• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Buffer allocation method of serial production lines based on improved ant colony optimization algorithm①

    2016-12-05 01:27:56ZhouBinghai周炳海YuJiadi
    High Technology Letters 2016年2期

    Zhou Binghai (周炳海), Yu Jiadi

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, P.R.China)

    ?

    Buffer allocation method of serial production lines based on improved ant colony optimization algorithm①

    Zhou Binghai (周炳海)②, Yu Jiadi

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, P.R.China)

    Buffer influences the performance of production lines greatly. To solve the buffer allocation problem (BAP) in serial production lines with unreliable machines effectively, an optimization method is proposed based on an improved ant colony optimization (IACO) algorithm. Firstly, a problem domain describing buffer allocation is structured. Then a mathematical programming model is established with an objective of maximizing throughput rate of the production line. On the basis of the descriptions mentioned above, combining with a two-opt strategy and an acceptance probability rule, an IACO algorithm is built to solve the BAP. Finally, the simulation experiments are designed to evaluate the proposed algorithm. The results indicate that the IACO algorithm is valid and practical.

    buffer allocation, improved ant colony optimization (IACO) algorithm, serial production line, throughput rate

    0 Introduction

    The buffer allocation problem (BAP) is a significant optimization problem faced by engineers of manufacturing system, which refers to the way of allocating buffer storage within the production line. While buffers can compensate for the blocking and starving of stations in the production line, inclusion of buffers results in additional costs probably due to increased capital investment, floor space and in-process inventory. Therefore determining appropriate buffer storage sizes is still a challenging problem.

    Due to its importance and complexity, several authors have been working on the BAP for many years. Ref.[1] developed a simulated annealing approach for solving BAP in reliable production lines with the objective of maximizing their average throughput. Ref.[2] presented five different search algorithms to solve the BAP of reliable production lines, including the genetic algorithm (GA), tabu search, simulated annealing, myopic and complete enumeration. Ref.[3] proposed an artificial neural network and myopic algorithm based decision support system on reliable production lines. However, the aforementioned literature only focused on reliable production lines. Ref.[4] proposed a quantitative method to determine the buffer size in front of the bottleneck under multi-product. Ref.[5] developed a new efficient simulation model and an experimental cross matrix for serial production lines to determine the optimal buffer size. Ref.[6] and Ref.[7] proposed an exact Markovian model and an approximate analytical method for unreliable serial flow lines to analyze the relationship between throughput and buffer capacity, respectively. But the aforementioned literature only studied an unreliable serial flow line with two workstations and an intermediate buffer. Ref.[8] implemented a combined artificial immune system optimization algorithm in conjunction with a decomposition method to allocate buffers in transfer lines for maximizing economic profit and throughput. Ref.[9] presented a GA and simulation to solve the BAP of flexible manufacturing system. However, the drawback of these meta-heuristics such as GA in solving combinatorial optimization problems is the necessity to set a number of uncertain parameters, which significantly increases the search time and the number of evaluated solutions to find the optimal or near optimal solution. Ref.[10] developed a petri-net based simulation model to study the continuous flow transfer line with three machines and two buffers, and then analyzed the relationship between the equipment reliability and buffer capacity. Ref.[11] presented a local search based degraded ceiling (DC) approach for solving the BAP. However, the objective function may not be a monotone increasing function as the search time goes.

    In this paper, an improved ant colony optimization (IACO) algorithm is used to solve the BAP. Recently, the ant colony optimization (ACO) algorithm has been successfully used by many scholars to solve combinatorial optimization problems[12,13]. It has many good features: distribution, positive feedback, and robustness[14]. However, ACO may lead to a local optimal solution. Thus, some corresponding improvements are done to prevent it from local optimization. One is that when the algorithm is stagnated, the pheromone intensity is reset on all paths in order to break out of the stagnation. Secondly, when the near optimal solution is found, some changes will be made by two-opt strategy to get new solutions. Thirdly, an acceptance probability rule of simulated annealing for updating the best solution is combined with the algorithm. Simulation results indicate that the proposed approach can lead to results that are consistent with our expectations.

    1 Problem description

    In this paper, the BAP in a serial production line with unreliable machines is examined, as depicted in Fig.1, where the rectangles represent machines Mi(i=1,…,k) and the circles indicate buffers Bi(i=1,…,k-1). The assumptions of the BAP in a serial production line are listed as follows: 1) Parts go through each of the machines and buffers in sequence, from machine M1to Mk. 2) The processing times of all parts are constant and equal for all machines, and the transportation time is negligible. 3) Machines are subject to breakdowns. Times to failure and times to repair for machines are exponentially distributed. 4) Machine Miis starved at time t if Mi-1is down and buffer Bi-1is empty; Machine Miis blocked at time t if Mi+1is down and buffer Biis full. 5) The first machine is never starved, and the last machine is never blocked.

    Fig.1 Serial production line

    To solve the BAP, evaluation and optimization tools are needed. The evaluation tool is used to calculate performance measures of production lines which have to be optimized (e.g., the average throughput). A Dallery-David-Xie (DDX) algorithm is applied which is proposed in Ref.[15] to calculate the throughput rate of all new configurations.

    As shown in Fig.2, the principle of DDX algorithm is to decompose ak-machine line L into a set of k-1 two-machine lines. Each line L(i) is composed of an upstream machine Mu(i) and a downstream machine Md(i), separated by a buffer Bi. The procedural form of this method is given as follows:

    Fig.2 Decomposition method

    Step 1: Initialization:

    ru(1)=r1, uu(1)=u1

    rd(i)=ri+1, ud(i)=ui+1(i=1,2,…,k)

    where ru(i) and uu(i) denote the failure rate and repair rate of the upstream machine, respectively; rd(i) and ud(i) denote the failure rate and repair rate of the downstream machine, respectively; riis the failure rate of machine Mi, ri=1/MTBFi; uiis the repair rate of machine Mi, ui=1/MTTRi; MTBF and MTTR represent the mean time between failures and the mean time to repair, respectively.

    Step 2: For any i=2,3,…,k-1:

    (1)

    uu(i)=x×uu(i-1)+(1-x)×ui

    (2)

    ru(i)=Iu(i)×uu(i)

    (3)

    (4)

    (5)

    where Iu(i) and Id(i) are the ratio of ru(i) to uu(i) and rd(i) to ud(i), respectively; E(i) is the efficiency of line L(i); eiis the isolated efficiency of machine Mi; Ps(i) denotes the probability of downstream machine being starved; ed(i) is the isolated efficiency of downstream machine Md(i).

    Step 3: For any i=k-2, k-1…2,1:

    (6)

    ud(i)=y×ud(i+1)+(1-y)×ui+1

    (7)

    rd(i)=Id(i)×ud(i)

    (8)

    (9)

    (10)

    where eu(i) is the isolated efficiency of upstream machine Mu(i); Pb(i) denotes the probability of upstream machine being blocked.

    Step 4:

    If Iu(i)≠Id(i):

    E(i)=

    (11)

    (12)

    where tu(i) and td(i) denote the processing time of machine Mu(i) and Md(i); Sirepresents the capacity of theith buffer.

    (13)

    Step 5: If E(1)=E(2)=…=E(k-1), stop the procedure, otherwise go to step 2.

    On the basis of the descriptions mentioned above, the throughput rate of production line is written as follows:

    E=f(S)=f(S1,S2,…,Sk-1)

    (14)

    Therefore, the mathematical model for the BAP can be formulated as follows:

    Maximize E=f(S)=f(S1,S2,…,Sk-1)

    (15)

    Subject to

    (16)

    0≤Si≤Siup(i=1,…,k-1)

    (17)

    Sinonnegative integers (i=1,…,k-1)

    (18)

    where N is the total buffer capacity, which is a fixed nonnegative integer;f(S1,S2,…,Sk-1) is the throughput rate of the production line to be maximized; Siupis the upper bound for each of the buffer locations.

    For a production line with k machines and N total buffer capacity, the number of possible buffer allocation configurations can be calculated as follows, which is presented in Ref.[11]:

    (19)

    As for the optimization tool, it is a search method that tries to find an optimal or a near optimal solution which in our case is the capacity of each buffer in a production line. Therefore, a new optimization method based on IACO algorithm is proposed in the next section.

    2 Proposed algorithm

    ACO algorithm is a novel biomimetic algorithm. Scholars have solved some difficult problems in discrete system optimization based on the behavior of ants seeking a path between their colony and a source of food[16]. When ants seek for food, the front ones release pheromones on the paths they have visited, then the following ones will randomly choose one path according to the pheromones. When the cycle repeats, the shorter path will have a stronger pheromone trail more quickly. After a certain period of time, all the ants will choose the short trail. The procedure of standard ACO is shown in Fig.3.

    As mentioned in introduction, standard ACO may lead to a local optimal solution. In the next sections, details of IACO are provided which is improved by combining with a two-opt strategy and an acceptance probability rule.

    Fig.3 Pseudocode of standard ACO

    2.1 Encoding

    For the BAP, the feasible solution can be expressed as S={S1,S2,…,Sk-1}. It is assumed that there is a certain number of Fipaths in front of theith buffer, where Fi

    If 1≤j<(Fi+1)/2:

    (20)

    If (Fi+1)/2≤j≤Fi:

    (21)

    (22)

    2.2 Initialization

    Set the initial buffer allocation Si←N/(k-1) and any remaining resource is placed in the middle location.

    2.3 Searching

    (23)

    where τijis the pheromone intensity on each path; α is a constant.

    2.4 Updating

    For all the new buffer allocation solutions, throughput rate E can be calculated and the optimal solutions Smaxcan be found among them. Then update the pheromone intensity τij. The update rule is given as follows:

    τij←ρ×τij+Δτij, where 1-ρ represents the evaporation of pheromone intensity; Δτijis the pheromone increment in this cycle.

    2.5 Two-opt strategy

    In order to prevent the algorithm falling into the local optimization, some changes are done in the near optimal solution by the two-opt strategy:

    Si←Si-1 and Sj←Sj+1

    (24)

    Two buffer locations i and j(i, j∈{1,2,…,k-1} and i≠j) are randomly chosen. Then a new buffer solution can be obtained using Eq.(24). For a production line with k machines, the total number of new possible buffer configurations is (k-1)×(k-2).

    2.6 Acceptance probability rule

    In order to improve the exploring capability of the algorithm, an acceptance probability rule of simulated annealing for updating the best solution is introduced. After a new solution is generated, firstly the objective values of old solution S and new solution S′ should be calculated. If throughput differential ΔE=f(S′)-f(S) is nonnegative, the new solution is accepted as the best solution, otherwise it is accepted with the probability of exp(-ΔE/T), where T is a global time-varying parameter called the temperature.

    2.7 Procedure of the IACO

    The proposed IACO is formally described as follows:

    Step 1: initialize the buffer allocation according to 2.2;

    Step 2: initialize the pheromone intensity τij←c and the pheromone increment Δτij←0;

    Step 4: evaluate the fitness value according to DDX algorithm and obtain the best solution according to 2.6;

    Step 5: perform the two-opt strategy according to 2.5;

    Step 6: update pheromone intensity τijof all the paths according to 2.4;

    Step 7: if it has led to a local optimal solution, go to step 2, otherwise go on;

    Step 8: if the termination criterion is not met, initialize Δτij←0, and go to step 3; otherwise, stop and record the optimal buffer allocation solution S*and its throughput rate E*.

    3 Numerical examples

    In order to evaluate the applicability of the IACO algorithm, experiments are conducted with serial production line configurations of different total buffer capacities and machines sizes. The experiments results of the proposed IACO and ACO algorithm are compared with those of DC algorithm presented in Ref.[11] and GA presented in Ref.[9]. In all the tests, it is assumed that the processing rate for each machine is one time unit; the values of the algorithm parameters are as follows: α=1, ρ=0.95, γ=100, β=15. Table 1 shows the machine parameters of the production lines. All the experimental studies are programmed in C++ language and run on a PC with Inter (R) Core (TM) 2-Duo (2.00GHz) CPU using the Windows7 operating system.

    Table 1 Machines parameters

    Table 2 presents the throughput rate, CPU time and number of evaluated solutions by using different optimization methods with k machines (5≤k≤30). It is shown that the IACO algorithm results in slightly larger throughput rate and requires less time and fewer numbers of evaluated solutions to find the near optimal solutions compared with other optimization methods in all of cases.

    Table 2 Computational results by different optimization methods

    Fig.4 shows the convergence curves of the four algorithms for the production lines with five, fifteen and thirty machines.

    It is shown that the throughput rate of near optimal solution increases as the number of evaluated solutions increases for all of the DC, ACO, IACO and GA optimization methods. In addition, the proposed IACO algorithm results in solution quality higher and numbers of evaluated solutions fewer than the other three methods.

    For the same number of machines, the different total buffer capacity will lead to a different number of evaluated solutions. Fig.5 shows the effect of the N total buffer capacity to allocate among the production line on the number of the evaluated configurations needed to converge. This test focuses on a production line with ten machines, and the total buffer capacity varies from 90 to 450.

    Fig.4 Evolution of the solutions with four methods

    Fig.5 Total buffer capacity versus number of evaluated solutions

    As shown in Fig.5, the number of evaluated solutions needed by the IACO algorithm is lower than those of the DC, ACO and GA algorithm. In addition, the increase of the total buffer capacity leads to an increase of the number of evaluated solutions for near optimal buffer solutions.

    As shown in Fig.6, for six production lines with different sizes (from 5 to 30 machines) and different total buffer capacities, the number of evaluated solutions is increasing as the number of machines increases. In general, the IACO algorithm finds the best configuration much faster than the DC, ACO and GA algorithm.

    Fig.6 Influence of the number of machines

    Through the experiments analyzed above, it is easily known that the different number of machines and total buffer capacities will lead to a different throughput rate for the production line. As shown in Fig.7, the throughput rate increases with the increase of the total buffer capacity when the number of machines is invariable. However, when the total buffer capacity is invariable, the throughput rate decreases with the increase of the number of machines.

    Fig.7 Total buffer capacity and number of machines versus throughput rate

    4 Conclusion

    In this paper, an IACO algorithm is proposed to solve the BAP with the objective of maximizing the throughput rate in serial production lines with unreliable machines. For the ACO algorithm, some improvements are done to prevent it from local optimization, such as the two-opt strategy and the acceptance probability rule. Comparisons with other widely recognized methods are made to demonstrate the efficiency of our method. The results indicate that the IACO algorithm finds the optimal buffer configuration much faster than the other three approaches for different sizes production lines. Our future work will also test this approach on similar problems especially involving parallel machines.

    [1] Spinellis D D, Papadopoulos C T. A simulated annealing approach for buffer allocation in reliable production lines.AnnalsofOperationsResearch, 2000, 93(1-4): 373-384

    [2] Papadopoulos C T, O’Kelly M E J, Tsadiras A K. A DSS for the buffer allocation of production lines based on a comparative evaluation of a set of search algorithms.InternationalJournalofProductionResearch, 2013, 51(14): 4175-4199

    [3] Tsadiras A K, Papadopoulos C T, O’Kelly M E J. An artificial neural network based decision support system for solving the buffer allocation problem in reliable production lines.Computers&IndustrialEngineering, 2013, 66(4): 1150-1162

    [4] Ye T, Han W. A quantitative method to determine the size of the stock buffer in front of the bottleneck under multi-product. In: Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA), Dalian, China. 2006. 7239-7243

    [5] Battini D, Persona A, Regattieri A. Buffer size design linked to reliability performance: A simulative study.Computers&IndustrialEngineering, 2009, 56(4): 1633-1641

    [6] Alexandros D C, Chrissoleon P T. Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines.EuropeanJournalofOperationalResearch, 2009, 197(2): 572-580

    [7] Liu J, Yan D, Feng R, et al. Performance evaluation of production lines with unreliable buffer. In: Proceedings of the 8th IEEE International Conference on Control and Automation (ICCA), Xiamen, China, 2010. 350-355

    [8] Massim Y, Yalaoui F, Amodeo L, et al. Efficient combined immune-decomposition algorithm for optimal buffer allocation in production lines for throughput and profit maximization.Computers&OperationsResearch, 2010, 37(4): 611-620

    [9] Jeong S J, Jung H. Optimal buffer allocation in flexible manufacturing systems using genetic algorithm and simulation.JournalofAdvancedMechanicalDesign,Systems,andManufacturing, 2012, 6(7): 1071-1080

    [10] S?rensen K, Janssens G K. Simulation results on buffer allocation in a continuous flow transfer line with three unreliable machines.AdvancesinProductionEngineering&Management, 2011, 6(1):15-26

    [11] Nahas N, Ait-Kadi D, Nourelfath M. A new approach for buffer allocation in unreliable production lines.InternationalJournalofProductionEconomics, 2006, 103(2): 873-881

    [12] Liao C J, Tsai Y L, Chao C W. An ant colony optimization algorithm for setup coordination in a two-stage production system.AppliedSoftComputing, 2011, 11(8): 4521-4529

    [13] Akpinar S, Bayhan G M. Performance evaluation of ant colony optimization-based solution strategies on the mixed-model assembly line balancing problem.EngineeringOptimization, 2014, 46(6): 842-862

    [14] Zheng Q X, Li M, Li Y X, et al. Station ant colony optimization for the type 2 assembly line balancing problem.InternationalJournalofAdvancedManufacturingTechnology, 2013, 66(9-12): 1859-1870

    [15] Dallery Y, David R, Xie X L. Approximate analysis of transfer lines with unreliable machines and finite buffers.IEEETransactionsonAutomaticControl, 1989, 34(9): 943-953

    [16] Kalayci C B, Gupta S M. Ant colony optimization for sequence-dependent disassembly line balancing problem.JournalofManufacturingTechnologyManagement, 2013, 24(3): 413-427

    Zhou Binghai, born in 1965. He received his M.S. and Ph.D degrees respectively from School of Mechanical Engineering, Shanghai Jiaotong University in 1992 and 2001. He is a professor, a Ph.D supervisor in School of Mechanical Engineering, Tongji University. He is the author of more than 140 scientific papers. His current research interests are scheduling, modeling, simulation and control for manufacturing systems, integrated manufacturing technology.

    10.3772/j.issn.1006-6748.2016.02.001

    ①Supported by the National Natural Science Foundation of China (No. 61273035, 71471135).

    ②To whom correspondence should be addrcessed. E-mail: bhzhou@#edu.cnReceived on Feb. 12, 2015

    老司机影院成人| 一级a爱视频在线免费观看| 中文字幕最新亚洲高清| 狂野欧美激情性xxxx| 后天国语完整版免费观看| 日韩人妻精品一区2区三区| 国产伦人伦偷精品视频| 波野结衣二区三区在线| 男女床上黄色一级片免费看| 欧美av亚洲av综合av国产av| 老汉色∧v一级毛片| 97人妻天天添夜夜摸| 成年人午夜在线观看视频| 老司机深夜福利视频在线观看 | 黄色片一级片一级黄色片| 这个男人来自地球电影免费观看| 久久中文字幕一级| 五月开心婷婷网| 99re6热这里在线精品视频| 考比视频在线观看| 久久精品国产a三级三级三级| 韩国高清视频一区二区三区| 精品少妇一区二区三区视频日本电影| 不卡av一区二区三区| 久久精品国产综合久久久| 丰满迷人的少妇在线观看| 中文字幕色久视频| 国产成人免费观看mmmm| 亚洲国产av影院在线观看| 久久99精品国语久久久| 久久精品国产亚洲av高清一级| 国产男女超爽视频在线观看| 黄片小视频在线播放| 午夜免费观看性视频| 午夜福利,免费看| 欧美在线黄色| 精品亚洲乱码少妇综合久久| 丝袜在线中文字幕| 亚洲国产成人一精品久久久| 国产精品一二三区在线看| 9191精品国产免费久久| 91国产中文字幕| 亚洲,欧美,日韩| 每晚都被弄得嗷嗷叫到高潮| 欧美成人午夜精品| 久久精品亚洲熟妇少妇任你| 欧美日韩亚洲国产一区二区在线观看 | 在线看a的网站| 欧美日本中文国产一区发布| 精品国产超薄肉色丝袜足j| 少妇粗大呻吟视频| 青春草视频在线免费观看| 美女中出高潮动态图| 午夜视频精品福利| 日韩中文字幕欧美一区二区 | 90打野战视频偷拍视频| 熟女av电影| 亚洲国产看品久久| 一区福利在线观看| av欧美777| 国产精品国产av在线观看| 国产精品久久久av美女十八| 新久久久久国产一级毛片| 亚洲欧美色中文字幕在线| 亚洲第一av免费看| 青春草视频在线免费观看| 深夜精品福利| 国产伦理片在线播放av一区| 亚洲,欧美,日韩| 看免费成人av毛片| 精品少妇黑人巨大在线播放| 18禁国产床啪视频网站| 亚洲成av片中文字幕在线观看| 黄色一级大片看看| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久久久99蜜臀 | 激情五月婷婷亚洲| 久久久精品94久久精品| 国产一区二区 视频在线| www.熟女人妻精品国产| 在线观看国产h片| 啦啦啦视频在线资源免费观看| 日韩大片免费观看网站| 首页视频小说图片口味搜索 | www.自偷自拍.com| videos熟女内射| 宅男免费午夜| 高清视频免费观看一区二区| 一区福利在线观看| 久久毛片免费看一区二区三区| 欧美激情 高清一区二区三区| 九草在线视频观看| 欧美日韩亚洲综合一区二区三区_| 免费女性裸体啪啪无遮挡网站| 欧美在线一区亚洲| 亚洲精品自拍成人| 午夜av观看不卡| 亚洲伊人久久精品综合| 性少妇av在线| e午夜精品久久久久久久| av网站在线播放免费| 久久久久久久久免费视频了| 亚洲成人手机| 超碰成人久久| 一边摸一边抽搐一进一出视频| 久久人人爽人人片av| 亚洲成人免费电影在线观看 | 电影成人av| 久久免费观看电影| 久久性视频一级片| 欧美人与性动交α欧美精品济南到| 两人在一起打扑克的视频| 777米奇影视久久| 精品一区在线观看国产| 91老司机精品| 国产成人免费无遮挡视频| 9191精品国产免费久久| 国产黄色视频一区二区在线观看| 欧美日韩亚洲高清精品| 国产野战对白在线观看| 日本欧美视频一区| 国产91精品成人一区二区三区 | 男女边吃奶边做爰视频| 欧美大码av| 热re99久久国产66热| 国产精品久久久久久精品电影小说| 午夜两性在线视频| 乱人伦中国视频| 亚洲国产看品久久| 亚洲精品美女久久久久99蜜臀 | 91精品国产国语对白视频| 最近手机中文字幕大全| 一二三四在线观看免费中文在| 晚上一个人看的免费电影| 精品人妻1区二区| 精品一区二区三卡| 人妻 亚洲 视频| 一本一本久久a久久精品综合妖精| 亚洲精品美女久久av网站| 丝袜美腿诱惑在线| 亚洲精品自拍成人| 久久精品久久久久久噜噜老黄| 国产亚洲欧美精品永久| 搡老乐熟女国产| 啦啦啦在线免费观看视频4| 亚洲国产欧美网| 老司机亚洲免费影院| 在线观看www视频免费| 99久久人妻综合| av视频免费观看在线观看| 亚洲精品美女久久久久99蜜臀 | 久久综合国产亚洲精品| 丁香六月欧美| 在线 av 中文字幕| 蜜桃国产av成人99| 一个人免费看片子| 人人妻人人爽人人添夜夜欢视频| 日本黄色日本黄色录像| 性色av乱码一区二区三区2| 亚洲精品自拍成人| 成人黄色视频免费在线看| 免费不卡黄色视频| 搡老乐熟女国产| 色播在线永久视频| 97精品久久久久久久久久精品| 亚洲国产成人一精品久久久| 成年动漫av网址| 大香蕉久久网| 男女免费视频国产| 亚洲人成电影免费在线| 精品欧美一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 无限看片的www在线观看| 国产精品99久久99久久久不卡| 中文字幕制服av| 午夜福利乱码中文字幕| 国产一区二区三区综合在线观看| 亚洲一码二码三码区别大吗| 亚洲色图 男人天堂 中文字幕| 99久久精品国产亚洲精品| 欧美久久黑人一区二区| 大片免费播放器 马上看| 黄色视频在线播放观看不卡| 中文字幕制服av| 考比视频在线观看| 国产av精品麻豆| 国产日韩欧美视频二区| 性色av一级| av天堂在线播放| 男人添女人高潮全过程视频| 国产在线免费精品| 最新的欧美精品一区二区| 亚洲精品乱久久久久久| 中国国产av一级| 一级毛片我不卡| 亚洲国产欧美日韩在线播放| 亚洲人成网站在线观看播放| 99国产综合亚洲精品| 操出白浆在线播放| av天堂久久9| 欧美国产精品va在线观看不卡| 女人被躁到高潮嗷嗷叫费观| 久久久精品免费免费高清| 国产成人精品在线电影| 亚洲五月婷婷丁香| av网站在线播放免费| 午夜91福利影院| 每晚都被弄得嗷嗷叫到高潮| av视频免费观看在线观看| 国产有黄有色有爽视频| 国产黄频视频在线观看| 日韩大片免费观看网站| 中文字幕av电影在线播放| 日韩一区二区三区影片| av欧美777| 成人亚洲欧美一区二区av| 成人黄色视频免费在线看| 国产一区二区 视频在线| 日韩 亚洲 欧美在线| 国产在线观看jvid| 黄色一级大片看看| 久久精品成人免费网站| www.精华液| 黄色视频在线播放观看不卡| 久久久欧美国产精品| 日韩人妻精品一区2区三区| 91麻豆av在线| 欧美国产精品va在线观看不卡| 午夜免费成人在线视频| 十八禁网站网址无遮挡| 日韩av在线免费看完整版不卡| 欧美中文综合在线视频| 女性被躁到高潮视频| 男女午夜视频在线观看| 岛国毛片在线播放| 男人操女人黄网站| 精品一区在线观看国产| 9热在线视频观看99| av在线老鸭窝| 久久国产精品大桥未久av| 亚洲欧美成人综合另类久久久| 精品少妇久久久久久888优播| 一二三四在线观看免费中文在| 国产亚洲精品第一综合不卡| 美女高潮到喷水免费观看| 欧美人与性动交α欧美精品济南到| 中文字幕最新亚洲高清| 老司机在亚洲福利影院| 日本欧美视频一区| 久久久国产精品麻豆| 美女主播在线视频| 人人澡人人妻人| 不卡av一区二区三区| 亚洲欧美色中文字幕在线| 免费女性裸体啪啪无遮挡网站| 免费在线观看黄色视频的| 久久人人爽av亚洲精品天堂| 亚洲成人免费电影在线观看 | 两性夫妻黄色片| 国产精品三级大全| 亚洲欧美中文字幕日韩二区| 亚洲国产精品国产精品| 久久久久精品人妻al黑| 欧美日韩视频精品一区| 我的亚洲天堂| 热re99久久精品国产66热6| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 精品欧美一区二区三区在线| 五月天丁香电影| 欧美97在线视频| 午夜福利在线免费观看网站| 在线观看免费日韩欧美大片| 欧美另类一区| 日韩中文字幕欧美一区二区 | 婷婷丁香在线五月| 2021少妇久久久久久久久久久| 新久久久久国产一级毛片| 国产高清不卡午夜福利| 女人精品久久久久毛片| 咕卡用的链子| 精品人妻一区二区三区麻豆| 人人妻人人澡人人爽人人夜夜| 又大又黄又爽视频免费| 精品卡一卡二卡四卡免费| 精品人妻1区二区| 老司机影院毛片| 女人精品久久久久毛片| 老司机深夜福利视频在线观看 | 亚洲成人免费av在线播放| videosex国产| 精品一区二区三区四区五区乱码 | 啦啦啦啦在线视频资源| 亚洲第一青青草原| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 999精品在线视频| 国产在线免费精品| 国产极品粉嫩免费观看在线| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区蜜桃| 欧美人与善性xxx| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 老汉色∧v一级毛片| 久久精品人人爽人人爽视色| 精品一区二区三区四区五区乱码 | 少妇粗大呻吟视频| 精品高清国产在线一区| 国产精品一区二区精品视频观看| 午夜福利一区二区在线看| 久久精品成人免费网站| 一级毛片女人18水好多 | 波多野结衣一区麻豆| 精品少妇久久久久久888优播| 国产一级毛片在线| 19禁男女啪啪无遮挡网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区久久| 欧美av亚洲av综合av国产av| 亚洲国产欧美一区二区综合| 久久影院123| 国产精品一区二区精品视频观看| 国产主播在线观看一区二区 | 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| 欧美日韩一级在线毛片| 一级毛片我不卡| 国产日韩欧美在线精品| 麻豆av在线久日| 久久久久久久精品精品| 韩国精品一区二区三区| 天堂中文最新版在线下载| 国产亚洲午夜精品一区二区久久| 九色亚洲精品在线播放| 亚洲成人国产一区在线观看 | 一级黄片播放器| 久久久久精品人妻al黑| 亚洲国产av影院在线观看| av不卡在线播放| av欧美777| 亚洲美女黄色视频免费看| 99久久综合免费| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 精品久久蜜臀av无| 亚洲精品第二区| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 青草久久国产| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品男人的天堂亚洲| 天天躁夜夜躁狠狠久久av| 丰满迷人的少妇在线观看| 飞空精品影院首页| 叶爱在线成人免费视频播放| 久久久国产一区二区| 久久久久久免费高清国产稀缺| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| 精品福利观看| 亚洲久久久国产精品| 日韩大片免费观看网站| 一二三四在线观看免费中文在| www.999成人在线观看| 亚洲伊人久久精品综合| 欧美日韩av久久| 亚洲精品美女久久av网站| 亚洲免费av在线视频| 亚洲熟女毛片儿| 欧美日韩综合久久久久久| 熟女少妇亚洲综合色aaa.| 丝袜在线中文字幕| 狠狠婷婷综合久久久久久88av| 9色porny在线观看| 在线观看人妻少妇| 日韩av在线免费看完整版不卡| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 国产免费福利视频在线观看| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 久久久久久久国产电影| 国产亚洲欧美在线一区二区| 2018国产大陆天天弄谢| 丝袜在线中文字幕| 欧美xxⅹ黑人| 久久人人爽av亚洲精品天堂| 在线观看人妻少妇| 中文欧美无线码| 91九色精品人成在线观看| 国产午夜精品一二区理论片| 国产成人一区二区三区免费视频网站 | 中国国产av一级| 老熟女久久久| 一级,二级,三级黄色视频| 国产1区2区3区精品| 久热这里只有精品99| 女警被强在线播放| 亚洲欧美精品综合一区二区三区| av有码第一页| 精品一区在线观看国产| 97在线人人人人妻| 这个男人来自地球电影免费观看| 99久久综合免费| 午夜免费男女啪啪视频观看| 午夜老司机福利片| 欧美日韩精品网址| 五月开心婷婷网| svipshipincom国产片| 韩国精品一区二区三区| 视频在线观看一区二区三区| 热re99久久国产66热| 欧美黑人精品巨大| 精品国产一区二区久久| 下体分泌物呈黄色| 国产在线视频一区二区| 最新在线观看一区二区三区 | 精品国产一区二区三区四区第35| 亚洲美女黄色视频免费看| 一级毛片我不卡| 亚洲成人国产一区在线观看 | 国产爽快片一区二区三区| 黄频高清免费视频| 久久热在线av| 午夜影院在线不卡| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 久久天堂一区二区三区四区| 精品久久久久久电影网| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| 精品第一国产精品| 91成人精品电影| 只有这里有精品99| 国语对白做爰xxxⅹ性视频网站| 欧美老熟妇乱子伦牲交| 桃花免费在线播放| 丝袜脚勾引网站| videosex国产| 欧美大码av| 国产又爽黄色视频| 观看av在线不卡| 日韩 亚洲 欧美在线| 色94色欧美一区二区| 啦啦啦中文免费视频观看日本| 精品人妻在线不人妻| av网站在线播放免费| 91成人精品电影| 如日韩欧美国产精品一区二区三区| 国产在视频线精品| 嫩草影视91久久| 国产伦人伦偷精品视频| 最新的欧美精品一区二区| 亚洲av片天天在线观看| 欧美黑人欧美精品刺激| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠久久av| 精品高清国产在线一区| 成人午夜精彩视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品在线美女| 亚洲欧美精品自产自拍| 亚洲,一卡二卡三卡| 午夜福利一区二区在线看| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 两个人免费观看高清视频| 中文欧美无线码| av在线播放精品| 国产欧美日韩一区二区三区在线| 99re6热这里在线精品视频| 婷婷色麻豆天堂久久| 欧美另类一区| 亚洲欧美一区二区三区国产| tube8黄色片| 国产一区二区三区av在线| 国产精品久久久久成人av| 国产三级黄色录像| 欧美国产精品一级二级三级| 久久久久久久大尺度免费视频| 人成视频在线观看免费观看| 老司机深夜福利视频在线观看 | 日本黄色日本黄色录像| 欧美国产精品一级二级三级| 无遮挡黄片免费观看| 亚洲av成人精品一二三区| 黄色 视频免费看| 亚洲精品自拍成人| 久久久久网色| 最近中文字幕2019免费版| 国产免费视频播放在线视频| 国产成人一区二区在线| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 午夜老司机福利片| 亚洲精品国产av蜜桃| 亚洲人成电影观看| 久久人人爽人人片av| 精品福利永久在线观看| 中文字幕精品免费在线观看视频| 90打野战视频偷拍视频| 50天的宝宝边吃奶边哭怎么回事| 考比视频在线观看| 爱豆传媒免费全集在线观看| 日韩制服丝袜自拍偷拍| 国产免费福利视频在线观看| 精品久久久精品久久久| 国产亚洲欧美在线一区二区| 久久综合国产亚洲精品| 蜜桃在线观看..| 亚洲欧洲日产国产| 男人添女人高潮全过程视频| 欧美黄色淫秽网站| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 免费在线观看影片大全网站 | 欧美少妇被猛烈插入视频| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 新久久久久国产一级毛片| 欧美日韩福利视频一区二区| 蜜桃国产av成人99| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 麻豆av在线久日| 亚洲欧美一区二区三区国产| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| 久久女婷五月综合色啪小说| 亚洲 欧美一区二区三区| 宅男免费午夜| 精品一区在线观看国产| 午夜福利一区二区在线看| 国产亚洲午夜精品一区二区久久| 青春草视频在线免费观看| xxx大片免费视频| 国产日韩欧美在线精品| 国产成人欧美在线观看 | 久久狼人影院| 国产一区亚洲一区在线观看| 精品亚洲成a人片在线观看| 两人在一起打扑克的视频| 精品人妻一区二区三区麻豆| 操美女的视频在线观看| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 久久人人97超碰香蕉20202| 国产国语露脸激情在线看| 乱人伦中国视频| 两人在一起打扑克的视频| videos熟女内射| 一级毛片 在线播放| 国产日韩欧美在线精品| e午夜精品久久久久久久| 国产精品麻豆人妻色哟哟久久| 各种免费的搞黄视频| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产一区二区精华液| 美女中出高潮动态图| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 男女边吃奶边做爰视频| 国产不卡av网站在线观看| 两个人看的免费小视频| 亚洲久久久国产精品| 精品少妇久久久久久888优播| 国产在线免费精品| 99久久综合免费| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 91字幕亚洲| 日韩一卡2卡3卡4卡2021年| 丁香六月天网| 亚洲精品乱久久久久久| 精品一区二区三卡| 欧美国产精品一级二级三级| 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂| 久久鲁丝午夜福利片| 午夜福利视频精品| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区 | 蜜桃在线观看..| 黑人欧美特级aaaaaa片| 看免费成人av毛片| 精品高清国产在线一区| 国产熟女欧美一区二区| 在线 av 中文字幕| 亚洲激情五月婷婷啪啪| 侵犯人妻中文字幕一二三四区| 一区二区三区精品91| 丝袜在线中文字幕| 午夜老司机福利片| 国产野战对白在线观看| 亚洲精品国产一区二区精华液| 国产不卡av网站在线观看| 两个人看的免费小视频| www.av在线官网国产| 丝袜美足系列| 精品免费久久久久久久清纯 | 每晚都被弄得嗷嗷叫到高潮| 国产成人av教育| 亚洲欧美色中文字幕在线| √禁漫天堂资源中文www| 国产亚洲av高清不卡| 亚洲精品日韩在线中文字幕| 亚洲中文字幕日韩| av福利片在线| 91成人精品电影| svipshipincom国产片| 男女床上黄色一级片免费看|