观看| 91成人精品电影| 亚洲av在线观看美女高潮| 亚洲精品成人av观看孕妇| av女优亚洲男人天堂| 综合色丁香网| 亚洲成国产人片在线观看| 午夜日本视频在线| 国产白丝娇喘喷水9色精品| 亚洲精华国产精华液的使用体验| 97在线人人人人妻| 麻豆乱淫一区二区| 成人漫画全彩无遮挡| 七月丁香在线播放| 免费在线观看黄色视频的| 国产精品成人在线| 美女大奶头黄色视频| 老司机影院毛片| 亚洲国产精品999| 成年女人在线观看亚洲视频| 在线亚洲精品国产二区图片欧美| 校园人妻丝袜中文字幕| 一级毛片 在线播放| 这个男人来自地球电影免费观看 | 亚洲在久久综合| 国产成人午夜福利电影在线观看| 国产精品熟女久久久久浪| 久久精品国产综合久久久 | 狠狠精品人妻久久久久久综合| 日韩 亚洲 欧美在线| 亚洲婷婷狠狠爱综合网| 国产成人免费无遮挡视频| 丰满少妇做爰视频| 久久国产亚洲av麻豆专区| 一级a做视频免费观看| 9色porny在线观看| 久久精品国产综合久久久 | 亚洲五月色婷婷综合| 99热6这里只有精品| 黑人欧美特级aaaaaa片| 中文精品一卡2卡3卡4更新| 我的女老师完整版在线观看| 日韩av在线免费看完整版不卡| 日本黄色日本黄色录像| 亚洲精品美女久久av网站| 欧美老熟妇乱子伦牲交| 久久国产精品男人的天堂亚洲 | 国产高清不卡午夜福利| 老司机亚洲免费影院| 亚洲精品久久午夜乱码| 国产视频首页在线观看| 有码 亚洲区| 亚洲欧洲国产日韩| 日韩中字成人| 亚洲精品乱码久久久久久按摩| 欧美日本中文国产一区发布| 日韩欧美一区视频在线观看| 男女午夜视频在线观看 | 亚洲精华国产精华液的使用体验| tube8黄色片| av黄色大香蕉| 国产片特级美女逼逼视频| 欧美精品国产亚洲| 亚洲天堂av无毛| 国产精品偷伦视频观看了| 亚洲精品视频女| 亚洲一区二区三区欧美精品| 成人亚洲精品一区在线观看| 国产探花极品一区二区| 欧美97在线视频| 十八禁高潮呻吟视频| 在线亚洲精品国产二区图片欧美| 黄网站色视频无遮挡免费观看| 亚洲精品国产av成人精品| 精品久久久精品久久久| 最近手机中文字幕大全| 18禁在线无遮挡免费观看视频| 精品久久久精品久久久| 欧美 亚洲 国产 日韩一| 人妻人人澡人人爽人人| av电影中文网址| 一区二区三区乱码不卡18| 亚洲成人手机| 亚洲,一卡二卡三卡| 午夜免费鲁丝| 综合色丁香网| 亚洲精品国产色婷婷电影| 搡老乐熟女国产| 9色porny在线观看| 国产日韩一区二区三区精品不卡| 一级毛片 在线播放| 十分钟在线观看高清视频www| 国产一区二区在线观看日韩| 美女大奶头黄色视频| 18在线观看网站| 最新的欧美精品一区二区| 街头女战士在线观看网站| 国产极品粉嫩免费观看在线| 日韩不卡一区二区三区视频在线| 亚洲精品视频女| 久久久亚洲精品成人影院| 日韩av在线免费看完整版不卡| 成年美女黄网站色视频大全免费| 欧美激情极品国产一区二区三区 | 人成视频在线观看免费观看| 亚洲精品日韩在线中文字幕| 只有这里有精品99| 只有这里有精品99| 免费高清在线观看视频在线观看| 最近最新中文字幕大全免费视频 | 精品视频人人做人人爽| 天天影视国产精品| 国产又爽黄色视频| 少妇的逼水好多| 成年人免费黄色播放视频| 免费av不卡在线播放| 男人操女人黄网站| 国产成人91sexporn| 中文欧美无线码| 日本午夜av视频| 最近最新中文字幕免费大全7| 日韩制服骚丝袜av| 亚洲成国产人片在线观看| 色视频在线一区二区三区| 最近中文字幕高清免费大全6| 久久影院123| 免费观看性生交大片5| 丝袜美足系列| 亚洲综合精品二区| 一级毛片我不卡| 丝袜美足系列| 国产免费一区二区三区四区乱码| 最近中文字幕高清免费大全6| 人人澡人人妻人| 亚洲色图综合在线观看| 亚洲色图综合在线观看| 精品少妇内射三级| 国产精品久久久久成人av| 热99国产精品久久久久久7| 99久久精品国产国产毛片| 日本猛色少妇xxxxx猛交久久| 十分钟在线观看高清视频www| 99热网站在线观看| 精品一区二区三区四区五区乱码 | 亚洲图色成人| 国产欧美日韩一区二区三区在线| 亚洲国产精品国产精品| 免费黄网站久久成人精品| 欧美成人午夜免费资源| 国产av一区二区精品久久| 99re6热这里在线精品视频| 亚洲中文av在线| 国产av精品麻豆| 中文字幕另类日韩欧美亚洲嫩草| 美女脱内裤让男人舔精品视频| 老司机影院毛片| 寂寞人妻少妇视频99o| 国产有黄有色有爽视频| 国产免费福利视频在线观看| 一区二区三区精品91| 精品一区二区免费观看| 桃花免费在线播放| 啦啦啦在线观看免费高清www| 欧美成人精品欧美一级黄| 五月伊人婷婷丁香| 有码 亚洲区| 成人漫画全彩无遮挡| 午夜福利视频精品| 午夜激情av网站| 少妇精品久久久久久久| 高清视频免费观看一区二区| www.av在线官网国产| 寂寞人妻少妇视频99o| 亚洲精品,欧美精品| 少妇人妻久久综合中文| 综合色丁香网| 国产精品久久久久久av不卡| 亚洲精品日本国产第一区| 晚上一个人看的免费电影| 18禁动态无遮挡网站| 久久这里有精品视频免费| 欧美激情极品国产一区二区三区 | 亚洲国产av新网站| 日本猛色少妇xxxxx猛交久久| 国产片内射在线| 美女xxoo啪啪120秒动态图| 国产精品一区二区在线不卡| 高清不卡的av网站| 国产在视频线精品| 男人爽女人下面视频在线观看| 少妇人妻精品综合一区二区| 亚洲精品456在线播放app| 97在线人人人人妻| 国产又色又爽无遮挡免| 伦精品一区二区三区| 亚洲成人av在线免费| 亚洲国产精品一区二区三区在线| 久久久久久久久久久久大奶| 亚洲美女视频黄频| 九色成人免费人妻av| 丰满迷人的少妇在线观看| 国产免费一区二区三区四区乱码| 亚洲四区av| 如何舔出高潮| 80岁老熟妇乱子伦牲交| 色网站视频免费| 亚洲色图 男人天堂 中文字幕 | 免费大片18禁| av不卡在线播放| 天堂俺去俺来也www色官网| videos熟女内射| 少妇高潮的动态图| 国产极品天堂在线| 欧美精品国产亚洲| 久久影院123| 国语对白做爰xxxⅹ性视频网站| 又黄又粗又硬又大视频| 最近2019中文字幕mv第一页| 欧美成人精品欧美一级黄| 91成人精品电影| 人妻一区二区av| 天堂中文最新版在线下载| 国产精品成人在线| 久久人人爽人人爽人人片va| 国产高清国产精品国产三级| 亚洲 欧美一区二区三区| 曰老女人黄片| 久久久久久久亚洲中文字幕| 国产精品不卡视频一区二区| 男女免费视频国产| 国产国语露脸激情在线看| 国产视频首页在线观看| 美国免费a级毛片| 美女视频免费永久观看网站| 久热这里只有精品99| 国产免费现黄频在线看| 日韩av不卡免费在线播放| 男女高潮啪啪啪动态图| 国产高清国产精品国产三级| 亚洲欧美中文字幕日韩二区| 三级国产精品片| 免费少妇av软件| videosex国产| 亚洲国产av新网站| 好男人视频免费观看在线| 晚上一个人看的免费电影| 国产精品久久久av美女十八| 大陆偷拍与自拍| 看非洲黑人一级黄片| 国产片内射在线| a 毛片基地| 青春草视频在线免费观看| 国产高清不卡午夜福利| 只有这里有精品99| 自拍欧美九色日韩亚洲蝌蚪91| 久久综合国产亚洲精品| 性色avwww在线观看| 成人二区视频| 日本欧美视频一区| 久久精品人人爽人人爽视色| 精品人妻偷拍中文字幕| 亚洲美女视频黄频| 看免费av毛片| 亚洲国产欧美日韩在线播放| 免费在线观看完整版高清| 1024视频免费在线观看| 一边亲一边摸免费视频| 久久精品国产综合久久久 | 国产不卡av网站在线观看| 午夜福利在线观看免费完整高清在| 波多野结衣一区麻豆| xxxhd国产人妻xxx| 少妇熟女欧美另类| 一个人免费看片子| 欧美最新免费一区二区三区| 日本色播在线视频| 狂野欧美激情性xxxx在线观看| 一本久久精品| 精品人妻一区二区三区麻豆| 老司机影院毛片| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频 | 欧美日韩综合久久久久久| 亚洲国产精品一区二区三区在线| 亚洲欧美成人综合另类久久久| 亚洲国产精品一区三区| 99热6这里只有精品| 另类亚洲欧美激情| 国产黄色免费在线视频| 久久久久人妻精品一区果冻| 一边摸一边做爽爽视频免费| 一区二区日韩欧美中文字幕 | 久久99一区二区三区| 美女国产视频在线观看| 热99国产精品久久久久久7| 久久婷婷青草| 日韩一本色道免费dvd| 亚洲综合色网址| 女性被躁到高潮视频| 亚洲内射少妇av| 最新中文字幕久久久久| av天堂久久9| 国产日韩欧美视频二区| 免费看不卡的av| 亚洲激情五月婷婷啪啪| 男女边吃奶边做爰视频| 亚洲精品日本国产第一区| 亚洲欧美色中文字幕在线| 最近最新中文字幕大全免费视频 | 中文字幕人妻丝袜制服| 亚洲国产精品专区欧美| 亚洲高清免费不卡视频| 亚洲成人一二三区av| 欧美人与善性xxx| freevideosex欧美| 91久久精品国产一区二区三区| 女性被躁到高潮视频| 在线精品无人区一区二区三| 女人精品久久久久毛片| 99久国产av精品国产电影| 男人添女人高潮全过程视频| 国产黄色免费在线视频| 国产成人av激情在线播放| 成年av动漫网址| 久久鲁丝午夜福利片| 国产 一区精品| 免费大片18禁| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 日韩中字成人| 啦啦啦视频在线资源免费观看| 麻豆乱淫一区二区| 夜夜爽夜夜爽视频| 国产免费一级a男人的天堂| 视频区图区小说| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区国产| h视频一区二区三区| 成人毛片a级毛片在线播放| 亚洲欧洲日产国产| 国产片特级美女逼逼视频| 成年动漫av网址| 大香蕉久久成人网| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 永久网站在线| 777米奇影视久久| 日韩 亚洲 欧美在线| 久久久久久久精品精品| 欧美亚洲日本最大视频资源| 九九在线视频观看精品| 国产亚洲欧美精品永久| 国产成人aa在线观看| 亚洲精品一二三| 亚洲美女黄色视频免费看| 观看美女的网站| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 亚洲欧洲国产日韩| 欧美日韩国产mv在线观看视频| 国产高清三级在线| 美女大奶头黄色视频| 亚洲精品久久午夜乱码| 久久精品国产亚洲av天美| 黄色一级大片看看| 精品国产乱码久久久久久小说| 黄片播放在线免费| 亚洲国产精品国产精品| 全区人妻精品视频| 一级a做视频免费观看| 亚洲成人一二三区av| 久久久久久久久久久免费av| 国产男人的电影天堂91| a级毛片黄视频| 国产成人一区二区在线| 大香蕉久久成人网| 9191精品国产免费久久| 成人午夜精彩视频在线观看| 亚洲av国产av综合av卡| 色视频在线一区二区三区| 久久精品国产亚洲av天美| 岛国毛片在线播放| 777米奇影视久久| 久久久精品区二区三区| 成人亚洲欧美一区二区av| 精品久久久久久电影网| 中文乱码字字幕精品一区二区三区| 亚洲精品久久成人aⅴ小说| 视频在线观看一区二区三区| 看免费av毛片| tube8黄色片| 中文欧美无线码| 9191精品国产免费久久| 日韩欧美一区视频在线观看| 欧美精品一区二区免费开放| 夜夜骑夜夜射夜夜干| 亚洲欧美成人精品一区二区| 汤姆久久久久久久影院中文字幕| 久久影院123| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 国产成人免费观看mmmm| a 毛片基地| 亚洲精品美女久久久久99蜜臀 | 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 亚洲伊人色综图| 亚洲av国产av综合av卡| 99久久综合免费| 人妻 亚洲 视频| 亚洲国产av新网站| 最近2019中文字幕mv第一页| 人妻一区二区av| 99久久中文字幕三级久久日本| 国内精品宾馆在线| 少妇被粗大的猛进出69影院 | 夫妻午夜视频| 青春草国产在线视频| 黑丝袜美女国产一区| 搡老乐熟女国产| 新久久久久国产一级毛片| 精品人妻偷拍中文字幕| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 男女边摸边吃奶| 美女内射精品一级片tv| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕 | 国产乱来视频区| 大陆偷拍与自拍| 久久ye,这里只有精品| 水蜜桃什么品种好| 久久久久久人妻| 18在线观看网站| 中文乱码字字幕精品一区二区三区| 国产色婷婷99| 欧美精品人与动牲交sv欧美| 啦啦啦中文免费视频观看日本| 久久人人97超碰香蕉20202| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 日韩电影二区| www.色视频.com| 黄网站色视频无遮挡免费观看| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人添人人爽欧美一区卜| 久久久久久久亚洲中文字幕| 免费观看a级毛片全部| 五月天丁香电影| 亚洲av电影在线进入| 国产精品免费大片| 九九爱精品视频在线观看| 99精国产麻豆久久婷婷| 欧美日韩视频高清一区二区三区二| 久久久久久久国产电影| 男女边摸边吃奶| 婷婷色综合www| 久久精品国产亚洲av涩爱| 一边亲一边摸免费视频| 久久精品国产a三级三级三级| 国产福利在线免费观看视频| 黄色毛片三级朝国网站| 成人午夜精彩视频在线观看| 亚洲av男天堂| 丝袜在线中文字幕| 国产精品国产三级专区第一集| 国产精品久久久久久av不卡| 亚洲三级黄色毛片| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 亚洲性久久影院| 少妇人妻久久综合中文| 久久精品久久久久久久性| 亚洲av日韩在线播放| 少妇猛男粗大的猛烈进出视频| 男人添女人高潮全过程视频| 久久这里只有精品19| 女的被弄到高潮叫床怎么办| 一级,二级,三级黄色视频| 性色avwww在线观看| 伦精品一区二区三区| 国产男人的电影天堂91| 成年美女黄网站色视频大全免费| 亚洲精品国产色婷婷电影| 国产高清三级在线| 久久久久精品久久久久真实原创| 侵犯人妻中文字幕一二三四区| 国产av精品麻豆| 一二三四中文在线观看免费高清| 久久久精品免费免费高清| 国产一区亚洲一区在线观看| 国产精品蜜桃在线观看| 2022亚洲国产成人精品| 日韩 亚洲 欧美在线| 成人亚洲精品一区在线观看| 综合色丁香网| 亚洲三级黄色毛片| 日韩伦理黄色片| 香蕉精品网在线| 制服诱惑二区| 少妇 在线观看| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩卡通动漫| kizo精华| 夫妻午夜视频| 日本欧美视频一区| 久久久久久伊人网av| 久久精品久久久久久久性| 天天躁夜夜躁狠狠久久av| 国产成人免费无遮挡视频| 高清视频免费观看一区二区| 亚洲欧洲日产国产| 一级爰片在线观看| 日韩三级伦理在线观看| 香蕉精品网在线| 成人国产麻豆网| 18禁动态无遮挡网站| 亚洲天堂av无毛| 99热这里只有是精品在线观看| 国产精品久久久久久久电影| 91在线精品国自产拍蜜月| 国产精品人妻久久久久久| 精品午夜福利在线看| 精品亚洲成a人片在线观看| 搡女人真爽免费视频火全软件| 超碰97精品在线观看| 久久99蜜桃精品久久| 日本欧美国产在线视频| 日韩熟女老妇一区二区性免费视频| 伦理电影免费视频| 日韩欧美一区视频在线观看| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 欧美人与性动交α欧美精品济南到 | kizo精华| 成人影院久久| 考比视频在线观看| 国国产精品蜜臀av免费| 黑人巨大精品欧美一区二区蜜桃 | 一本久久精品| 精品熟女少妇av免费看| 咕卡用的链子| 90打野战视频偷拍视频| 丝袜美足系列| 女性生殖器流出的白浆| 亚洲欧美日韩卡通动漫| 久久鲁丝午夜福利片| 91久久精品国产一区二区三区| av在线老鸭窝| 国产欧美日韩综合在线一区二区| 亚洲成人一二三区av| 免费人妻精品一区二区三区视频| 大香蕉97超碰在线| 亚洲一码二码三码区别大吗| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人 | 9色porny在线观看| 国产成人一区二区在线| www.熟女人妻精品国产 | 亚洲欧洲国产日韩| 成年av动漫网址| 欧美日韩精品成人综合77777| 婷婷色av中文字幕| 日韩中字成人| 纯流量卡能插随身wifi吗| 少妇人妻 视频| 乱人伦中国视频| 精品国产一区二区久久| 久久精品国产a三级三级三级| 最黄视频免费看| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 欧美精品亚洲一区二区| 久久久亚洲精品成人影院| 97人妻天天添夜夜摸| 日韩一本色道免费dvd| 高清欧美精品videossex| 成年美女黄网站色视频大全免费| 性色avwww在线观看| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| 免费观看在线日韩| 精品国产国语对白av| 免费观看av网站的网址| 中文乱码字字幕精品一区二区三区| 成年美女黄网站色视频大全免费| 午夜福利影视在线免费观看| 欧美精品一区二区大全| 亚洲国产精品成人久久小说|