• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Buffer allocation method of serial production lines based on improved ant colony optimization algorithm①

    2016-12-05 01:27:56ZhouBinghai周炳海YuJiadi
    High Technology Letters 2016年2期

    Zhou Binghai (周炳海), Yu Jiadi

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, P.R.China)

    ?

    Buffer allocation method of serial production lines based on improved ant colony optimization algorithm①

    Zhou Binghai (周炳海)②, Yu Jiadi

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, P.R.China)

    Buffer influences the performance of production lines greatly. To solve the buffer allocation problem (BAP) in serial production lines with unreliable machines effectively, an optimization method is proposed based on an improved ant colony optimization (IACO) algorithm. Firstly, a problem domain describing buffer allocation is structured. Then a mathematical programming model is established with an objective of maximizing throughput rate of the production line. On the basis of the descriptions mentioned above, combining with a two-opt strategy and an acceptance probability rule, an IACO algorithm is built to solve the BAP. Finally, the simulation experiments are designed to evaluate the proposed algorithm. The results indicate that the IACO algorithm is valid and practical.

    buffer allocation, improved ant colony optimization (IACO) algorithm, serial production line, throughput rate

    0 Introduction

    The buffer allocation problem (BAP) is a significant optimization problem faced by engineers of manufacturing system, which refers to the way of allocating buffer storage within the production line. While buffers can compensate for the blocking and starving of stations in the production line, inclusion of buffers results in additional costs probably due to increased capital investment, floor space and in-process inventory. Therefore determining appropriate buffer storage sizes is still a challenging problem.

    Due to its importance and complexity, several authors have been working on the BAP for many years. Ref.[1] developed a simulated annealing approach for solving BAP in reliable production lines with the objective of maximizing their average throughput. Ref.[2] presented five different search algorithms to solve the BAP of reliable production lines, including the genetic algorithm (GA), tabu search, simulated annealing, myopic and complete enumeration. Ref.[3] proposed an artificial neural network and myopic algorithm based decision support system on reliable production lines. However, the aforementioned literature only focused on reliable production lines. Ref.[4] proposed a quantitative method to determine the buffer size in front of the bottleneck under multi-product. Ref.[5] developed a new efficient simulation model and an experimental cross matrix for serial production lines to determine the optimal buffer size. Ref.[6] and Ref.[7] proposed an exact Markovian model and an approximate analytical method for unreliable serial flow lines to analyze the relationship between throughput and buffer capacity, respectively. But the aforementioned literature only studied an unreliable serial flow line with two workstations and an intermediate buffer. Ref.[8] implemented a combined artificial immune system optimization algorithm in conjunction with a decomposition method to allocate buffers in transfer lines for maximizing economic profit and throughput. Ref.[9] presented a GA and simulation to solve the BAP of flexible manufacturing system. However, the drawback of these meta-heuristics such as GA in solving combinatorial optimization problems is the necessity to set a number of uncertain parameters, which significantly increases the search time and the number of evaluated solutions to find the optimal or near optimal solution. Ref.[10] developed a petri-net based simulation model to study the continuous flow transfer line with three machines and two buffers, and then analyzed the relationship between the equipment reliability and buffer capacity. Ref.[11] presented a local search based degraded ceiling (DC) approach for solving the BAP. However, the objective function may not be a monotone increasing function as the search time goes.

    In this paper, an improved ant colony optimization (IACO) algorithm is used to solve the BAP. Recently, the ant colony optimization (ACO) algorithm has been successfully used by many scholars to solve combinatorial optimization problems[12,13]. It has many good features: distribution, positive feedback, and robustness[14]. However, ACO may lead to a local optimal solution. Thus, some corresponding improvements are done to prevent it from local optimization. One is that when the algorithm is stagnated, the pheromone intensity is reset on all paths in order to break out of the stagnation. Secondly, when the near optimal solution is found, some changes will be made by two-opt strategy to get new solutions. Thirdly, an acceptance probability rule of simulated annealing for updating the best solution is combined with the algorithm. Simulation results indicate that the proposed approach can lead to results that are consistent with our expectations.

    1 Problem description

    In this paper, the BAP in a serial production line with unreliable machines is examined, as depicted in Fig.1, where the rectangles represent machines Mi(i=1,…,k) and the circles indicate buffers Bi(i=1,…,k-1). The assumptions of the BAP in a serial production line are listed as follows: 1) Parts go through each of the machines and buffers in sequence, from machine M1to Mk. 2) The processing times of all parts are constant and equal for all machines, and the transportation time is negligible. 3) Machines are subject to breakdowns. Times to failure and times to repair for machines are exponentially distributed. 4) Machine Miis starved at time t if Mi-1is down and buffer Bi-1is empty; Machine Miis blocked at time t if Mi+1is down and buffer Biis full. 5) The first machine is never starved, and the last machine is never blocked.

    Fig.1 Serial production line

    To solve the BAP, evaluation and optimization tools are needed. The evaluation tool is used to calculate performance measures of production lines which have to be optimized (e.g., the average throughput). A Dallery-David-Xie (DDX) algorithm is applied which is proposed in Ref.[15] to calculate the throughput rate of all new configurations.

    As shown in Fig.2, the principle of DDX algorithm is to decompose ak-machine line L into a set of k-1 two-machine lines. Each line L(i) is composed of an upstream machine Mu(i) and a downstream machine Md(i), separated by a buffer Bi. The procedural form of this method is given as follows:

    Fig.2 Decomposition method

    Step 1: Initialization:

    ru(1)=r1, uu(1)=u1

    rd(i)=ri+1, ud(i)=ui+1(i=1,2,…,k)

    where ru(i) and uu(i) denote the failure rate and repair rate of the upstream machine, respectively; rd(i) and ud(i) denote the failure rate and repair rate of the downstream machine, respectively; riis the failure rate of machine Mi, ri=1/MTBFi; uiis the repair rate of machine Mi, ui=1/MTTRi; MTBF and MTTR represent the mean time between failures and the mean time to repair, respectively.

    Step 2: For any i=2,3,…,k-1:

    (1)

    uu(i)=x×uu(i-1)+(1-x)×ui

    (2)

    ru(i)=Iu(i)×uu(i)

    (3)

    (4)

    (5)

    where Iu(i) and Id(i) are the ratio of ru(i) to uu(i) and rd(i) to ud(i), respectively; E(i) is the efficiency of line L(i); eiis the isolated efficiency of machine Mi; Ps(i) denotes the probability of downstream machine being starved; ed(i) is the isolated efficiency of downstream machine Md(i).

    Step 3: For any i=k-2, k-1…2,1:

    (6)

    ud(i)=y×ud(i+1)+(1-y)×ui+1

    (7)

    rd(i)=Id(i)×ud(i)

    (8)

    (9)

    (10)

    where eu(i) is the isolated efficiency of upstream machine Mu(i); Pb(i) denotes the probability of upstream machine being blocked.

    Step 4:

    If Iu(i)≠Id(i):

    E(i)=

    (11)

    (12)

    where tu(i) and td(i) denote the processing time of machine Mu(i) and Md(i); Sirepresents the capacity of theith buffer.

    (13)

    Step 5: If E(1)=E(2)=…=E(k-1), stop the procedure, otherwise go to step 2.

    On the basis of the descriptions mentioned above, the throughput rate of production line is written as follows:

    E=f(S)=f(S1,S2,…,Sk-1)

    (14)

    Therefore, the mathematical model for the BAP can be formulated as follows:

    Maximize E=f(S)=f(S1,S2,…,Sk-1)

    (15)

    Subject to

    (16)

    0≤Si≤Siup(i=1,…,k-1)

    (17)

    Sinonnegative integers (i=1,…,k-1)

    (18)

    where N is the total buffer capacity, which is a fixed nonnegative integer;f(S1,S2,…,Sk-1) is the throughput rate of the production line to be maximized; Siupis the upper bound for each of the buffer locations.

    For a production line with k machines and N total buffer capacity, the number of possible buffer allocation configurations can be calculated as follows, which is presented in Ref.[11]:

    (19)

    As for the optimization tool, it is a search method that tries to find an optimal or a near optimal solution which in our case is the capacity of each buffer in a production line. Therefore, a new optimization method based on IACO algorithm is proposed in the next section.

    2 Proposed algorithm

    ACO algorithm is a novel biomimetic algorithm. Scholars have solved some difficult problems in discrete system optimization based on the behavior of ants seeking a path between their colony and a source of food[16]. When ants seek for food, the front ones release pheromones on the paths they have visited, then the following ones will randomly choose one path according to the pheromones. When the cycle repeats, the shorter path will have a stronger pheromone trail more quickly. After a certain period of time, all the ants will choose the short trail. The procedure of standard ACO is shown in Fig.3.

    As mentioned in introduction, standard ACO may lead to a local optimal solution. In the next sections, details of IACO are provided which is improved by combining with a two-opt strategy and an acceptance probability rule.

    Fig.3 Pseudocode of standard ACO

    2.1 Encoding

    For the BAP, the feasible solution can be expressed as S={S1,S2,…,Sk-1}. It is assumed that there is a certain number of Fipaths in front of theith buffer, where Fi

    If 1≤j<(Fi+1)/2:

    (20)

    If (Fi+1)/2≤j≤Fi:

    (21)

    (22)

    2.2 Initialization

    Set the initial buffer allocation Si←N/(k-1) and any remaining resource is placed in the middle location.

    2.3 Searching

    (23)

    where τijis the pheromone intensity on each path; α is a constant.

    2.4 Updating

    For all the new buffer allocation solutions, throughput rate E can be calculated and the optimal solutions Smaxcan be found among them. Then update the pheromone intensity τij. The update rule is given as follows:

    τij←ρ×τij+Δτij, where 1-ρ represents the evaporation of pheromone intensity; Δτijis the pheromone increment in this cycle.

    2.5 Two-opt strategy

    In order to prevent the algorithm falling into the local optimization, some changes are done in the near optimal solution by the two-opt strategy:

    Si←Si-1 and Sj←Sj+1

    (24)

    Two buffer locations i and j(i, j∈{1,2,…,k-1} and i≠j) are randomly chosen. Then a new buffer solution can be obtained using Eq.(24). For a production line with k machines, the total number of new possible buffer configurations is (k-1)×(k-2).

    2.6 Acceptance probability rule

    In order to improve the exploring capability of the algorithm, an acceptance probability rule of simulated annealing for updating the best solution is introduced. After a new solution is generated, firstly the objective values of old solution S and new solution S′ should be calculated. If throughput differential ΔE=f(S′)-f(S) is nonnegative, the new solution is accepted as the best solution, otherwise it is accepted with the probability of exp(-ΔE/T), where T is a global time-varying parameter called the temperature.

    2.7 Procedure of the IACO

    The proposed IACO is formally described as follows:

    Step 1: initialize the buffer allocation according to 2.2;

    Step 2: initialize the pheromone intensity τij←c and the pheromone increment Δτij←0;

    Step 4: evaluate the fitness value according to DDX algorithm and obtain the best solution according to 2.6;

    Step 5: perform the two-opt strategy according to 2.5;

    Step 6: update pheromone intensity τijof all the paths according to 2.4;

    Step 7: if it has led to a local optimal solution, go to step 2, otherwise go on;

    Step 8: if the termination criterion is not met, initialize Δτij←0, and go to step 3; otherwise, stop and record the optimal buffer allocation solution S*and its throughput rate E*.

    3 Numerical examples

    In order to evaluate the applicability of the IACO algorithm, experiments are conducted with serial production line configurations of different total buffer capacities and machines sizes. The experiments results of the proposed IACO and ACO algorithm are compared with those of DC algorithm presented in Ref.[11] and GA presented in Ref.[9]. In all the tests, it is assumed that the processing rate for each machine is one time unit; the values of the algorithm parameters are as follows: α=1, ρ=0.95, γ=100, β=15. Table 1 shows the machine parameters of the production lines. All the experimental studies are programmed in C++ language and run on a PC with Inter (R) Core (TM) 2-Duo (2.00GHz) CPU using the Windows7 operating system.

    Table 1 Machines parameters

    Table 2 presents the throughput rate, CPU time and number of evaluated solutions by using different optimization methods with k machines (5≤k≤30). It is shown that the IACO algorithm results in slightly larger throughput rate and requires less time and fewer numbers of evaluated solutions to find the near optimal solutions compared with other optimization methods in all of cases.

    Table 2 Computational results by different optimization methods

    Fig.4 shows the convergence curves of the four algorithms for the production lines with five, fifteen and thirty machines.

    It is shown that the throughput rate of near optimal solution increases as the number of evaluated solutions increases for all of the DC, ACO, IACO and GA optimization methods. In addition, the proposed IACO algorithm results in solution quality higher and numbers of evaluated solutions fewer than the other three methods.

    For the same number of machines, the different total buffer capacity will lead to a different number of evaluated solutions. Fig.5 shows the effect of the N total buffer capacity to allocate among the production line on the number of the evaluated configurations needed to converge. This test focuses on a production line with ten machines, and the total buffer capacity varies from 90 to 450.

    Fig.4 Evolution of the solutions with four methods

    Fig.5 Total buffer capacity versus number of evaluated solutions

    As shown in Fig.5, the number of evaluated solutions needed by the IACO algorithm is lower than those of the DC, ACO and GA algorithm. In addition, the increase of the total buffer capacity leads to an increase of the number of evaluated solutions for near optimal buffer solutions.

    As shown in Fig.6, for six production lines with different sizes (from 5 to 30 machines) and different total buffer capacities, the number of evaluated solutions is increasing as the number of machines increases. In general, the IACO algorithm finds the best configuration much faster than the DC, ACO and GA algorithm.

    Fig.6 Influence of the number of machines

    Through the experiments analyzed above, it is easily known that the different number of machines and total buffer capacities will lead to a different throughput rate for the production line. As shown in Fig.7, the throughput rate increases with the increase of the total buffer capacity when the number of machines is invariable. However, when the total buffer capacity is invariable, the throughput rate decreases with the increase of the number of machines.

    Fig.7 Total buffer capacity and number of machines versus throughput rate

    4 Conclusion

    In this paper, an IACO algorithm is proposed to solve the BAP with the objective of maximizing the throughput rate in serial production lines with unreliable machines. For the ACO algorithm, some improvements are done to prevent it from local optimization, such as the two-opt strategy and the acceptance probability rule. Comparisons with other widely recognized methods are made to demonstrate the efficiency of our method. The results indicate that the IACO algorithm finds the optimal buffer configuration much faster than the other three approaches for different sizes production lines. Our future work will also test this approach on similar problems especially involving parallel machines.

    [1] Spinellis D D, Papadopoulos C T. A simulated annealing approach for buffer allocation in reliable production lines.AnnalsofOperationsResearch, 2000, 93(1-4): 373-384

    [2] Papadopoulos C T, O’Kelly M E J, Tsadiras A K. A DSS for the buffer allocation of production lines based on a comparative evaluation of a set of search algorithms.InternationalJournalofProductionResearch, 2013, 51(14): 4175-4199

    [3] Tsadiras A K, Papadopoulos C T, O’Kelly M E J. An artificial neural network based decision support system for solving the buffer allocation problem in reliable production lines.Computers&IndustrialEngineering, 2013, 66(4): 1150-1162

    [4] Ye T, Han W. A quantitative method to determine the size of the stock buffer in front of the bottleneck under multi-product. In: Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA), Dalian, China. 2006. 7239-7243

    [5] Battini D, Persona A, Regattieri A. Buffer size design linked to reliability performance: A simulative study.Computers&IndustrialEngineering, 2009, 56(4): 1633-1641

    [6] Alexandros D C, Chrissoleon P T. Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines.EuropeanJournalofOperationalResearch, 2009, 197(2): 572-580

    [7] Liu J, Yan D, Feng R, et al. Performance evaluation of production lines with unreliable buffer. In: Proceedings of the 8th IEEE International Conference on Control and Automation (ICCA), Xiamen, China, 2010. 350-355

    [8] Massim Y, Yalaoui F, Amodeo L, et al. Efficient combined immune-decomposition algorithm for optimal buffer allocation in production lines for throughput and profit maximization.Computers&OperationsResearch, 2010, 37(4): 611-620

    [9] Jeong S J, Jung H. Optimal buffer allocation in flexible manufacturing systems using genetic algorithm and simulation.JournalofAdvancedMechanicalDesign,Systems,andManufacturing, 2012, 6(7): 1071-1080

    [10] S?rensen K, Janssens G K. Simulation results on buffer allocation in a continuous flow transfer line with three unreliable machines.AdvancesinProductionEngineering&Management, 2011, 6(1):15-26

    [11] Nahas N, Ait-Kadi D, Nourelfath M. A new approach for buffer allocation in unreliable production lines.InternationalJournalofProductionEconomics, 2006, 103(2): 873-881

    [12] Liao C J, Tsai Y L, Chao C W. An ant colony optimization algorithm for setup coordination in a two-stage production system.AppliedSoftComputing, 2011, 11(8): 4521-4529

    [13] Akpinar S, Bayhan G M. Performance evaluation of ant colony optimization-based solution strategies on the mixed-model assembly line balancing problem.EngineeringOptimization, 2014, 46(6): 842-862

    [14] Zheng Q X, Li M, Li Y X, et al. Station ant colony optimization for the type 2 assembly line balancing problem.InternationalJournalofAdvancedManufacturingTechnology, 2013, 66(9-12): 1859-1870

    [15] Dallery Y, David R, Xie X L. Approximate analysis of transfer lines with unreliable machines and finite buffers.IEEETransactionsonAutomaticControl, 1989, 34(9): 943-953

    [16] Kalayci C B, Gupta S M. Ant colony optimization for sequence-dependent disassembly line balancing problem.JournalofManufacturingTechnologyManagement, 2013, 24(3): 413-427

    Zhou Binghai, born in 1965. He received his M.S. and Ph.D degrees respectively from School of Mechanical Engineering, Shanghai Jiaotong University in 1992 and 2001. He is a professor, a Ph.D supervisor in School of Mechanical Engineering, Tongji University. He is the author of more than 140 scientific papers. His current research interests are scheduling, modeling, simulation and control for manufacturing systems, integrated manufacturing technology.

    10.3772/j.issn.1006-6748.2016.02.001

    ①Supported by the National Natural Science Foundation of China (No. 61273035, 71471135).

    ②To whom correspondence should be addrcessed. E-mail: bhzhou@#edu.cnReceived on Feb. 12, 2015

    窝窝影院91人妻| 新久久久久国产一级毛片| 亚洲av片天天在线观看| 欧美成人免费av一区二区三区| 亚洲欧美精品综合久久99| 国产精品 欧美亚洲| 9色porny在线观看| 国产免费男女视频| 又紧又爽又黄一区二区| 新久久久久国产一级毛片| 黄色女人牲交| 亚洲狠狠婷婷综合久久图片| 超色免费av| 精品熟女少妇八av免费久了| 亚洲欧美精品综合久久99| 看免费av毛片| 久久久久久久久免费视频了| 久久久国产一区二区| 黑丝袜美女国产一区| 最好的美女福利视频网| 又紧又爽又黄一区二区| 成人18禁高潮啪啪吃奶动态图| 欧美黄色淫秽网站| 真人一进一出gif抽搐免费| 91av网站免费观看| 悠悠久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产毛片av蜜桃av| 欧美激情极品国产一区二区三区| 免费高清视频大片| 久久久久久久精品吃奶| 国产色视频综合| 日韩视频一区二区在线观看| 一边摸一边抽搐一进一小说| 免费不卡黄色视频| 亚洲国产中文字幕在线视频| 99久久99久久久精品蜜桃| 97人妻天天添夜夜摸| 日韩中文字幕欧美一区二区| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区不卡视频| 老司机靠b影院| 天天躁夜夜躁狠狠躁躁| 岛国视频午夜一区免费看| 亚洲性夜色夜夜综合| 久久精品91无色码中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 淫妇啪啪啪对白视频| 一本综合久久免费| 亚洲国产欧美日韩在线播放| av视频免费观看在线观看| 国产三级黄色录像| 一边摸一边抽搐一进一小说| 国产精品亚洲av一区麻豆| 欧美大码av| 丝袜美足系列| 又紧又爽又黄一区二区| 村上凉子中文字幕在线| 琪琪午夜伦伦电影理论片6080| videosex国产| 国产亚洲精品久久久久5区| 亚洲熟妇中文字幕五十中出 | 麻豆一二三区av精品| 国内久久婷婷六月综合欲色啪| www.精华液| 亚洲第一欧美日韩一区二区三区| 99精品久久久久人妻精品| 成年人黄色毛片网站| 精品国产一区二区久久| 欧美日韩亚洲国产一区二区在线观看| 日本三级黄在线观看| 制服人妻中文乱码| 脱女人内裤的视频| 国产精品电影一区二区三区| 亚洲午夜理论影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区久久| 91九色精品人成在线观看| 成人精品一区二区免费| 国产成人免费无遮挡视频| 亚洲男人的天堂狠狠| 欧美日韩视频精品一区| 满18在线观看网站| 欧美日韩亚洲综合一区二区三区_| 大型黄色视频在线免费观看| 美女国产高潮福利片在线看| 国产成+人综合+亚洲专区| 国产成人av激情在线播放| 免费av中文字幕在线| 桃色一区二区三区在线观看| 如日韩欧美国产精品一区二区三区| 视频在线观看一区二区三区| 免费高清在线观看日韩| 国产精品九九99| 亚洲精品国产精品久久久不卡| 99精品欧美一区二区三区四区| 亚洲第一青青草原| 欧美av亚洲av综合av国产av| 婷婷精品国产亚洲av在线| 91字幕亚洲| 中文亚洲av片在线观看爽| 亚洲专区中文字幕在线| 久久天堂一区二区三区四区| 麻豆av在线久日| 久久久国产成人精品二区 | 嫩草影视91久久| 在线观看免费视频网站a站| 淫秽高清视频在线观看| 欧美日韩福利视频一区二区| 人人妻人人添人人爽欧美一区卜| 国产视频一区二区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品欧美日韩精品| 亚洲性夜色夜夜综合| 99re在线观看精品视频| 免费av中文字幕在线| 在线观看免费日韩欧美大片| av网站免费在线观看视频| 免费搜索国产男女视频| 日日干狠狠操夜夜爽| 男女之事视频高清在线观看| 一夜夜www| 久久久久久久精品吃奶| 少妇的丰满在线观看| 国产97色在线日韩免费| 桃色一区二区三区在线观看| 法律面前人人平等表现在哪些方面| 国产aⅴ精品一区二区三区波| bbb黄色大片| 最新美女视频免费是黄的| 女性被躁到高潮视频| 精品国产亚洲在线| 精品乱码久久久久久99久播| 丝袜人妻中文字幕| 国产av一区在线观看免费| 欧美性长视频在线观看| 国产成人系列免费观看| 亚洲九九香蕉| 两人在一起打扑克的视频| 高潮久久久久久久久久久不卡| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 90打野战视频偷拍视频| 热99re8久久精品国产| 日日爽夜夜爽网站| 欧美精品啪啪一区二区三区| 日韩 欧美 亚洲 中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 国产精品美女特级片免费视频播放器 | 国产精品 国内视频| 国产成人一区二区三区免费视频网站| 叶爱在线成人免费视频播放| 日本a在线网址| 亚洲免费av在线视频| 一级毛片精品| 亚洲一区二区三区色噜噜 | 免费在线观看完整版高清| 欧美成人性av电影在线观看| 99香蕉大伊视频| 成人18禁高潮啪啪吃奶动态图| 国产精品免费视频内射| 欧美午夜高清在线| 男人的好看免费观看在线视频 | 精品欧美一区二区三区在线| 亚洲欧美一区二区三区久久| 午夜91福利影院| 99精国产麻豆久久婷婷| 99热只有精品国产| 宅男免费午夜| 久久精品人人爽人人爽视色| 免费搜索国产男女视频| 欧美乱妇无乱码| 色婷婷av一区二区三区视频| 欧美大码av| 久久精品亚洲精品国产色婷小说| 亚洲五月色婷婷综合| 国产一区二区三区视频了| 中文字幕av电影在线播放| 亚洲国产中文字幕在线视频| 97超级碰碰碰精品色视频在线观看| 淫妇啪啪啪对白视频| 欧美不卡视频在线免费观看 | 一个人免费在线观看的高清视频| 长腿黑丝高跟| 后天国语完整版免费观看| 最新美女视频免费是黄的| 国产亚洲av高清不卡| 日韩免费av在线播放| 欧美黄色片欧美黄色片| 又黄又爽又免费观看的视频| 亚洲精品久久午夜乱码| 香蕉久久夜色| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 亚洲一区二区三区色噜噜 | 正在播放国产对白刺激| 精品电影一区二区在线| 满18在线观看网站| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看 | 精品国产超薄肉色丝袜足j| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看| www.自偷自拍.com| 十八禁人妻一区二区| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 日日干狠狠操夜夜爽| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品合色在线| 免费av毛片视频| 99riav亚洲国产免费| 成人影院久久| 久久香蕉精品热| 国产一卡二卡三卡精品| 69精品国产乱码久久久| 久久人妻av系列| 搡老熟女国产l中国老女人| 精品福利永久在线观看| www.999成人在线观看| 国产精品av久久久久免费| 如日韩欧美国产精品一区二区三区| 日韩大尺度精品在线看网址 | 欧洲精品卡2卡3卡4卡5卡区| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 久久性视频一级片| 大型av网站在线播放| 狠狠狠狠99中文字幕| 老司机福利观看| 欧美不卡视频在线免费观看 | 国产成年人精品一区二区 | 久久精品国产综合久久久| 好男人电影高清在线观看| 午夜激情av网站| 99re在线观看精品视频| 亚洲成a人片在线一区二区| 最新美女视频免费是黄的| 波多野结衣av一区二区av| 在线看a的网站| 亚洲avbb在线观看| 国产精品免费视频内射| www.999成人在线观看| bbb黄色大片| 国产亚洲精品一区二区www| 久久国产乱子伦精品免费另类| 一二三四社区在线视频社区8| 日本一区二区免费在线视频| 亚洲自偷自拍图片 自拍| 久久国产精品男人的天堂亚洲| 大型av网站在线播放| 久久影院123| 国产成人欧美| av视频免费观看在线观看| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 欧美精品啪啪一区二区三区| 在线永久观看黄色视频| 男人的好看免费观看在线视频 | 久久精品亚洲熟妇少妇任你| 欧美av亚洲av综合av国产av| 99riav亚洲国产免费| 看免费av毛片| 亚洲少妇的诱惑av| 90打野战视频偷拍视频| 一夜夜www| 成人黄色视频免费在线看| 色尼玛亚洲综合影院| 可以在线观看毛片的网站| 亚洲 欧美 日韩 在线 免费| 中文字幕人妻丝袜制服| 久久午夜亚洲精品久久| 国产激情欧美一区二区| 色在线成人网| 国产av又大| 久久国产精品人妻蜜桃| 国产深夜福利视频在线观看| 国产精品 国内视频| 精品久久久久久久久久免费视频 | 在线天堂中文资源库| 少妇裸体淫交视频免费看高清 | tocl精华| 久久国产亚洲av麻豆专区| 新久久久久国产一级毛片| 精品福利永久在线观看| 中文字幕高清在线视频| 男女下面进入的视频免费午夜 | 色播在线永久视频| 精品一区二区三卡| 男人的好看免费观看在线视频 | 看片在线看免费视频| 神马国产精品三级电影在线观看 | 久久九九热精品免费| 中文字幕av电影在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 嫁个100分男人电影在线观看| 免费在线观看日本一区| 亚洲国产精品999在线| 嫁个100分男人电影在线观看| 99国产精品99久久久久| 久久狼人影院| 久久久久九九精品影院| 久久久久久久久中文| 国产在线观看jvid| 成年人黄色毛片网站| 色综合婷婷激情| 激情视频va一区二区三区| 女性生殖器流出的白浆| 一进一出抽搐动态| 欧美最黄视频在线播放免费 | 久久亚洲精品不卡| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 啦啦啦 在线观看视频| 久久久久久亚洲精品国产蜜桃av| 一级a爱视频在线免费观看| 国产黄a三级三级三级人| 亚洲一区高清亚洲精品| 欧美日韩黄片免| 欧美激情高清一区二区三区| 最新美女视频免费是黄的| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品一区二区三区在线| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 叶爱在线成人免费视频播放| 国产成人av激情在线播放| 91成人精品电影| 久久久久久久午夜电影 | 亚洲视频免费观看视频| 久久久久亚洲av毛片大全| 欧美激情极品国产一区二区三区| 99精国产麻豆久久婷婷| 黄色片一级片一级黄色片| 人妻丰满熟妇av一区二区三区| 男男h啪啪无遮挡| 日韩中文字幕欧美一区二区| 亚洲专区国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美 亚洲 国产 日韩一| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 亚洲自偷自拍图片 自拍| 亚洲av美国av| 久久亚洲真实| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看 | 国产伦人伦偷精品视频| 夫妻午夜视频| 悠悠久久av| 满18在线观看网站| 日日摸夜夜添夜夜添小说| avwww免费| 久久香蕉激情| 亚洲国产欧美日韩在线播放| 久久国产精品人妻蜜桃| 国产亚洲精品久久久久久毛片| cao死你这个sao货| 在线国产一区二区在线| 亚洲片人在线观看| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 日韩一卡2卡3卡4卡2021年| 国产深夜福利视频在线观看| 亚洲免费av在线视频| 国产三级在线视频| 亚洲成国产人片在线观看| 91成人精品电影| 最新在线观看一区二区三区| 91成人精品电影| 免费看十八禁软件| 午夜两性在线视频| 欧美日韩视频精品一区| 91字幕亚洲| 久久这里只有精品19| 91字幕亚洲| 日本wwww免费看| 亚洲精品在线观看二区| 桃色一区二区三区在线观看| 久久国产精品男人的天堂亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 美女午夜性视频免费| 精品午夜福利视频在线观看一区| 精品人妻在线不人妻| 高清在线国产一区| 男女床上黄色一级片免费看| 黄色毛片三级朝国网站| 99国产综合亚洲精品| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 欧美不卡视频在线免费观看 | 亚洲欧美精品综合一区二区三区| 视频在线观看一区二区三区| 97人妻天天添夜夜摸| 色精品久久人妻99蜜桃| 妹子高潮喷水视频| 99香蕉大伊视频| 91字幕亚洲| 免费在线观看亚洲国产| 无遮挡黄片免费观看| 99久久综合精品五月天人人| 黄色女人牲交| 夜夜躁狠狠躁天天躁| 99在线人妻在线中文字幕| 亚洲 欧美一区二区三区| 啦啦啦 在线观看视频| 精品高清国产在线一区| 久久中文字幕人妻熟女| 国产精品乱码一区二三区的特点 | 人妻久久中文字幕网| 在线观看一区二区三区激情| 成人三级做爰电影| 丰满的人妻完整版| 看免费av毛片| 俄罗斯特黄特色一大片| 9热在线视频观看99| 亚洲一区二区三区欧美精品| 国产成人欧美| 97超级碰碰碰精品色视频在线观看| 亚洲成人精品中文字幕电影 | 男女午夜视频在线观看| 久久久国产成人精品二区 | 淫妇啪啪啪对白视频| 国产午夜精品久久久久久| 色播在线永久视频| 日本a在线网址| 国产精品乱码一区二三区的特点 | 精品久久蜜臀av无| 国产不卡一卡二| 久久伊人香网站| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| videosex国产| 免费在线观看视频国产中文字幕亚洲| 最近最新中文字幕大全免费视频| 在线观看66精品国产| 黄片大片在线免费观看| 亚洲精品国产区一区二| 老鸭窝网址在线观看| 夜夜看夜夜爽夜夜摸 | 亚洲欧美日韩另类电影网站| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻,人人澡人人爽秒播| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区视频在线观看| 人妻丰满熟妇av一区二区三区| 久久久久久久午夜电影 | 男人的好看免费观看在线视频 | 校园春色视频在线观看| 美女高潮喷水抽搐中文字幕| 色播在线永久视频| 免费人成视频x8x8入口观看| 天堂俺去俺来也www色官网| 操出白浆在线播放| 国产又爽黄色视频| 欧美久久黑人一区二区| 90打野战视频偷拍视频| 手机成人av网站| 成人手机av| 日韩欧美国产一区二区入口| 亚洲精品国产一区二区精华液| 久久中文看片网| 看片在线看免费视频| 一夜夜www| 国产精品亚洲一级av第二区| 黄色片一级片一级黄色片| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3 | 婷婷精品国产亚洲av在线| 成人三级做爰电影| 国产精品二区激情视频| 国产亚洲精品综合一区在线观看 | 国产一区二区三区视频了| 精品久久久久久电影网| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 国产精品香港三级国产av潘金莲| 午夜福利欧美成人| 成人黄色视频免费在线看| 又紧又爽又黄一区二区| 一级片免费观看大全| 美女国产高潮福利片在线看| 51午夜福利影视在线观看| 好看av亚洲va欧美ⅴa在| 在线天堂中文资源库| av国产精品久久久久影院| 在线免费观看的www视频| 成人三级做爰电影| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人| 中文亚洲av片在线观看爽| 午夜老司机福利片| 男女做爰动态图高潮gif福利片 | 狂野欧美激情性xxxx| 精品人妻在线不人妻| 窝窝影院91人妻| 动漫黄色视频在线观看| 久久久久久亚洲精品国产蜜桃av| 1024香蕉在线观看| 久久精品国产综合久久久| 久久精品91无色码中文字幕| 91字幕亚洲| 亚洲精品国产一区二区精华液| 亚洲精品美女久久久久99蜜臀| 午夜91福利影院| 18美女黄网站色大片免费观看| 女人被躁到高潮嗷嗷叫费观| av网站在线播放免费| 亚洲男人天堂网一区| 午夜日韩欧美国产| av超薄肉色丝袜交足视频| 悠悠久久av| 精品午夜福利视频在线观看一区| 免费高清视频大片| 亚洲国产精品合色在线| 一级作爱视频免费观看| 男人舔女人下体高潮全视频| 亚洲精品av麻豆狂野| 亚洲av熟女| 悠悠久久av| 精品日产1卡2卡| 亚洲久久久国产精品| 女人爽到高潮嗷嗷叫在线视频| 日韩大码丰满熟妇| 91成人精品电影| 两个人看的免费小视频| 免费女性裸体啪啪无遮挡网站| 在线观看www视频免费| 色婷婷av一区二区三区视频| 亚洲精品久久成人aⅴ小说| 日日摸夜夜添夜夜添小说| 精品福利永久在线观看| 自线自在国产av| 黑人猛操日本美女一级片| 国产精品二区激情视频| 欧美精品啪啪一区二区三区| 99香蕉大伊视频| 伊人久久大香线蕉亚洲五| 校园春色视频在线观看| 久久久久久久午夜电影 | 亚洲av第一区精品v没综合| 成人特级黄色片久久久久久久| 国产97色在线日韩免费| 男女床上黄色一级片免费看| 国产精品乱码一区二三区的特点 | 国产成人免费无遮挡视频| 久久久久久久久久久久大奶| 国产深夜福利视频在线观看| 国产人伦9x9x在线观看| 日韩欧美免费精品| 热re99久久精品国产66热6| 精品久久蜜臀av无| 亚洲av成人av| 欧美日韩瑟瑟在线播放| 国产欧美日韩综合在线一区二区| 午夜福利一区二区在线看| 精品国内亚洲2022精品成人| 久久久久久久久久久久大奶| 久久久久亚洲av毛片大全| 最近最新中文字幕大全电影3 | 纯流量卡能插随身wifi吗| 大码成人一级视频| 亚洲精品国产精品久久久不卡| 日韩精品中文字幕看吧| 欧美日韩一级在线毛片| 一区福利在线观看| 一区二区三区国产精品乱码| 久久久久久久久久久久大奶| 午夜免费成人在线视频| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 欧美成人午夜精品| 性少妇av在线| 天堂动漫精品| 午夜激情av网站| 色婷婷av一区二区三区视频| 日本精品一区二区三区蜜桃| 老司机亚洲免费影院| 99香蕉大伊视频| 另类亚洲欧美激情| 高清欧美精品videossex| 久久香蕉激情| 另类亚洲欧美激情| 中文字幕精品免费在线观看视频| 欧美日韩视频精品一区| 国产高清激情床上av| 搡老熟女国产l中国老女人| 亚洲色图 男人天堂 中文字幕| 精品一品国产午夜福利视频| 久久久久久久久中文| 大香蕉久久成人网| 天天影视国产精品| 一级毛片精品| 高清毛片免费观看视频网站 | e午夜精品久久久久久久| 国产精品一区二区三区四区久久 | 国产精品永久免费网站| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美| 国产av一区在线观看免费| 国产伦人伦偷精品视频| 男人舔女人的私密视频| 久久国产精品人妻蜜桃| 99国产精品一区二区蜜桃av| 97碰自拍视频| 人人妻人人添人人爽欧美一区卜| 国产伦人伦偷精品视频| 变态另类成人亚洲欧美熟女 | 亚洲成国产人片在线观看| 91麻豆精品激情在线观看国产 | 久久人妻福利社区极品人妻图片| 亚洲国产欧美日韩在线播放|