• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bionic jumping dynamics of the musculoskeletal leg mechanism for quadruped robots①

    2016-12-05 01:27:56LeiJingtao雷靜桃WuJiandong
    High Technology Letters 2016年2期
    關(guān)鍵詞:多元化價值觀

    Lei Jingtao(雷靜桃), Wu Jiandong

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    ?

    Bionic jumping dynamics of the musculoskeletal leg mechanism for quadruped robots①

    Lei Jingtao(雷靜桃)②, Wu Jiandong

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P.R.China)

    As the pneumatic artificial muscle (PAM) has flexibility properties similar to biological muscle which is widely used in robotics as one kind of actuators, the bionic mechanism driven by PAMs becomes a hot spot in robotics. In this paper, a kind of musculoskeletal leg mechanism driven by PAMs is presented, which has three joints driven by four PAMs. The jumping movement is divided into three phases. The forward and inverse kinematics of the leg mechanism in different jumping phases is derived. Considering the ground reaction force between feet and environment, the dynamic in different jumping phases is analyzed by Lagrange method, then the relationship between PAM driving force and the joints angular displacement, angular velocity, angular acceleration during one jumping cycle is obtained, which will lay a foundation for the jumping experiment of the musculoskeletal leg mechanism.

    musculoskeletal, pneumatic artificial muscle (PAM), jumping, biomechanics, dynamics

    0 Introduction

    From the biological movement, the bionic running or jumping movement style is advantaged in the mobility and environmental suitability. The bionic robot is one of the important researching directions, and the bionic jumping or running robots have been paid more attention in recent years[1].

    The jumping movement is characterized by large instantaneous forces and short duration. For example, the duration time for vertical jumping is about 2s. Musculoskeletal system driven by PAMs can achieve jumping movement. The pneumatic muscle allows dynamic and agile movements for a robot with the property of light-weight and large amount of energy converted in short period of motion.

    PAMs have been widely used in various robotic systems[2]. The muscles were adopted to actuate the robot because of high power to weight ratio and properties similar to biological muscles.

    In the musculoskeletal system, PAM is widely adopted as an actuator for walking robots instead of the electric servomotor. PAM is similar to biological muscles in shape and working principles, which can meet the flexibility requirements. PAMs have many desirable characteristics, such as flexibility similar to biological muscles, high power to weight ratio, high power to volume ratio, and inherent compliance and have therefore been widely used in various robotic systems[2].

    The musculoskeletal system gives animals the ability to move in a huge variety of environments. Some researchers have paid more attention to the musculoskeletal legged system. Niiyama presented a pneumatically actuated bipedal robot “Mowgli”, whose artificial musculoskeletal system consists of six McKibben pneumatic muscle actuators. The robot can achieve vertical jumping with disturbance. Mowgli can reach jump heights of more than 50% of its body height and can land softly[2]. A kind of bipedal running robot using musculoskeletal system is presented. The configuration of the muscles is compatible with the human. The muscle activition of the musculoskeletal leg is determined by measuring the muscle activity and kinetic data of human[3]. Yamada developed a quadruped robot, which was designed by simulating the musculoskeletal system of quadruped animal. Different muscle configurations were analyzed. Some experiments were conducted to investigate emergent phenomena[4-6]. A kind of quadruped robot driven by PAMs is presented. The force characteristic is studied. The PAMs are controlled using pulse-width modulation with closed-loop position feedback[7,8]. Hosoda[9]developed one kind of biped robot, which has a bio-mimetic muscular-skeleton system driven by McKibben PAMs to realize stable bouncing. Kenichi[10]developed a kind of quadruped robot with the minimalistic and light-weight body for achieving fast locomotion. The McKibben PAMs have been used as actuators to provide high frequency and wide stride motion, and to avoid problems of overheating. A frog-inspired hopping leg driven by PAMs is presented, and the kinematic analysis is performed in landing and airboren phase respectively. Vertical jumping simulation is performed[11,12].

    A kind of musculoskeletal leg mechanism inspired by the running or jumping movement of animal is developed, which has 3 DOF driven by four PAMs for running or jumping quadruped robot. The jumping movement is divided into three phases, which are takeoff phase, jumping phase and landing phase. The forward and inverse kinematics of the musculoskeletal leg mechanism is derived. Considering the contact force between foot and environment, the dynamic is derived. The relationship between the PAM driving force and the joint angular displacement, angular velocity, angular acceleration is obtained. Meanwhile, the PAM driving force can be determined.

    1 Quadruped robot with musculoskeletal leg mechanism

    The quadruped robot system is designed by inspiring from the quadruped animals, such as, dog, cheetah, which is composed of one bionic flexible body and four legs, as shown in Fig.1.

    Fig.1 Quadruped robot

    PAM plays an important role in realizing coordinated movement of joints. There are four PAMs in the leg mechanism. PAM can imitate the behavior of biological muscle. The musculoskeletal leg mechanism is designed as shown in Fig.2. The leg mechanism has three rotational joints, which are side-swing hip joint, walking hip joint and knee joint. The side-swing hip joint is driven by one PAM, the walking hip joint is driven by one PAM, and the knee joint is driven by two PAMs[13].

    Fig.2 Musculoskeletal leg mechanism

    The movable range of each joint is designed similarly to those of quadruped creatures. The movable range of the side-swing hip joint is 15°, the walking hip joint is 10° and the knee joint is 60°, respectively.

    The hip joint’s flexion/extension is driven by two muscles. The hip joint can achieve side-swing and forward/backward-swing. The knee joint’s flexion/extension is driven by two muscles, in order to increase the rotate range of the knee joint. PAM has the characteristics: tending to contract, and hard to elongate. This characteristic is considered to arrange the PAMs for driving the knee joint. So the mechanical stretch structure is designed at the upper end of the PAM, which can compensate the lack of the PAM elongation.

    2 Kinematic of leg mechanism

    Kinematic is to determine the relationship between the joint varieties and feet pose. One jumping cycle is divided into three phase, which are takeoff phase, jumping phase and landing phase, as shown in Fig.3.

    Fig.3 One jumping cycle

    2.1 Takeoff phase or landing phase

    During the takeoff phase and landing phase, because the movement of leg mechanism is the same, the kinematic of leg mechanism in takeoff phase and land phase can be analyzed with the same method.

    When the robot is in turning gait or spinning gait, the side-swing hip joint is mainly used to assist the body to achieve turning movement, so it needs not to be considered in the jumping kinematics analysis.

    During the takeoff phase and landing phase, if there is not relative slippage between the feet and the ground, the movement of foot relative to the ground can be looked as passive rotary joint. The fixed reference frame system is located at the foot-end, and the hip joint is looked as the end of the open chain. The kinematic of the leg mechanism in the takeoff phase is to express the special positions of hip joint relative to the foot-end. The leg mechanism can be looked as an open chain with 3DOF.

    The Denavit-Hartenberg method is adopted to analyze the kinematics. The D-H coordinate systems are shown in Fig.4. The coordinate system {0} and {1} are located at foot-end. The coordinate system {2} is located at knee joint, and the coordinate system {3} is located at forward walking hip joint.

    Fig.4 Coordinate frames of leg in the takeoff phase

    According to the D-H coordinate systems, the link parameters can be determined as shown in Table 1.

    Table 1 D-H parameters of the leg mechanism

    The position and orientation of frame {3} with respect to frame {0} can be described by the 4×4 homogeneous transformation matrix:

    (1)

    where s2=sinθ2, c2=cosθ2, s4=sinθ4, c4=cosθ4, s34=sin(θ3+θ4), c34=cos(θ3+θ4).

    According to the expected trajectory of the frame {3}, the joint angular displacement can be derived by the inverse kinematics as

    2.2 Jumping phase

    During the airborne jumping phase, the movement of the leg mechanism can be seen as the resultant movement of the motion of the center of mass and links motion relative to the center of mass. So the fixed reference frame system is located at the center of mass, and the D-H coordinate systems are shown in Fig.5.

    Fig.5 Coordinate frames of leg in the jumping phase

    According to the D-H coordinate systems, the link parameters can be determined shown in Table 2.

    Table 2 D-H parameters of the leg mechanism

    The position and orientation of the foot-end with respect to frame {0} can be described by a 4×4 homogeneous transformation matrix:

    (2)

    The joint angular displacement can be derived by the inverse kinematics as follows:

    (3)

    3 Dynamics of leg mechanism

    The dynamics of the robot manipulator driven by PAMs is nonlinear[14]. The jumping dynamics of the musculoskeletal leg mechanism in different phases can be derived by the Lagrange method. As the jumping movement of the leg mechanism is not related with the side-swing hip joint, the leg can be simplified as one 2DOF mechanism.

    3.1 Takeoff phase or landing phase

    The dynamic of leg in the takeoff phase and the landing phase are the same. There are ground reaction forces between feet and environment, which can provide thrust force to move forward to maintain the posture. The dynamics of the leg can be described in the joint space, which has the following form:

    (4)

    τFis the vector of contact forces mapped to the joints by transposed Jacobian matrix. The mapping relationship between the contact forces and the joint torques can be expressed by Jacobian matrix:

    τF=JT(q)F

    (5)

    where

    The generalized ground reaction force F consists of force component and moment component at the contact point between foot and environment.

    where fz=0,nx=0,ny=0

    According to the moment principle of leg mechanism, the component of force is

    3.2 Jumping phase

    (6)

    4 PAM driving force

    According to the joint driving torque, the needed PAM force for driving joint movement can be derived by the geometric method.

    4.1 PAM driving force of walking hip joint

    The force analysis of walking hip joint is shown in Fig.6.

    Fig.6 Force analysis of the walking hip joint

    According to the geometric relationship, there is the static equilibrium equation:

    τ2=F2d2-Fkdk

    (7)

    Since the antagonistic forceFkgenerated by the PAM is smaller, which can be neglected, so the driving force of joint 2 is:

    因此,在目前多元化社會思潮和多元化價值觀念的影響下,加強(qiáng)醫(yī)院各科室精神文明建設(shè)尤為重要。醫(yī)務(wù)人員只有積極踐行社會主義核心價值觀,才能避免被非主流的思想觀念和價值觀念所誤導(dǎo),才能保障我國的醫(yī)療衛(wèi)生事業(yè)始終保持正確的價值取向和發(fā)展方向,健康穩(wěn)定可持續(xù)發(fā)展。

    where

    4.2 PAM driving force of knee Joint

    The force analysis of knee joint is shown in Fig.7.

    Fig.7 Force analysis of the knee joint

    τ3=F4d4-F3d3

    (8)

    When PAM4 drives the joint 3, the antagonistic force F3that is generated by PAM3 is smaller, which can be neglected, so driving force of joint 3 is:

    5 PAM inner pressure

    For the musculoskeletal leg mechanism driven by PAMs, it is necessary to analyze the relationship between the PAM inner pressure and the PAM driving force.

    Generally, it is difficult to obtain the precise position control of the robotics system driven by PAMs. In contrast, the force/torque is relatively ease to be controlled by controlling the PAM gas pressure.

    (9)

    where p is the inner pressure of the PAM.

    6 Analysis results

    The structural parameters of the musculoskeletal leg mechanism are shown in Table 3.

    Table 3 Structural and gait parameters

    The PAMs from Festo company are selected as actuators, whose maximum shrinkage amount is 20% of the initial length. The structure parameters are shown in Table 4.

    Table 4 PAM parameters

    One jumping cycle is set as 1.8s. The foot-end trajectory during one jumping cycle is determined as shown in Fig.8(a). Then the joint angular displacement, angular velocity and angular acceleration of the leg mechanism can be calculated as shown in Fig.8(b)~(d).

    (a) The foot-end trajectory

    (b) Joint angular displacement

    (c) Joint angular velocity

    (d) Joint angular acceleration Fig.8 Kinematic results during one jumping cycle

    The jumping dynamics results of leg during one cycle can be calculated.

    The ground reaction forces are shown in Fig.9(a)~(b). As the jumping is analyzed in this paper, and the jumping is only related to joint 2 and joint 3, so the driving torque of joint 1 is zero. The joint torque is shown in Fig.9(c). The driving forces of PAMs are shown in Fig.9.(d)~(f).

    (a) Ground reaction force

    (b) Ground reaction torque

    (c) Joint torques

    (d) PAM2 driving force

    (e) PAM3 driving force

    (f) PAM4 driving force

    Fig.9 Dynamics results during one jumping cycle

    7 Conclusions

    This paper focuses on the kinematics and dynamics of the musculoskeletal leg mechanism. A kind of musculoskeletal leg mechanism driven by PAMs is presented, which can be implemented to the quadruped robot. The jumping movement is divided into three phases. The kinematics of the leg mechanism in different phases are analyzed to determine the relationship between the joint angular displacement and the foot trajectory. The ground reaction force between feet and environment is considered to derive the dynamics. The future work will focus on the control algorithm and continuous jumping experiments of the musculoskeletal leg mechanism.

    [1] Sayama K, Masuta H, Lim Hum-ok. Development of one-legged jumping robot with artificial musculoskeletal system. In: Proceedings of the 9th International Conference on Ubiquitous Robots and Ambient Intelligence, Daejeon, Korea, 2012.608-613

    [2] Andrikopoulos G, Nikolakopoulos G, Manesis S, et al. A survey on applications of pneumatic artificial muscles. In: Proceedings of the 19th Mediterranean Conference on Control & Automation, Corfu, Greece, 2011.1439-1446

    [3] Niiyama R, Nagakubo A, Kuniyoshi Y. Mowgli: A bipedal jumping and landing robot with an artificial musculoskeletal system . In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007. 2546-2551

    [4] Niiyama R, Nishikawa S, Kuniyoshi Y. Athlete robot with applied human muscle activation patterns for bipedal running. In: Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, USA, 2010. 498-503

    [5] Yamada Y, Nishikawa S, Shida K, et al. Neural-body coupling for emergent locomotion: A musculoskeletal quadruped robot with spinobulbar model. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011. 1499-1506

    [6] Nishikawa S, Yamada Y, Shida K, et al. Dynamic motions by a quadruped musculoskeletal robot with angle-dependent moment arms. In: Proceedings of the International Workshop on Bio-Inspired Robots, Nantes, France, 2011

    [7] Yamada Y, Nishikawa S, Shida K, et al. Emergent locomotion patterns from a quadruped pneumatic musculoskeletal robot with spinobulbar model. In: Proceedings of the International Workshop on Bio-Inspired Robots, Nantes, France, 2011

    [8] Aschenbeck K S, Kern N I, Bachmann R J, et al. Design of a quadruped robot driven by air muscles. In: Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006. 875-880

    [9] Hosoda K, Takayama H, Takuma T, et al. Bouncing monopod with bio-mimetic muscular-skeleton system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008. 3083-3088

    [10] Kenichi N, Andre R, Alexander S, et al. Development of a minimalistic pneumatic quadruped robot for fast locomotion. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 2012. 307-311

    [11] Zhang W, Fan J Z, Cai H G. Design of a novel frog-inspired hopping leg. In: Proceedings of the IEEE International Conference on Information and Automation, Shenyang, China. 2012. 277-282

    [12] Zhong J, Fan J Z, Zhao J, et al. Kinematic analysis of jumping leg driven by artificial muscles. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, Chengdu, China, 2012.1004-1008

    [13] Lei J T, Wu J D, Yu H Y. Analysis on the musculoskeletal leg mechanism driven by PAMs. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, Tianjin, China, 2014.1659-1663

    [14] Amato F, Colacino D, Cosentino C, et al. Robust and optimal tracking control for manipulator arm driven by pneumatic muscle actuators. In: Proceedings of the IEEE International Conference on Mechatronics, Vicenza, Italy, 2013. 827-834

    [15] Pujana-Arrese A, Mendizabal A, Arenas J, et al. Modelling in modelica and position control of a 1-DoF set-up powered by pneumatic muscles.Mechatronics, 2010, 20(5):535-552

    Lei Jingtao, born in 1970. She received her Ph.D degree from Beihang University in 2007. She also received her B.S. and M.S. degrees from Henan University of Science and Technology in 1991 and 1996 respectively. Her research interests include the robot mechanisms and robot modular technology.

    10.3772/j.issn.1006-6748.2016.02.002

    ①Supported by the National Natural Science Foundation of China (No. 51375289), Shanghai Municipal National Natural Science Foundation of China (No.13ZR1415500) and Innovation Fund of Shanghai Education Commission (No.13YZ020).

    ②To whom correspondence should be addressed. E-mail: jtlei2000@163.comReceived on June 19, 2015

    猜你喜歡
    多元化價值觀
    巧用“多元化”,賦能“雙減”作業(yè)
    我的價值觀
    永榮錦江瞄準(zhǔn)差異化多元化
    圖說 我們的價值觀
    圖說我們的價值觀(三德)
    多元化——寫作教學(xué)中不可缺少的「原則」
    滿足多元化、高品質(zhì)出行
    中國公路(2017年8期)2017-07-21 14:26:20
    知名企業(yè)的價值觀
    價值觀就在你我的身邊
    湯姆鞋的價值觀
    一本大道久久a久久精品| 香蕉丝袜av| 欧美在线一区亚洲| 别揉我奶头~嗯~啊~动态视频| 在线看三级毛片| 中文字幕久久专区| 亚洲中文字幕一区二区三区有码在线看 | 一个人观看的视频www高清免费观看 | 黄色视频不卡| 国产精品日韩av在线免费观看| 亚洲成av片中文字幕在线观看| 亚洲男人天堂网一区| 国产私拍福利视频在线观看| 99在线人妻在线中文字幕| 99热只有精品国产| 亚洲av美国av| 国产成年人精品一区二区| 美女高潮喷水抽搐中文字幕| 中文字幕人妻丝袜一区二区| 啦啦啦 在线观看视频| 大型av网站在线播放| www国产在线视频色| 搡老熟女国产l中国老女人| 日韩欧美 国产精品| 欧美黄色片欧美黄色片| 男人操女人黄网站| 精品一区二区三区av网在线观看| 身体一侧抽搐| 免费高清视频大片| 在线观看日韩欧美| 亚洲精品av麻豆狂野| 动漫黄色视频在线观看| 国产av不卡久久| 99riav亚洲国产免费| 99热这里只有精品一区 | 欧美中文日本在线观看视频| 好看av亚洲va欧美ⅴa在| 婷婷精品国产亚洲av在线| 美女高潮到喷水免费观看| 好男人在线观看高清免费视频 | 听说在线观看完整版免费高清| 日本一区二区免费在线视频| 欧美日本视频| 美女免费视频网站| 99久久无色码亚洲精品果冻| 高清在线国产一区| 亚洲电影在线观看av| 久久精品国产清高在天天线| 精品欧美国产一区二区三| 国产高清videossex| 欧美日韩瑟瑟在线播放| 日韩欧美一区视频在线观看| 这个男人来自地球电影免费观看| 欧美大码av| 亚洲专区国产一区二区| 1024香蕉在线观看| 亚洲人成电影免费在线| 精品国产国语对白av| 日韩精品青青久久久久久| www.999成人在线观看| av视频在线观看入口| 满18在线观看网站| 极品教师在线免费播放| 性色av乱码一区二区三区2| 亚洲九九香蕉| 欧美日韩一级在线毛片| 久久久久久久久中文| 天天躁夜夜躁狠狠躁躁| 久久久久久大精品| 精品一区二区三区四区五区乱码| 老司机深夜福利视频在线观看| 久久久国产欧美日韩av| 国内毛片毛片毛片毛片毛片| 欧美成人免费av一区二区三区| 日本熟妇午夜| 午夜a级毛片| 男女视频在线观看网站免费 | 无限看片的www在线观看| 国产在线观看jvid| 久久天躁狠狠躁夜夜2o2o| 国产精品永久免费网站| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| 国产av又大| 日日爽夜夜爽网站| 男人舔奶头视频| 国产精品自产拍在线观看55亚洲| 成熟少妇高潮喷水视频| 黄网站色视频无遮挡免费观看| 1024香蕉在线观看| 三级毛片av免费| 搡老熟女国产l中国老女人| 成人三级黄色视频| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕| 久久精品91蜜桃| 欧美黑人欧美精品刺激| 很黄的视频免费| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| 满18在线观看网站| 久久伊人香网站| 国产视频一区二区在线看| 免费电影在线观看免费观看| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频| 国产野战对白在线观看| 99国产精品一区二区蜜桃av| 国产精品 欧美亚洲| 日本成人三级电影网站| 99在线人妻在线中文字幕| 午夜老司机福利片| 成人国产综合亚洲| 十八禁网站免费在线| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 精品国产一区二区三区四区第35| 最近在线观看免费完整版| 国产精品电影一区二区三区| 亚洲欧美日韩无卡精品| 91国产中文字幕| 免费在线观看日本一区| 人人妻人人澡欧美一区二区| 99久久无色码亚洲精品果冻| 成人欧美大片| 美女免费视频网站| 好男人在线观看高清免费视频 | 大型黄色视频在线免费观看| videosex国产| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| 欧美色视频一区免费| 中文字幕高清在线视频| 欧美av亚洲av综合av国产av| 欧美乱妇无乱码| 黄色毛片三级朝国网站| 亚洲真实伦在线观看| 俄罗斯特黄特色一大片| 日韩欧美国产在线观看| 午夜影院日韩av| 亚洲国产精品成人综合色| 正在播放国产对白刺激| 神马国产精品三级电影在线观看 | 91麻豆av在线| 精品国产亚洲在线| 成在线人永久免费视频| 亚洲男人的天堂狠狠| 久久久久久免费高清国产稀缺| 91成年电影在线观看| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 亚洲欧美日韩无卡精品| 99国产精品一区二区蜜桃av| 看片在线看免费视频| 国产三级在线视频| 一区二区三区精品91| 成人精品一区二区免费| 免费看a级黄色片| 久久久久久久精品吃奶| 中文字幕av电影在线播放| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看 | 久久午夜综合久久蜜桃| 日韩成人在线观看一区二区三区| 国产亚洲av嫩草精品影院| 欧美大码av| 韩国精品一区二区三区| 视频在线观看一区二区三区| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 波多野结衣高清作品| 国产国语露脸激情在线看| 欧美激情久久久久久爽电影| 国产欧美日韩精品亚洲av| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 久久精品国产99精品国产亚洲性色| 亚洲五月色婷婷综合| 色综合站精品国产| 91麻豆av在线| 亚洲国产欧美日韩在线播放| 免费搜索国产男女视频| 一级毛片高清免费大全| 午夜福利18| 亚洲五月婷婷丁香| 激情在线观看视频在线高清| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久精免费| 人人妻人人澡欧美一区二区| 久久久久久久精品吃奶| 欧美日本视频| 黄色视频不卡| 国产又黄又爽又无遮挡在线| 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 亚洲中文日韩欧美视频| 国产在线观看jvid| 99热6这里只有精品| 白带黄色成豆腐渣| 日韩视频一区二区在线观看| 在线观看免费日韩欧美大片| 免费女性裸体啪啪无遮挡网站| 十八禁人妻一区二区| 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 日韩中文字幕欧美一区二区| 亚洲国产看品久久| 欧美日韩乱码在线| 亚洲五月婷婷丁香| 伦理电影免费视频| 日本黄色视频三级网站网址| 欧美黄色片欧美黄色片| 麻豆av在线久日| 午夜久久久在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区激情短视频| 999久久久国产精品视频| 香蕉丝袜av| 我的亚洲天堂| 国产精品久久视频播放| 亚洲av第一区精品v没综合| 成人18禁高潮啪啪吃奶动态图| 神马国产精品三级电影在线观看 | 这个男人来自地球电影免费观看| 香蕉久久夜色| 亚洲国产欧洲综合997久久, | 午夜福利高清视频| 大香蕉久久成人网| 老熟妇乱子伦视频在线观看| 淫秽高清视频在线观看| 亚洲在线自拍视频| 草草在线视频免费看| 国产麻豆成人av免费视频| 激情在线观看视频在线高清| 国产亚洲精品久久久久5区| 久久午夜综合久久蜜桃| 一区二区日韩欧美中文字幕| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼| 99久久无色码亚洲精品果冻| 免费在线观看视频国产中文字幕亚洲| 精品久久久久久久毛片微露脸| 国产又黄又爽又无遮挡在线| 国产av一区二区精品久久| aaaaa片日本免费| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 欧美绝顶高潮抽搐喷水| 国产精品日韩av在线免费观看| 高清在线国产一区| av欧美777| 女警被强在线播放| 久久国产精品影院| а√天堂www在线а√下载| 亚洲av电影在线进入| 中文字幕最新亚洲高清| 精品久久久久久,| 禁无遮挡网站| 欧美成人午夜精品| 亚洲七黄色美女视频| 国产99久久九九免费精品| 精品久久久久久,| 日韩有码中文字幕| 999久久久精品免费观看国产| 国产黄色小视频在线观看| 亚洲在线自拍视频| 亚洲激情在线av| 亚洲一区高清亚洲精品| 嫩草影视91久久| 欧美成人一区二区免费高清观看 | 午夜免费鲁丝| 男女做爰动态图高潮gif福利片| e午夜精品久久久久久久| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| 欧美绝顶高潮抽搐喷水| 精品国产乱码久久久久久男人| 午夜免费鲁丝| 免费在线观看完整版高清| 国产单亲对白刺激| 免费看a级黄色片| 中文字幕人妻熟女乱码| 久久国产精品影院| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 女性生殖器流出的白浆| 免费在线观看日本一区| 国产高清激情床上av| 最近在线观看免费完整版| 久热爱精品视频在线9| 亚洲欧美一区二区三区黑人| 亚洲av成人一区二区三| 黄色视频不卡| 精品国内亚洲2022精品成人| 深夜精品福利| 天堂影院成人在线观看| 久久天堂一区二区三区四区| 亚洲av电影不卡..在线观看| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 成人国产一区最新在线观看| 国产真实乱freesex| 亚洲五月色婷婷综合| 亚洲aⅴ乱码一区二区在线播放 | 男女午夜视频在线观看| e午夜精品久久久久久久| 亚洲成人久久性| 精品久久久久久久末码| 精品福利观看| 欧美在线一区亚洲| 国产乱人伦免费视频| 亚洲精品中文字幕一二三四区| 亚洲中文日韩欧美视频| 露出奶头的视频| 啦啦啦观看免费观看视频高清| 在线永久观看黄色视频| 亚洲国产精品久久男人天堂| 久久99热这里只有精品18| 成熟少妇高潮喷水视频| av欧美777| 久久久国产成人精品二区| 悠悠久久av| 香蕉国产在线看| 亚洲中文字幕日韩| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| 久久久国产精品麻豆| 亚洲精品av麻豆狂野| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 欧美激情 高清一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲国产精品999在线| aaaaa片日本免费| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 欧美+亚洲+日韩+国产| 亚洲人成电影免费在线| www.自偷自拍.com| av片东京热男人的天堂| 成人三级黄色视频| 老司机福利观看| 亚洲真实伦在线观看| 俺也久久电影网| 丁香六月欧美| 午夜福利在线在线| 人成视频在线观看免费观看| 观看免费一级毛片| 每晚都被弄得嗷嗷叫到高潮| 51午夜福利影视在线观看| 91在线观看av| 国产精品九九99| 亚洲欧美日韩高清在线视频| 老汉色av国产亚洲站长工具| 人妻丰满熟妇av一区二区三区| 一进一出好大好爽视频| 欧美成人免费av一区二区三区| 村上凉子中文字幕在线| 精品午夜福利视频在线观看一区| 日本 av在线| 国产成人啪精品午夜网站| 中文字幕人成人乱码亚洲影| 精品日产1卡2卡| 欧美丝袜亚洲另类 | 在线观看66精品国产| 欧美在线一区亚洲| 麻豆成人av在线观看| 久久亚洲真实| 麻豆成人av在线观看| 又大又爽又粗| 亚洲国产高清在线一区二区三 | 免费在线观看视频国产中文字幕亚洲| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| cao死你这个sao货| 亚洲欧美精品综合一区二区三区| 欧美成人一区二区免费高清观看 | 亚洲最大成人中文| 亚洲国产精品成人综合色| 免费无遮挡裸体视频| 一个人观看的视频www高清免费观看 | 十八禁人妻一区二区| 亚洲三区欧美一区| 青草久久国产| 大型黄色视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 成人国语在线视频| 日本 av在线| 黄色丝袜av网址大全| 1024香蕉在线观看| 久久青草综合色| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 久久中文字幕人妻熟女| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放 | 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 在线国产一区二区在线| 91av网站免费观看| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| 欧美精品亚洲一区二区| 男女视频在线观看网站免费 | 国产精品,欧美在线| 九色国产91popny在线| 国产欧美日韩精品亚洲av| 国产1区2区3区精品| 亚洲性夜色夜夜综合| 日韩国内少妇激情av| 夜夜爽天天搞| 久久香蕉精品热| 男人操女人黄网站| 一进一出抽搐gif免费好疼| 非洲黑人性xxxx精品又粗又长| 欧美日本亚洲视频在线播放| 午夜久久久在线观看| 国产私拍福利视频在线观看| 亚洲精品av麻豆狂野| 黑丝袜美女国产一区| 国产色视频综合| 成人av一区二区三区在线看| 国产亚洲欧美98| 国产在线观看jvid| 伦理电影免费视频| 日韩欧美三级三区| 一区二区三区国产精品乱码| 亚洲精品中文字幕一二三四区| 国产精品99久久99久久久不卡| 黄片大片在线免费观看| 老熟妇仑乱视频hdxx| 99热6这里只有精品| 波多野结衣av一区二区av| 色综合欧美亚洲国产小说| 亚洲第一av免费看| 高清在线国产一区| 国产午夜精品久久久久久| 看黄色毛片网站| av在线天堂中文字幕| 美女国产高潮福利片在线看| 在线观看午夜福利视频| 亚洲专区中文字幕在线| 在线av久久热| 他把我摸到了高潮在线观看| 脱女人内裤的视频| 制服丝袜大香蕉在线| 12—13女人毛片做爰片一| 欧美色视频一区免费| 国产精品影院久久| 精品久久久久久成人av| 免费在线观看完整版高清| 国产1区2区3区精品| 欧美日韩乱码在线| 国产亚洲av高清不卡| 在线观看日韩欧美| 亚洲国产精品999在线| 国内久久婷婷六月综合欲色啪| 亚洲男人天堂网一区| 看片在线看免费视频| 国产黄色小视频在线观看| 少妇 在线观看| 久久香蕉激情| 亚洲中文字幕一区二区三区有码在线看 | 黑人巨大精品欧美一区二区mp4| 人成视频在线观看免费观看| 国产99白浆流出| 亚洲人成伊人成综合网2020| 一区福利在线观看| 精品久久久久久久久久免费视频| 成在线人永久免费视频| 黄色成人免费大全| bbb黄色大片| 亚洲欧美日韩无卡精品| 观看免费一级毛片| 成在线人永久免费视频| 侵犯人妻中文字幕一二三四区| av福利片在线| 成人三级黄色视频| 国产在线精品亚洲第一网站| 俄罗斯特黄特色一大片| 在线观看免费视频日本深夜| 久久这里只有精品19| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 久久久国产精品麻豆| 成人国产综合亚洲| 久9热在线精品视频| 欧美日本亚洲视频在线播放| 日韩欧美国产在线观看| or卡值多少钱| 少妇 在线观看| 国产国语露脸激情在线看| 国产又色又爽无遮挡免费看| 中文字幕久久专区| 亚洲七黄色美女视频| 欧美三级亚洲精品| 日本撒尿小便嘘嘘汇集6| 国产精品香港三级国产av潘金莲| 免费观看精品视频网站| а√天堂www在线а√下载| 动漫黄色视频在线观看| 成人国语在线视频| 亚洲av美国av| 一本大道久久a久久精品| 俺也久久电影网| 99国产极品粉嫩在线观看| 美女扒开内裤让男人捅视频| 亚洲熟妇中文字幕五十中出| 国产伦在线观看视频一区| 视频在线观看一区二区三区| 欧美又色又爽又黄视频| 国产高清videossex| a级毛片a级免费在线| 国产乱人伦免费视频| 操出白浆在线播放| 国产不卡一卡二| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av高清一级| 不卡一级毛片| 欧美一级毛片孕妇| www.999成人在线观看| 不卡av一区二区三区| 久久午夜亚洲精品久久| 美女免费视频网站| 亚洲 欧美一区二区三区| 最近最新中文字幕大全免费视频| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 国产三级黄色录像| 老熟妇乱子伦视频在线观看| 操出白浆在线播放| 两个人免费观看高清视频| 亚洲精品av麻豆狂野| 亚洲国产精品成人综合色| 国内少妇人妻偷人精品xxx网站 | 女人被狂操c到高潮| 国产一卡二卡三卡精品| 国产伦一二天堂av在线观看| 一本久久中文字幕| 亚洲国产精品999在线| 亚洲欧美日韩高清在线视频| 满18在线观看网站| 日本免费一区二区三区高清不卡| 国产久久久一区二区三区| videosex国产| 黑人巨大精品欧美一区二区mp4| 日韩一卡2卡3卡4卡2021年| 国产一卡二卡三卡精品| 国产成+人综合+亚洲专区| 久久午夜亚洲精品久久| 中文字幕人成人乱码亚洲影| 麻豆一二三区av精品| 51午夜福利影视在线观看| 99久久久亚洲精品蜜臀av| 亚洲男人的天堂狠狠| 午夜福利免费观看在线| 亚洲人成网站在线播放欧美日韩| av片东京热男人的天堂| 日本精品一区二区三区蜜桃| 超碰成人久久| 后天国语完整版免费观看| 国产一区在线观看成人免费| 日日摸夜夜添夜夜添小说| 色精品久久人妻99蜜桃| 欧美又色又爽又黄视频| 久久热在线av| 两个人视频免费观看高清| 12—13女人毛片做爰片一| 法律面前人人平等表现在哪些方面| a级毛片a级免费在线| 夜夜看夜夜爽夜夜摸| 99久久综合精品五月天人人| 亚洲中文av在线| 精品少妇一区二区三区视频日本电影| 欧美色欧美亚洲另类二区| 亚洲第一青青草原| 757午夜福利合集在线观看| 国产真实乱freesex| 国产免费av片在线观看野外av| 女人爽到高潮嗷嗷叫在线视频| 嫁个100分男人电影在线观看| 搡老岳熟女国产| 亚洲av中文字字幕乱码综合 | 亚洲 国产 在线| 久久午夜综合久久蜜桃| 久久精品国产亚洲av高清一级| 天天躁夜夜躁狠狠躁躁| 制服人妻中文乱码| 最近最新中文字幕大全免费视频| 嫩草影视91久久| 男女那种视频在线观看| 69av精品久久久久久| 国产av在哪里看| 一级毛片女人18水好多| 久久精品91无色码中文字幕| 久久国产乱子伦精品免费另类| 可以在线观看毛片的网站| 亚洲五月天丁香| 色在线成人网| 国产精品野战在线观看| 高清毛片免费观看视频网站| 亚洲国产毛片av蜜桃av| 国产精品电影一区二区三区| 久久久久国内视频| 精华霜和精华液先用哪个| 色播在线永久视频| 成人手机av|