• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ischemic penumbra in retina endures: vascular neuropathology is reconciled

    2016-12-02 07:05:32DavidMcLeod
    關(guān)鍵詞:迫切需要細(xì)微處切入點

    PERSPECTIVE

    Ischemic penumbra in retina endures: vascular neuropathology is reconciled

    A physiological state of “normoxia” obtains when tissue oxygen tension (pO2) is sufficient to drive mitochondrial respiration throughout a volume of cells. Between 30—40% of the available oxygen is normally extracted from hemoglobin as it passes through neural tissue, implying a balance between oxygen delivery and consumption that includes a healthy reserve in case of increased oxygen demand (“energy homeostasis”). Tissue oxygenation is not restricted to the capillary microcirculation but can also be sourced from larger afferent vessels (as His demonstrated in 1880 when he discovered the retinal peri-arterial capillary-free zone). Of note, retinal “arteries” are <100 μm in diameter (as are cerebral cortical “arteries”) and correspond to large “arterioles” elsewhere. Regardless of terminology, the angio-architectural pattern is key to the distribution and heterogeneity of tissue pO2values, the highest being found near the largest afferent vessels.

    Modest reductions in tissue perfusion may have no adverse consequences for parenchymal cells, but progressive oligemia results in diminishing hemoglobin-oxygen saturation (sO2) values within blood draining the tissue. This indicates a reduction in the local oxygen reserve and, as the oxygen extraction fraction (OEF) increases towards 100%, such “misery perfusion” also implies exaggerated heterogeneity of tissue pO2values (the lowest approaching 0 mmHg) and steepening of the sO2gradient within the arterial tree. Thus, a disproportionate fraction of the available oxygen is extracted in the proximal portion of the vascular path, hemoglobin becoming relatively or completely deoxygenated by the time it reaches the distal portion. When the tissue pO2no longer supports oxidative metabolism adequately, the cellular dysfunction or injury arising exhibits 2 readily distinguishable grades of severity, namely “ischemic hypoxia” (once an initial threshold of perfusion failure is crossed) and “ischemic anoxia”(once the volume flow of blood decreases by a further 50% or so). The hypoxic tissue compartment wherein local perfusion values (and, by inference, tissue pO2values) lie between these 2 thresholds is called the “ischemic penumbra” (Astrup et al., 1977).

    Hypo-oxygenation thresholds: The “dual-threshold” paradigm for tissue hypo-oxygenation emerged from studies of baboon cerebral cortex wherein graduated tissue hypoperfusion was achieved by modulating the “pressure-passive” collateral circulation from distal arterio-arterial anastomoses following trans-orbital occlusion of the middle cerebral artery (MCAO). Below the first (“hypoxic” or “penumbra”) threshold, cortical neurons adapt to the low tissue pO2, and maintain their structural integrity, by suppressing evoked responses and spontaneous activity (which are energy-expensive) whilst safeguarding essential vegetative processes. Thus, the hypo-metabolic neurons are“electrically silent” but they maintain “ionic homeostasis” (i.e., membrane polarization) and energy homeostasis. Meanwhile, neuronal survival factors (such as heat-shock and pro-angiogenic proteins) are up-regulated.

    Below the second (“anoxic” or “l(fā)ethal”) threshold, neuronal oxidative metabolism ceases altogether. As well as being electrically silent, the cells are depolarised and distended owing to an influx of Na+, Cl—, Ca++and H2O and efflux of K+and glutamate. Elevated extracellular [K+] thus indicates impaired structural integrity of neurons once the lower of the 2 hypo-oxygenation thresholds has been crossed, but both thresholds can then be recrossed, and electrical activity restored, if normal tissue perfusion is swiftly restored. In the case of formerly-anoxic neurons, however, renewed impulse and synaptic transmission requires prior reinstatement of the resting potential.

    Figure 1 Oxygenation-based tissue compartments (pink = normoxic; blue = hypoxic; unshaded = anoxic).

    Ischemia and oxygenation-based tissue compartments: Arterialocclusion potentially results in the evolution of 3 oxygenation-based tissue compartments (“normoxic”, “hypoxic” and“anoxic”) within the territory of the vessel. The relative volumes of these compartments depend on the degree of luminal obstruction and the extent of collateral blood flow or other means of collateral oxygenation. The theoretical topography of the compartments arising from such tissue hypoperfusion can be considered in relation to simple sleeves (or cylinders) of cells surrounding individual blood vessels with co-current flow. Here, lethal conditions first affect distal cells located furthest from the axial vessels. These “anoxic corners” of the Krogh tissue cylinders are thought to be separated from proximal normoxic tissue by “hypoxic funnels” of cells (McLeod and Beatty, 2015).

    Topography of hypo-oxygenated tissue compartments in brain and retina: The classic 3-D topography of cerebral stroke after MCAO comprises a central “core” of ischemic anoxia (primarily involving the basal ganglia) surrounded by hypoxic cortex that is marginally oxygenated by retrograde flow via leptomeningeal arterio-arterial anastomoses on the cerebral surface (Heiss, 2011). This penumbral zone is itself surrounded by normoxic (albeit oligemic) cortex. The “anoxic core + hypoxic surround” (or Type 1) stroke topography represents an aggregation of several hypoperfused tissue cones each with a reversed compartmental order (Figure 1B). This is often portrayed in 2-D as a “fried egg” topography with no acknowledgement of incursions by preferentially-oxygenated neurons. Hypoxic peri-arterial incursions across anoxic thresholds may underlie the “archipelago” (or Type 2) stroke topography described as “penumbra embedded within core”(Olivot et al., 2009).

    Chronic retinal hypoxia has long been known to stimulate intraocular angiogenesis (Michaelson, 1948; Hayreh, 2011), but the ophthalmic scientific lexicon seldom includes the term “ischemic penumbra”. Recently, however, legacy experiments (1968—2004) in macaques, wherein the intra-orbital central retinal artery (CRA) was temporarily occluded, have been re-visited (McLeod and Beatty, 2015). The b-wave of the electroretinogram (ERG), which is largely generated by bipolar cells located within the middle-retinal portion of the vascularised inner retina, is unsurprisingly “silenced” by CRA occlusion (CRAO) apart, that is, from a residual b-wave that is larger in response to full-field or “Ganzfeld” stimulation (averaging 41% of the pre-CRAO amplitude) in comparison with non-Ganzfeld stimulation (≈10%). This suggests that normoxic middle-retinal tissue occupies a substantial area of the retinal periphery during CRAO. Moreover, on unclamping the CRA after, say, an hour of ischemia, responses to Ganzfeld stimulation increase from 41% to 68% of the pre-CRAO b-wave within 10 minutes. This “rapid-recovery component”(27%) indicates that a hypoxic middle-retinal tissue compartment, comprising electrically-silent but polarised bipolar cells, occupies the retinal mid-periphery during CRAO. The remaining 32% of the pre-CRAO b-wave recovers more slowly after transient CRAO presumably because, having temporarily lost their structural integrity, formerly-anoxic bipolar cells need time to repolarize before their electrical activities are reinstated. Full recovery of the visual evoked potential (VEP), signifying re-oxygenation of the superficial inner retina and cortical re-afferentation, is similarly protracted.

    The en-face 2-D topography of complete CRAO thus comprises an anoxic “core” (visible ophthalmoscopically as a circular zone of initially-reversible retinal opacification ≈30° in radius with a foveolar cherry-red spot at its center) plus a mid-peripheral “surround” of similarly electrically-silent, but transparent, inner retina. The concentric swathe of hypoxic neurons (or “penumbra obscura”) is itself surrounded by normoxic peripheral retina (Figure 1C). Of course, there are no distal arterio-arterial collaterals available after CRAO, unlike after MCAO. Nevertheless, the choroid, which is the ocular equivalent of the cerebral leptomeninges, acts like a large thinwalled artery (with a high blood volume flow, a low OEF and a high intravascular pO2throughout its extent) in offering a potential collateral source of oxygenation to the non-perfused inner retina (McLeod and Beatty, 2015). In the posterior pole, however, inward diffusion of oxygen is precluded by the oxygen sink or “metabolic oxygen barrier” presented by mitochondria within densely-packed, highly-energetic photoreceptors. By contrast, the mid-peripheral inner retina can be marginally oxygenated by the choroid because rod photoreceptor cell density diminishes with increasing eccentricity from the fovea beyond 20°. The annular hypoxic compartment lies between the roughly circular pO2isobar at ≈30° eccentricity (i.e., the anoxic threshold) and another at ≈55° eccentricity (i.e., the hypoxic or penumbra threshold). The outlines of these inner retinal pO2thresholds, reflecting the graduated centrifugal diminution in photoreceptor cell density, show no threshold incursions.

    Normoxic peri-arterial incursions across hypoxic thresholds (Figure 1A) are a characteristic feature of the clinical picture that evolves following “partial” CRAO. Here, misery perfusion (as witnessed by retinal venous hypoxemia) is associated with heterogeneous macular retinal opacification that reflects considerable heterogeneity in tissue pO2values (Oji and McLeod,1978). Densely opaque cotton-wool spots (CWSs) appear along the posterior boundary of a (transparent) “polar penumbra”involving most of the superficial inner retina in the posterior pole. These white sentinels result from ischemic obstruction of retrograde axoplasmic transport in the retinal nerve-fibre layer (NFL), and some of them become “embedded” within the penumbral zone courtesy of continuing mitochondrial transportation within tapering zones of peri-arterial normoxia (Figure 1D). The pathophysiology of embedded CWSs adds to the substantial body of evidence challenging the almost universal misapprehension that retinal CWSs represent “NFL infarcts”(McLeod and Beatty, 2015). Meanwhile, in the middle retinal layers posteriorly, subtle peri-venous opacification signifies “anoxic corner” formation owing to reduced counter-current blood flow within the interdigitating arteries and veins that radiate around the fovea. The localised anoxic damage reflects the exaggerated vulnerability to hypoperfusion extant within the distal portion of the vascular path.

    Time-course of cerebral and inner retinal ischemic change: Unlike the spatial similarities noted above, temporal aspects of ischemic neuropathology differ significantly between brain and retina. The “survival time” of cerebral neurons is believed to be ≈30—40 minutes following MCAO before oncotic infarction ensues. However, the hypoxic cortical neurons surrounding the anoxic core maintain their viability for 1—6 hours before self-destructing via the apoptotic cell-death pathway, albeit often leaving a residual “cap” of penumbral cortex (Slevin et al., 2006). The “penumbra-to-umbra conversion” results from wave after wave of peri-infarct depolarisation, perhaps due to excessive extracellular [K+] emanating from the infarct core. Such depolarisations impose intolerable energetic demands on the hypo-oxygenated cells as they attempt to re-establish ionic homeostasis (Heiss, 2011). Hyperacute interventions for stroke (including fibrinolytic arterial recanalisation) aim to salvage a significant volume of penumbral cortex.

    As already noted, diffusely-opacified posterior retina can regain its transparency, and the ERG and VEP will recover fully, provided inner retinal perfusion is restored within 100 minutes or so of CRA clamping (Hayreh, 2011). Once the anoxia survival time expires, however, retinal opacification does not reverse until tissue atrophy occurs 1—2 weeks later, and the VEP and 32% of the ERG b-wave (corresponding to the slow component of the biphasic ERG b-wave recovery seen following transient CRAO) are irreversibly extinguished (McLeod and Beatty, 2015). Nevertheless, even after CRA clamping for several hours, the rapid component of b-wave recovery (27%) persists. This indicates that penumbral tissue in the retinal mid-periphery does not undergo delayed apoptotic infarction, perhaps because excess K+is siphoned into the vitreous. Experimental CRAO might therefore be an appropriate model for studying penumbral neurogenesis uncomplicated by peri-infarct depolarisations (Slevin et al., 2006; Ramos-Cabrer et al., 2011). In clinical practice, there is little urgency in trying to re-establish inner retinal perfusion once the duration of CRAO exceeds 2 hours.

    Endurance of the penumbra obscura (with continuing secretion of pro-angiogenic proteins) is also reflected in the progression to severe intraocular angiogenesis seen in those 15—20% of eyes with clinical CRAO in which the retina remains non-perfused. The angiogenic drive from the hypo-oxygenated mid-peripheral retina perpetuates because, unlike neovascularisation within cerebral cortex or elsewhere, penumbral retina does not become re-vascularised. This can probably be explained by the accumulation of pro-angiogenic molecules within the vitreous extracellular matrix rather than the neuropile. In consequence, angiogenesis within the eye is not self-limiting in nature.

    Presented in part as the Zivojnovic Lifetime Achievement Award Lecture, European Vitreo-Retinal Society, Venice, 2015.

    所謂小題,是指在教學(xué)過程中發(fā)生的具體問題,是語文教師在教學(xué)中迫切需要解決并通過努力可以解決的問題。語文教師需要在教學(xué)實踐中細(xì)致入微地考察疑難問題,不放過任何細(xì)枝末節(jié)。小題的“小”,是指從細(xì)微處著眼,從教學(xué)的小處著手,研究的范圍和切入點要小,但對這些“小題”卻必須高度重視,在研究過程中要較真,既要做真研究,也要做實文章,不能輕視和隨意,對這些“小”要另眼相看,相信研究的價值并激發(fā)創(chuàng)新能力。所謂大做,就是指要能以小見大,能夠以研究者的姿態(tài)出現(xiàn)在實踐舞臺上,把小題做大、做強(qiáng),做出特色、做出水平來。

    David McLeod*

    Academic Department, Manchester Royal Eye Hospital and University of Manchester Centre for Ophthalmology & Vision Research,

    Manchester, UK

    *Correspondence to: David McLeod, Professor Emeritus, david.mcleod@nhs.net.

    Accepted: 2016-03-21

    orcid: 0000-0002-4433-2088 (David McLeod)

    Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+and H+at critical levels of brain ischemia. Stroke 8:51-57.

    Hayreh SS (2011) Acute retinal arterial occlusive disorders. Prog Retin Eye Res 30:359-394.

    Heiss WD (2011) The ischemic penumbra: correlates in imaging and implications for treatment of ischemic stroke. The Johann Jacob Wepfer award 2011. Cerebrovasc Dis 32:307-320.

    McLeod D, Beatty S (2015) Evidence for an enduring ischaemic penumbra following central retinal artery occlusion, with implications for fibrinolytic therapy. Prog Retin Eye Res 49:82-119.

    Michaelson IC (1948) The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 68:137-180.

    Oji EO, McLeod D (1978) Partial central retinal artery occlusion. Trans Ophthalmol Soc UK 98:156-159.

    Olivot JM, Mlynash M, Thijs VN, Purushotham A, Kemp S, Lansberg MG, Wechsler L, Gold GE, Bammer R, Marks MP, Albers GW (2009) Geography, structure, and evolution of diffusion and perfusion lesions in Diffusion and perfusion imaging Evaluation For Understanding Stroke Evolution (DEFUSE). Stroke 40:3245-3251.

    Ramos-Cabrer P, Campos F, Sobrino T, Castillo J (2011) Targeting the ischemic penumbra. Stroke 42:S7-S11.

    Slevin M, Kumar P, Gaffney J, Kumar S, Krupinski J (2006) Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin Sci (Lond)111:171-183.

    10.4103/1673-5374.181367 http∶//www.nrronline.org/

    How to cite this article: McLeod D (2016) Ischemic penumbra in retina endures: vascular neuropathology is reconciled. Neural Regen Res 11(5):737-739.

    猜你喜歡
    迫切需要細(xì)微處切入點
    懂,才能得
    愛在點滴細(xì)微處
    Tujia Masons
    Special Focus(2019年7期)2019-08-08 02:09:38
    田園詩,走向細(xì)微處
    中華詩詞(2018年7期)2018-11-08 12:47:36
    慢病防控是深化醫(yī)改的切入點
    腐敗,往往由細(xì)微處開始……
    找準(zhǔn)切入點 扎實推進(jìn)改革
    新聞記者踐行“走轉(zhuǎn)改”的三個切入點
    新聞傳播(2015年15期)2015-07-18 11:03:44
    “見怪要怪”:輿論監(jiān)督報道的切入點
    新聞前哨(2015年2期)2015-03-11 19:29:24
    城市廣播電臺也應(yīng)強(qiáng)化對農(nóng)廣播意識
    活力(2011年8期)2011-06-22 01:38:50
    亚洲精品中文字幕在线视频| 久久精品91无色码中文字幕| 在线观看免费午夜福利视频| 人人澡人人妻人| 欧美日韩精品网址| 午夜福利乱码中文字幕| 高清黄色对白视频在线免费看| 欧美日韩福利视频一区二区| 天堂8中文在线网| 女性被躁到高潮视频| 精品亚洲成a人片在线观看| 考比视频在线观看| 最近最新中文字幕大全免费视频| 亚洲成国产人片在线观看| 99久久99久久久精品蜜桃| 中文字幕制服av| 宅男免费午夜| 日韩人妻精品一区2区三区| 老司机午夜福利在线观看视频 | 精品国产一区二区三区四区第35| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 啦啦啦视频在线资源免费观看| 激情视频va一区二区三区| 考比视频在线观看| 免费人妻精品一区二区三区视频| 黑人欧美特级aaaaaa片| 久久国产精品影院| 在线永久观看黄色视频| 中国美女看黄片| 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 亚洲伊人色综图| 亚洲av日韩精品久久久久久密| 日本av免费视频播放| 久久久久精品国产欧美久久久| 欧美日韩国产mv在线观看视频| 18禁观看日本| 90打野战视频偷拍视频| av片东京热男人的天堂| 又黄又粗又硬又大视频| 国产一区有黄有色的免费视频| 国产精品.久久久| 亚洲色图 男人天堂 中文字幕| 多毛熟女@视频| 手机成人av网站| 日韩 欧美 亚洲 中文字幕| 精品国产乱码久久久久久男人| 菩萨蛮人人尽说江南好唐韦庄| 99国产精品99久久久久| videos熟女内射| 国产精品一区二区在线观看99| 精品国产乱码久久久久久小说| 看免费av毛片| 自线自在国产av| 一区二区日韩欧美中文字幕| 精品人妻熟女毛片av久久网站| 午夜福利免费观看在线| 亚洲欧美一区二区三区黑人| 国产三级黄色录像| 不卡av一区二区三区| 不卡av一区二区三区| 飞空精品影院首页| 少妇被粗大的猛进出69影院| 久久人妻福利社区极品人妻图片| 免费观看a级毛片全部| 亚洲精品国产一区二区精华液| 99国产精品99久久久久| 一边摸一边做爽爽视频免费| 巨乳人妻的诱惑在线观看| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 亚洲天堂av无毛| 色尼玛亚洲综合影院| 国产精品熟女久久久久浪| 伊人久久大香线蕉亚洲五| 亚洲精品久久成人aⅴ小说| 精品少妇黑人巨大在线播放| 肉色欧美久久久久久久蜜桃| 大型av网站在线播放| 男女边摸边吃奶| 91精品国产国语对白视频| 精品午夜福利视频在线观看一区 | 免费不卡黄色视频| 高清在线国产一区| 精品卡一卡二卡四卡免费| 下体分泌物呈黄色| 好男人电影高清在线观看| 精品视频人人做人人爽| 免费高清在线观看日韩| 一区二区三区精品91| 国产精品亚洲av一区麻豆| 黄色a级毛片大全视频| 香蕉久久夜色| 不卡一级毛片| 精品一品国产午夜福利视频| 十八禁网站网址无遮挡| 国产成人精品无人区| 久久精品国产99精品国产亚洲性色 | 美国免费a级毛片| 国产精品麻豆人妻色哟哟久久| 欧美激情高清一区二区三区| 成人国语在线视频| 女性被躁到高潮视频| 国产主播在线观看一区二区| 久久性视频一级片| 男男h啪啪无遮挡| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 我的亚洲天堂| 亚洲 国产 在线| 亚洲性夜色夜夜综合| 亚洲第一欧美日韩一区二区三区 | 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 国产精品99久久99久久久不卡| 考比视频在线观看| 99香蕉大伊视频| 一区二区三区国产精品乱码| 99久久人妻综合| 亚洲九九香蕉| 欧美大码av| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| 黑人欧美特级aaaaaa片| 波多野结衣av一区二区av| 交换朋友夫妻互换小说| 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 亚洲av日韩在线播放| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 久久中文字幕人妻熟女| www.精华液| 亚洲熟女毛片儿| 亚洲中文av在线| 首页视频小说图片口味搜索| 在线观看www视频免费| 国产精品九九99| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 十八禁网站网址无遮挡| 大片电影免费在线观看免费| 美女视频免费永久观看网站| 少妇裸体淫交视频免费看高清 | 午夜福利免费观看在线| 女人精品久久久久毛片| 曰老女人黄片| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 超碰成人久久| kizo精华| 欧美成狂野欧美在线观看| 怎么达到女性高潮| 18禁观看日本| 狠狠狠狠99中文字幕| 2018国产大陆天天弄谢| 黄色成人免费大全| 国产欧美亚洲国产| 精品欧美一区二区三区在线| 欧美成人午夜精品| 国产在线免费精品| 精品一区二区三区四区五区乱码| 美女国产高潮福利片在线看| 99re6热这里在线精品视频| 69精品国产乱码久久久| 中文字幕高清在线视频| 国产又爽黄色视频| 国产精品成人在线| 99九九在线精品视频| 天天影视国产精品| 欧美日韩成人在线一区二区| 一区二区三区国产精品乱码| 国产xxxxx性猛交| 久久免费观看电影| 久久 成人 亚洲| 乱人伦中国视频| 久久人妻熟女aⅴ| 在线播放国产精品三级| 老司机靠b影院| 亚洲人成77777在线视频| 欧美黄色淫秽网站| 水蜜桃什么品种好| 亚洲精品美女久久久久99蜜臀| 免费在线观看黄色视频的| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 国产男女内射视频| 韩国精品一区二区三区| 1024视频免费在线观看| 午夜福利视频精品| 亚洲,欧美精品.| 国产一区二区在线观看av| 欧美激情久久久久久爽电影 | 午夜日韩欧美国产| a级片在线免费高清观看视频| 午夜老司机福利片| 日韩一区二区三区影片| 国产精品av久久久久免费| 欧美精品av麻豆av| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻熟女乱码| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 美女福利国产在线| 亚洲精品一二三| 精品一区二区三区四区五区乱码| 热re99久久精品国产66热6| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 亚洲欧美色中文字幕在线| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看| 国产成人免费观看mmmm| 午夜福利视频精品| 久久狼人影院| av片东京热男人的天堂| 日韩免费av在线播放| 国产成人精品久久二区二区91| 怎么达到女性高潮| 少妇被粗大的猛进出69影院| 亚洲国产欧美在线一区| 大型黄色视频在线免费观看| 国产精品成人在线| 在线观看66精品国产| 国产精品一区二区在线观看99| 伦理电影免费视频| 久久国产精品男人的天堂亚洲| 免费观看a级毛片全部| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 黄片播放在线免费| 久热这里只有精品99| 无人区码免费观看不卡 | 欧美日韩福利视频一区二区| 中文亚洲av片在线观看爽 | 桃花免费在线播放| 欧美 日韩 精品 国产| 男女之事视频高清在线观看| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| aaaaa片日本免费| 日韩一区二区三区影片| 亚洲精品粉嫩美女一区| 亚洲人成电影观看| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 制服人妻中文乱码| 欧美精品亚洲一区二区| 宅男免费午夜| 久久久国产成人免费| 脱女人内裤的视频| 欧美 日韩 精品 国产| 久久av网站| 国产色视频综合| 久久人人爽av亚洲精品天堂| 一区二区三区激情视频| 岛国在线观看网站| 久久久久久人人人人人| 女人久久www免费人成看片| 国产国语露脸激情在线看| 色播在线永久视频| 亚洲美女黄片视频| 国产男女超爽视频在线观看| 国产区一区二久久| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 高清在线国产一区| 久久久久久免费高清国产稀缺| 黄色视频不卡| e午夜精品久久久久久久| 久久精品亚洲熟妇少妇任你| a级片在线免费高清观看视频| 中文字幕人妻熟女乱码| 天天躁日日躁夜夜躁夜夜| 欧美午夜高清在线| 久久久国产成人免费| 精品国产乱子伦一区二区三区| 在线 av 中文字幕| 国产免费av片在线观看野外av| 波多野结衣一区麻豆| 夜夜骑夜夜射夜夜干| a级片在线免费高清观看视频| 日韩一卡2卡3卡4卡2021年| 国产精品国产高清国产av | 午夜福利视频精品| 丁香六月天网| 亚洲熟妇熟女久久| 亚洲成a人片在线一区二区| 国产老妇伦熟女老妇高清| 免费看a级黄色片| 香蕉丝袜av| 国产人伦9x9x在线观看| 十八禁高潮呻吟视频| 中文字幕人妻丝袜制服| 亚洲精品国产色婷婷电影| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯 | www.精华液| 亚洲中文字幕日韩| 久久久久精品人妻al黑| 久久性视频一级片| 国产亚洲精品一区二区www | tube8黄色片| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 曰老女人黄片| 国产在线视频一区二区| 亚洲精品乱久久久久久| 777久久人妻少妇嫩草av网站| 99re6热这里在线精品视频| 国产区一区二久久| 欧美成人午夜精品| 老司机影院毛片| 亚洲国产中文字幕在线视频| 女同久久另类99精品国产91| 大香蕉久久网| 色婷婷av一区二区三区视频| 欧美激情久久久久久爽电影 | 叶爱在线成人免费视频播放| 在线播放国产精品三级| 少妇粗大呻吟视频| 亚洲精品中文字幕一二三四区 | 欧美黑人欧美精品刺激| 99久久精品国产亚洲精品| 变态另类成人亚洲欧美熟女 | 午夜福利在线免费观看网站| 欧美精品一区二区免费开放| 在线播放国产精品三级| 亚洲色图av天堂| 国产在线观看jvid| 天天操日日干夜夜撸| 99热网站在线观看| 久久国产亚洲av麻豆专区| 自线自在国产av| 99国产综合亚洲精品| 国产精品免费大片| 国产精品熟女久久久久浪| 久久精品国产a三级三级三级| 91精品三级在线观看| 电影成人av| 免费av中文字幕在线| 手机成人av网站| 国产精品久久久人人做人人爽| 日本av免费视频播放| 免费一级毛片在线播放高清视频 | 精品国产亚洲在线| 欧美黑人欧美精品刺激| 操美女的视频在线观看| 日韩免费高清中文字幕av| 午夜免费成人在线视频| 69av精品久久久久久 | 久久狼人影院| 日韩人妻精品一区2区三区| 精品少妇内射三级| h视频一区二区三区| 十八禁人妻一区二区| 精品国内亚洲2022精品成人 | 99精品在免费线老司机午夜| 91字幕亚洲| 成在线人永久免费视频| 色婷婷av一区二区三区视频| 我要看黄色一级片免费的| 精品国产一区二区三区四区第35| 国产精品久久久久久人妻精品电影 | 99国产精品99久久久久| 午夜福利一区二区在线看| 色婷婷av一区二区三区视频| 美女视频免费永久观看网站| 久久精品91无色码中文字幕| 中文字幕av电影在线播放| 丝袜在线中文字幕| 久久国产精品大桥未久av| 亚洲精品国产色婷婷电影| 不卡一级毛片| 女人久久www免费人成看片| 国产一区二区在线观看av| 国产精品熟女久久久久浪| 久久精品aⅴ一区二区三区四区| 久久免费观看电影| 我的亚洲天堂| 国产又爽黄色视频| 久久这里只有精品19| 亚洲熟女毛片儿| 中亚洲国语对白在线视频| 精品久久久精品久久久| 国产在线视频一区二区| 亚洲精品国产色婷婷电影| 免费看a级黄色片| 中国美女看黄片| 欧美国产精品va在线观看不卡| 午夜福利免费观看在线| 精品一区二区三区av网在线观看 | 亚洲一码二码三码区别大吗| www.精华液| 在线观看www视频免费| 大香蕉久久网| 精品国产一区二区久久| 久久 成人 亚洲| 丝袜喷水一区| 久久久久国内视频| 久久 成人 亚洲| 亚洲伊人色综图| 欧美乱妇无乱码| 丰满少妇做爰视频| 美女高潮喷水抽搐中文字幕| 国产国语露脸激情在线看| 欧美人与性动交α欧美软件| 80岁老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 9热在线视频观看99| 91麻豆精品激情在线观看国产 | 成年动漫av网址| 女警被强在线播放| 亚洲三区欧美一区| 满18在线观看网站| 亚洲国产欧美网| 久久中文看片网| 一级片'在线观看视频| 国产精品影院久久| 两性夫妻黄色片| 一边摸一边抽搐一进一出视频| 露出奶头的视频| 9色porny在线观看| 男女无遮挡免费网站观看| 日本一区二区免费在线视频| 亚洲熟女毛片儿| 亚洲av欧美aⅴ国产| 窝窝影院91人妻| 午夜福利欧美成人| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一出视频| 人人妻人人澡人人爽人人夜夜| av一本久久久久| 亚洲欧美色中文字幕在线| 国产精品秋霞免费鲁丝片| 少妇粗大呻吟视频| 在线观看免费日韩欧美大片| 香蕉久久夜色| 一二三四社区在线视频社区8| 久久午夜综合久久蜜桃| 午夜福利乱码中文字幕| 夜夜夜夜夜久久久久| av线在线观看网站| 99国产精品一区二区蜜桃av | 色尼玛亚洲综合影院| 免费在线观看影片大全网站| a级毛片在线看网站| 久久人妻av系列| 美女午夜性视频免费| 桃红色精品国产亚洲av| 国产国语露脸激情在线看| 婷婷丁香在线五月| 老汉色∧v一级毛片| 亚洲av第一区精品v没综合| 脱女人内裤的视频| 精品视频人人做人人爽| 免费在线观看黄色视频的| 老司机在亚洲福利影院| 国产成人精品在线电影| 搡老乐熟女国产| 久久久国产欧美日韩av| 又大又爽又粗| 一本综合久久免费| 亚洲久久久国产精品| 精品欧美一区二区三区在线| 午夜免费成人在线视频| 一边摸一边做爽爽视频免费| avwww免费| 桃花免费在线播放| 超碰97精品在线观看| 久久中文字幕一级| 黄色毛片三级朝国网站| 欧美午夜高清在线| 久久精品国产99精品国产亚洲性色 | 日本a在线网址| 热re99久久国产66热| 岛国毛片在线播放| 伦理电影免费视频| 国产淫语在线视频| 视频区图区小说| 热re99久久精品国产66热6| 国产成人精品久久二区二区91| 日日摸夜夜添夜夜添小说| 国产伦理片在线播放av一区| 老司机午夜福利在线观看视频 | 午夜福利欧美成人| 三级毛片av免费| 一边摸一边做爽爽视频免费| 狠狠婷婷综合久久久久久88av| 黄色a级毛片大全视频| 日韩欧美一区视频在线观看| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 满18在线观看网站| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀| 色尼玛亚洲综合影院| 日韩成人在线观看一区二区三区| 日韩有码中文字幕| 每晚都被弄得嗷嗷叫到高潮| 精品福利永久在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 露出奶头的视频| 亚洲午夜理论影院| 亚洲精品中文字幕一二三四区 | 纵有疾风起免费观看全集完整版| 手机成人av网站| 99riav亚洲国产免费| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 久久国产精品影院| 久久久久久久久久久久大奶| 亚洲午夜精品一区,二区,三区| 欧美激情高清一区二区三区| 99九九在线精品视频| 精品人妻熟女毛片av久久网站| 欧美另类亚洲清纯唯美| 国产在线一区二区三区精| 久久久国产成人免费| 国产精品99久久99久久久不卡| 男女免费视频国产| 老司机亚洲免费影院| 久久99一区二区三区| 亚洲欧洲精品一区二区精品久久久| 91麻豆精品激情在线观看国产 | 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 国产在线免费精品| 啦啦啦在线免费观看视频4| 日韩三级视频一区二区三区| 一级毛片精品| 国产三级黄色录像| 色视频在线一区二区三区| a级片在线免费高清观看视频| 久久ye,这里只有精品| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| 热99re8久久精品国产| 纯流量卡能插随身wifi吗| 麻豆国产av国片精品| 久久婷婷成人综合色麻豆| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 高清av免费在线| 国产男女内射视频| 国产成人系列免费观看| 精品福利永久在线观看| 91九色精品人成在线观看| 成人亚洲精品一区在线观看| 丁香六月欧美| 91精品三级在线观看| 色视频在线一区二区三区| 亚洲av美国av| 9色porny在线观看| 黄片小视频在线播放| 黄片播放在线免费| 中文字幕人妻丝袜一区二区| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 丁香六月欧美| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 高清在线国产一区| 欧美黑人欧美精品刺激| 国产一区二区 视频在线| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 狠狠婷婷综合久久久久久88av| 夜夜骑夜夜射夜夜干| 国产有黄有色有爽视频| 午夜91福利影院| 天天添夜夜摸| 国产免费视频播放在线视频| 国产在线视频一区二区| 最近最新中文字幕大全电影3 | 青草久久国产| 12—13女人毛片做爰片一| 男人操女人黄网站| 欧美 日韩 精品 国产| 日韩有码中文字幕| 亚洲av成人不卡在线观看播放网| 精品国产一区二区久久| 乱人伦中国视频| 首页视频小说图片口味搜索| 国产精品麻豆人妻色哟哟久久| 国产成人欧美在线观看 | av天堂在线播放| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美在线精品| 成人三级做爰电影| 欧美黑人精品巨大| 国产高清国产精品国产三级| 亚洲,欧美精品.| 亚洲精品久久午夜乱码| av有码第一页| netflix在线观看网站| 国产精品av久久久久免费| 在线观看舔阴道视频| 国产av精品麻豆| 老司机亚洲免费影院| 纵有疾风起免费观看全集完整版| 亚洲五月色婷婷综合| 夜夜爽天天搞| 久热爱精品视频在线9| 高清毛片免费观看视频网站 | 亚洲av美国av| 成人精品一区二区免费|