• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多次透射反射紅外光譜法靈敏和準(zhǔn)確地測量單晶硅中間隙氧和代位碳的含量

    2016-11-28 09:36:38路小彬肖守軍
    無機(jī)化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:代位單晶硅南京大學(xué)

    路小彬 肖守軍

    (配位化學(xué)國家重點實驗室,南京大學(xué)化學(xué)化工學(xué)院,南京210093)

    多次透射反射紅外光譜法靈敏和準(zhǔn)確地測量單晶硅中間隙氧和代位碳的含量

    路小彬肖守軍*

    (配位化學(xué)國家重點實驗室,南京大學(xué)化學(xué)化工學(xué)院,南京210093)

    建立了室溫下使用多次透射反射紅外光譜法(MTR-IR)測量單晶硅中間隙氧和代位碳含量的新紅外光譜吸收方法,在理論和實驗上證明了MTR-IR優(yōu)于常規(guī)使用的單次垂直透射紅外(IR)吸收測量方法。與IR法相比較,MTR-IR法的優(yōu)點為:(1)間隙氧在1 107 cm-1處和代位碳在605 cm-1處的吸收峰與MTR-IR法中紅外光透過硅片的的次數(shù)N(6~12)成線性增加的正比例關(guān)系,因此單晶硅中間隙氧和代位碳含量的檢測限至少比IR法低一個數(shù)量級;(2)MTR-IR法測量薄硅片如0.2 mm的厚度時產(chǎn)生的干涉條紋強(qiáng)度是單次垂直透射紅外吸收法(IR)的1/23、是單次Brewster角透射紅外吸收法的1/11;(3)單次垂直透射紅外吸收法(IR)1次只測量樣品上的1個點,MTR-IR法則在更長的樣品上1次測量多個樣品點,每次測量更具有代表性。理論計算和實驗結(jié)果都證實了MTR-IR吸收法測量晶體硅中間隙氧和代位碳雜質(zhì)含量的高靈敏度、可靠性和重復(fù)性。

    多次透射反射;紅外;間隙氧;代位碳

    0Introduction

    Silicon-basedsemiconductorindustry,asa miracle in the human beings history,continues to develop at considerably high growth rates already for half a century.Recently,solar energy has been recognized in common as an alternative sustainable energy source due to the increased awareness of the global energy crisis[1].Silicon solar cells have become the most important photovoltaic products owing to the sophisticatedmanufacturingtechnologyandthe reliable cell quality.The quality control of silicon materials is crucial to both semiconductor and solar cell industries of silicon.During the Czochralski(CZ) procedureingrowingsiliconsinglecrystalsfor semiconductor and photovoltaic industry,oxygen and carbon are incorporated into the molten silicon to different extents from the quartz crucibles and the graphite heaters.As oxygen atoms can find sites within the lattice structure among silicon atoms, interstitial oxygen(Oi)appears.Moreover,carbon atoms occupy positions generally taken by silicon atoms in the lattice structure,and this kind of impurity is defined as substitutional carbon(Cs)[1-3].

    Interstitial oxygen and substitutional carbon are the main forms of oxygen and carbon impurities existinginsilicon.Theirdifferentlevelscause different physical and electrical effects in silicon, whichhavebeenextensivelyinvestigatedand correlated[4-6].Although Oi in suitable concentrations possesses an advantage to enhance the mechanical strength of silicon because of its nailing for stretching ofdislocationinthesiliconlattice,higher concentrations will result in electrically active defects that decrease the performance of the devices.Thus a gettering technique has been developed to decrease Oi and avoid defects during the silicon crystal growth procedure.High content of Cs affects the way Oi nucleates and precipitates,as well as resulting in softening and breakdown of electronic components[7-10]. Consequently,to control the silicon quality for high performance devices,it is absolutely necessary to monitor the content of Oi and Cs in silicon wafers more accurately and sensitively.

    Varioustechniqueshavebeenappliedto determine the content of Oi and Cs in bulk silicon. Thesetechniquesconsistofgasfusionanalysis, secondary ion mass spectrometry,charged particle activation analysis and neutron activation analysis etc.,all of which are destructive,costly and time consuming[1].In addition,the above methods measure the total content of elemental oxygen and carbon, including Oi and Cs and other forms of oxygen and carbon.Thus they are not specific for measuring the concentration of Oi(atoms per cm3,abbreviated as cOi, cm-3)and of Cs(atoms per cm3,abbreviated as cCs, cm-3).By contrast,infrared analysis is specific to cOiand cCsin silicon.Silicon atoms form bonds with the adjacent oxygen atoms(Si-O-Si)and carbon atoms(Si-C)in the lattice structure[11-13].The interstitial oxygen is in the form of Si-O-Si,giving three vibration peaks centered at 1 107 cm-1(strong),513 cm-1(medium) and 1 718 cm-1(weak)respectively.Among the three bands,the strongest one at 1 107 cm-1is usually used to determine cOi[14-16].The substitutional carbon in the form of Si-C gives a vibration band at 605 cm-1. However the Si-C band overlaps with the strong silicon lattice vibration(Si-Si)at 605 cm-1,which renders the measurement of cCsdelicate.The amount of light absorbed by Si-O-Si and Si-C is proportional to the concentration of atoms forming the bonds.Thus their corresponding infrared bands are measured and manipulated to quantitate cOiand cCsrespectively.The calculation procedure is composed of subtraction of a reference(free of Oi and Cs)absorption band from a samples band,and subsequently calculation of cOiand cCsusing the following formulae generally.

    A=αbα=εc

    where A is the measured absorbance;ε is the absorption coefficient of a particular bond,cm2;b is the thickness of the sample,cm;c is the concentration of the impurity,cm-3.

    The IR method for the levels of Oi and Cs can be carried out at ambient or low temperature.Although the latter is more accurate than the former,it is costly and time consuming to handle the measurement at thecryogenic temperature.Furthermore,the reflection loss of infrared light at both cryostat windows outweighs its advantages[17-20].

    The room temperature IR method for cOiand cCsmeasurements is most commonly used in industry because it is easy and simple to operate.Generally the presentlyacceptedstandardmethodusedin industry for cOiand cCsmeasurements is restricted to a silicon slice with a thickness of 2 mm and a diameter of the infrared beam by a one-time perpendicular transmission of the infrared beam(we name it“conventional IR”).The detection limits of cOiand cCsfor a 2.0 mm thick single crystalline silicon are 1×1016and 5×1015cm-3respectively[21-22].The above quantitative analysis meets challenges in practice such as:1) measurement errors become larger when cOiand cCsreachtheirowndetectionlimits,2)interference fringes from thin wafers below 0.3 mm thickness interferethetargetbandsignal,3)thesingle transmission measurement approach in a spot provides a localized spectrum with poor specimen statistics, compared to the multi-spot data collection in MTR-IR. Our newly developed MTR-IR(Scheme 1)provides an excellent quantitative approach for analysis of cOiand cCs,duetoitsuptooneorderofmagnitude enhancement of infrared absorption signals on the samesiliconslicefromtheconventionalIR measurement[23-26].In this letter,we applied the MTRIR spectroscopy in analysis of cOiand cCsof 0.45 mm thick silicon wafers.Our MTR-IR method greatly improves the measurement sensitivity and accuracy, for example,reaching detection limits of cOiat 1×1015cm-3and cCsat 5×1014cm-3for the standard silicon specimens with a 2.0 mm thickness,which is one order of a magnitude lower than from the standard method.MTR-IRalsoattenuatestheinterference fringes of thin wafers greatly,and advances the representativeness of data collections.

    Scheme 1Scheme of the MTR-IR optical path

    1 Experimental

    1.1Substrates

    Double-side-polished and〈100〉oriented n-type silicon wafers(B doped,resistivity of 15 Ω·cm(CZ) and 3 000 Ω·cm(FZ)respectively,0.45 mm thick, from Shanghai Junhe Electronic Materials Co.Ltd., China)were cut into rectangular shapes(16 mm×50 mm)for infrared analysis.CZ silicon wafers were used as samples and FZ as reference to measure the impurity concentrations of Oi and Cs respectively.

    1.2Wafer cleaning

    Siliconwaferswerecleanedwith“piranha solution”(concentrated H2SO4/30%H2O2,3∶1,V/V)for 4 h(caution:piranha solution reacts violently with organic materials and should be handled with great care)to remove organic pollutants,followed by boiling in the mixture of NH3·H2O/H2O/H2O2(1∶1∶1,V∶V∶V) for 30 min,then cooling to room temperature,rinsing with water,and storing in water.Silicon samples were immersed in 1%HF for 5 min to eliminate the native passivation silicon oxide layer,and dried with a stream of nitrogen just before the measurement.

    1.3Measurement

    The optical setup was designed to adapt to any commercial FTIR spectrometers,which is Bruker 80v FTIR,in our case.MTR accessory with a Brewster incident angle of 74°was used.Unless specified,a DTGS detector and scan times of 100 at 4 cm-1resolutionwereusedformeasurementoverthewavenumber range from 400 to 4 000 cm-1.

    The silicon sample was inserted between the two Aumirrors,withoneendofthesiliconslice protruding about 5 mm out of the incident spot,in order to make sure that the first incidence shot was on the silicon surface.The two guiding mirrors can be moved back and forth to get the maximal luminous flux in the DTGS detector.The incident angle was controlled at 74°by a micro-adjuster with a minimal angle scale of 0.225.

    The whole measurement procedure was performed according to ASTM F 1188 and ASTM F 1391[21-22,30]. Eight random samples from different batches were used.Each sample was measured successively 4 times by MTR and IR by slightly relocating the Si wafer each time in order to measure different sampling points.Therefore for each sample,4 different sampling points were measured by IR,whereas 40 different sampling points measured by MTR-IR if N equals 10. 1.4Theory/calculation

    1.4.1Comparisonofcomputationmodelsfor

    conventional IR and MTR-IR

    1.4.1.1Conventional IR method

    In the conventional IR method,the normal incident light passes a Si wafer(for convenience,a slightly oblique incidence is drawn in Fig.1),the transmittance canbeexpressedasinEq.(1)and(2)[21-22].

    where T is the transmittance of normal incidence, %;R is reflectivity;n is refractive index;σ is wavenumber,cm-1;ψ is the phase change due to the interfering multiple reflections on the boundaries of the sample.

    1.4.1.2Brewster angle single incidence

    The expression of TBfor the single Brewster incidence refers to Eq.(3)[29].

    Fig.1 Light path of computation model for IR

    where TBis the transmittance of the Brewster angle single transmission,%;Rsand Rpindicate the reflectance of s-and p-polarization respectively;the first(Rp=0)and the second term(Rshas a value)in the formula represent transmittance energy of ppolarization and s-polarization respectively,because the total transmittance energy equals the sum of ppolarization and s-polarization(p-or s-polarization holds 1/2 of the original light energy);the phase change introduced by the interfering multiple reflections on the boundaries of a silicon is considered.

    1.4.1.3MTR method[27]

    The light path of the computation model for MTR-IR refers to Scheme 1.Comparing Scheme 1 to Fig.2,we observed that two gold mirrors enforce the light transmit through the silicon slice N times and simultaneously taking away the message of oxygen and carbon of the silicon sample.The optical path in the MTR-IR setup of Scheme 1 is N times of bBat theBrewster incidence.For simplicity,only the main light path is drawn in Scheme 1 with N=6,all other light paths by multiple reflections in the MTR setup are ignored.The transmittance for MTR-IR(TMTR)is deduced as follows(See supporting information for details of derivation of the formula of MTR-IR):

    Fig.2 Light path of the computation model for Brewster angle single transmission

    Fig.3 Comparison of Oi and Cs spectra for MTR-IR and conventional IR

    where TMTRis the transmittance of MTR,%;RAuis the reflectivity of gold;bMTRis the optical path through a silicon sample in the MTR-IR measurement,cm. 1.4.2Theory of signal enhancement of MTR-IR

    Presently,theconventionalIRmethodfor measurement of cOiand cCsis to place a 2 mm thick single crystalline silicon slice normally(or within the margin of error of a slightly oblique angle≤10°)in the light path.The sampling length equals to the thickness of the slice.The illuminated area is a circle with a diameter of the light spot,so the resulting cOiand cCsjust represent the impurities within a cylinder with a diameter of the light spot(depending on the aperture)and a height of 2 mm.Whereas in the MTRIR setup,the infrared light reflects back and forth manytimesbetweentwogoldmirrorsand simultaneously passes through the sampling silicon slice repeatedly and takes away the information of Oi and Cs by the resonance of Si-O-Si and Si-C bonds. So,the optical path is N(1+1/n2)1/2times of the thickness of a silicon wafer(b),and correspondingly the absorbance is amplified N(1+1/n2)1/2times[29].

    At the Brewster angle of 74,when Rp=0,Rs=0.70, RAu=1,the phase change of p polarization light ψ=π, the following formula can be deduced from Eq.(1)and(4).

    From Eq.(6),the sampling length is enlarged N(1+1/n2)1/2times,assuming the recorded infrared spectral signal comes from the main optical path illustrated in Scheme 1,and all other infrared signals are ignored.The infrared light passes through a silicon slice N times in different regions,thus the collected signal is an integrated one of the whole optical path,physically and statistically representing Oi and Cs in the silicon slice better.

    2 Results and discussion

    2.1Comparison of infrared traces between the conventional IR method and the MTR-IR method

    We listed two spectral traces of the same sample in Fig.3,where the upper trace was obtained from MTR-IR and the lower trace from the conventional IR. All bands bear the same shape but their absorbance strength in MTR-IR is much higher than from IR, especially for the two strongest bands of Oi at 1 107 cm-1and Cs at 605 cm-1.From the view point of quantitation,the bigger the absorbance value,the less the measurement error of Oi and Cs.Consequently cOiand cCsare more accurate and will have a lower detection limit.Because the absorption of Cs at 605 cm-1overlaps with the strongest absorption of the silicon lattice vibration(Si-Si)centered at 610 cm-1,a FZ silicon reference is needed to subtract the silicon lattice vibration.Further,the real advantage of MTRIR over the conventional IR not only lies in its ability to measure the spectra of Oi and Cs with stronger signals,but also with more sampling points for robust and representative measurements.

    In Fig.3,the peak height ratios of Oi and Cs (MTR-sample/IR-sample)were measured to be~10 and~8 respectively.Generally speaking,cCsis more difficult to be measured than cOiusing the conventional IR method,due to two factors:(1)It is very tough to extract the much smaller Si-C peak from the strong Si-Si lattice band and therefore artificial results are often derived individually,thus an accurate quantitation is nearlyimpossible.(2)TheCslevelinsingle crystalline silicon is always an order of magnitude lowerthanthatofOi.Judgedfromthesignal enhancement,it is possible to extend the limit of detection of cOiat 1×1016to 1×1015cm-3and cCsat 5× 1015to 5×1014cm-3for a 2.0 mm thick single crystalline silicon.

    We randomly chose 8 samples to measure their cOiand cCs,both by the conventional IR and the MTRIR methods,for verification of the MTR-IR method by the correlation curve in Fig.4a and 4b(calculation details please see Supporting Information:2.Data calculation).As it can be seen in Fig.4a and 4b,both cOiandcCsarelinearlycorrelated.Thelinear relationshipofbothcOiandcCsprovedthe measurement accuracy of the MTR-IR method for determination of cOiand cCsin single crystalline silicon materials.

    Fig.4 aOi concentration at 1 107 cm-1for eight samples measuredbyMTR-IRvsconventionalIR

    The interference fringes become much stronger when a silicon wafer thickness is close to the infrared wavelength.Thefringesarewellrecognizedto interrupt the IR measurement,they obscure the weak features of the spectra,as well as reduce the accuracyof quantitative analysis.Both IR and MTR-IR are able to measure a silicon slice with a thickness above 0.3 mmbecausethemultiplebeamsresultedfrom multiple reflections and transmissions are out of phase andthusthesebeamsgenerateneglectable interference fringes[29].

    However,when the sample thickness is less than 0.2 mm,the interference fringes become more obvious and cannot be ignored when measuring Oi and Cs. The amplitude of interference fringes depends on the interaction mode between the incident light and the sample.Eq.(1),(3)and(4)are used to calculate the transmittance of three modes respectively:normal incidence,Brewster angle single transmission,and MTR.For the Brewster angle incidence,RPis equal to 0,while RSis 0.70.Obviously the oscillation of transmittance is derived from the phase change of ψ, thus the p-polarization does not cause any oscillation of transmittance at the Brewster angle incidence.In (1),the whole term affects the amplitude of oscillation, while in(3)and(4),the second term bearing the phase change of ψ becomes weaker and weaker when N increases.Therefore the amplitude of oscillations must be reduced with increasing N.In Fig.5,the variation of oscillations caused by phase change(ψ)is shown for the normal incidence,the Brewster angle single transmission,and the MTR mode respectively. The amplitude of the oscillationis 0.058for the normal incidence(T),0.029 for the Brewster angle single transmission(TB),and only 0.002 5 for the MTR-IR approach(TMTR).In this case,theoretically compared to the normal incidence,the Brewster angle single transmission reduces the oscillation amplitude by a factor of 2,whereas,the MTR setup reduces the oscillation amplitude by a factor of 23.The above theoretical analysis demonstrates the overwhelming advantages of the MTR setup for measuring cOiand cCsin a thin silicon slice.

    Fig.4bCs concentration at 605 cm-1for eight samples measured by MTR-IR vs conventional IR

    Fig.5Theoretical simulation of the transmittance oscillations as a function of the wavenumber σ calculated from Eq.(1),(3)and(4), corresponding to the normal incidence, the Brewster angle single transmission and MTR respectively

    To prove the theoretical calculation,we recorded the spectra of a 0.20 mm thin silicon wafer in Fig.6with normal incidence(bottom trace as“normal incidence”),Brewsteranglesingletransmission (middle trace as“Brewster angle single transmission”) and MTR(upper trace as“MTR”)respectively.From the three curves,it is easily observed that interference fringes appear heavily for the normal incidence, moderately for the Brewster angle single transmission, and negligibly for the MTR.The interference fringe strengthratiosofMTR/Brewsteranglesingle transmission/normal incidence are close to 20∶2∶1 in most regions.

    From Fig.6,not only the interference fringes in MTR-IR are greatly attenuated,the target signals inthe region of 400 to 1 200 cm-1are also significantly magnified.Thus the signal to noise ratio is enhanced several orders of magnitude higher in MTR for much thinner silicon slices less than 0.3 mm thickness.The use of a thin silicon wafer can decrease the sampling volume,save the cost of an experiment,and fits the requirements of the solar energy industry.From both thetheoreticalcalculationsofFig.5andthe experimental spectra of Fig.6,obviously the currently used standard IR method is not suitable,whereas MTR-IR is much more powerful for measurement of Oi and Cs in a thin silicon slice less than 0.3 mm thick.That is also why MTR-IR is needed urgently for the silicon solar cell industry.

    Finally,we present the evolution of 7 infrared traces against N in Fig.7a.We have demonstrated the linear relationship of the absorbance strength of a band against the number of simplified transmission times(N) in our previous report[23].Since the detection limit of an analysis method depends on the signal to noise ratio. For the measurements of Fig.3 and Fig.7a,their baselines are flat enough,therefore,we can assign the spectral noise from 0.3~2.0 mm thick silicon samples to the instrumental noise,which possess the same value. With this hypothesis,we can deduce the detection limits of Oi and Cs,shown in Fig.7b,at different N from 6 to 12 by dividing the standard detection limits with the peak magnification times of MTR/normal incidence (peak height of Oi or Cs in Fig.7/peak height of Oi or Cs in IR-sample in Fig.3).It is observed that our MTRIR method significantly improves the detection limits of cOiand cCsfor the standard 2.0 mm thick single crystalline silicon,reaching cOiand cCsat 1×1015and 5× 1014cm-3,respectively.

    Fig.6Experimental results of interference fringes corresponding to normal incidence,Brewster angle single transmission and MTR respectively

    Fig.7(a)Variation of the absorbance of Oi and Cs in silicon wafers vs N from the MTR setup(b)Comparison of the limit of detection of cOiand cCsin silicon wafers measured with IR and MTR-IR

    3 Conclusions

    In conclusion,our experiments confirm that the MTR-IR method can reach a higher sensitivity and better spectral quality than the most commonly used conventional IR.The signal of the Oi peak at 1 107 cm-1obtained by MTR can be enhanced 10 times than by the conventional IR method,the one of the Cs peak at 605 cm-18 times.The MTR sampling length is N(1+1/n2)1/2times long as the one in the conventional IR,thus the measured cOiand cCsare morerepresentative.SinceMTR-IRreducestheinterference fringes greatly for silicon slices with a thickness thinner than 0.3 mm,it will be the most powerful tool to characterize the ultrathin silicon wafers and therefore the portable and foldable silicon devices.Due to its simple operation,MTR-IR satisfies thepracticalneedsinindustrialapplications, especially for semiconductor and silicon solar cell industries.

    Several parameters still need improvement in further works.For example,the theoretical equations are deduced from the main light path,neglecting other multiple reflections and transmissions on silicon and gold mirrors.The MTR formulas still need more experimental data for calibration.

    Considering the conclusion above,we believe that the MTR-IR method will be established as a standard method for measurement of interstitial oxygen andsubstitutionalcarbonforcrystallinesilicon materials.

    Acknowledgments:We acknowledge financial support from the National Basic Research Program of China(No. 2013CB922101)and the NSFC,No.91027019.

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1]Boyle R.Thermo Scientific Application Note,2008,50640:1-4

    [2]CravenRA,KorbHW.SolidStateTechnol.,1981,24(7):55-61

    [3]Benson K E,Lin W,Martin E P.Semiconductor Silicon 1981.Pennington N.J.:Electrochem.Soc.Inc.,1981:33-48

    [4]Abe T,Kikuchi K,Shirai S,et al.Semiconductor Silicon 1981.Pennington N.J.:Electrochem.Soc.Inc.,1981:54-71

    [5]Rava P,Gatos H C,Lagowski J.Semiconductor Silicon 1981.PenningtonN.J.:Electrochem.Soc.Inc.,1981:232-243

    [6]Ohsawa A,Honda K,Yoshikawa M.Fujitsu Scie.Techn.J., 1980,16(3):123-134

    [7]Kishino S,Matsushita Y,Kanamori M.Appl.Phys.Lett., 1979,35(3):213-215

    [8]Ogino M.Appl.Phys.Lett.,1982,41(9):847-849

    [9]Oehrlein G S,Lindstrom J L,Corbett J W.Appl.Phys.Lett., 1982,40(3):241-243

    [10]Ohsawa A,Takizawa R,Honda K,et al.Appl.Phys.,1982, 53(8):5733-5737

    [11]Pajot B.Analusis.,1977,5:293-303

    [12]Hrostowski H J A B J.J.Chem.Phys.,1960,33:980-990

    [13]Corbett J W,Mcdonald R S,Watkins G D.J.Phys.Chem. Solids,1964,25:873-879

    [14]Kaiser W,Keck P H,Lange C F.Phys.Rev.,1956,101(4): 1264-1267

    [15]Kaiser W,Keck P H.J.Appl.Phys.,1957,28(8):882-885

    [16]Kaiser W,Frisch H L,Reiss H.Phys.Rev.,1958,112(5): 1546-1554

    [17]Bosomworth D R,Hayes W,Spray A R L,et al.Royal Soc. London,1970,317(1528):133-152

    [18]Pajot B,Deltour J P.Infrared Phys.,1967,7:195-200

    [19]Oeder R,Wagner P.Defects in SemiconductorsⅡ.N.Y.: North-Holland,1983:171-175

    [20]Kolbesen B O,Kladenovi T.Krist.Tech.,1980,15(1):k1-k3

    [21]ASTM.Designation F1188:Test Method for Interstitial Atomic Oxygen Content of Silicon by Infrared Absorption.

    [22]ASTM.Designation F1391:Test Method for Substitutional Atomic Carbon Content by Infrared Absorption.

    [23]Liu H,Xiao S,Chen Y,et al.J.Phys.Chem.B,2006,110 (36):17702-17705

    [24]Guo P,Liu H,Liu X,et al.J.Phys.Chem.C,2010,114(1): 333-341

    [25]Liu H,Venkataraman N V,Bauert T E,et al.J.Phys.Chem. A,2008,112(48):12372-12377

    [26]LiuH,VenkataramanNV,SpencerND,etal.Chemphyschem, 2008,9(14):1979-1981

    [27]LIU Hong-Bo(劉洪波).Thesis for the Doctorate of Nanjing University(南京大學(xué)博士論文).2008.

    [28]Xiao S,Liu H,Tobias B.China Patent,2006,10097859.4. 2006-11-16.

    [29]Leroueille J.Appl.Spectrosc.,1982,36(2):153-155

    [30]Baghdadi A,BullisWM,CroarkinMC,etal.J. Electrochem.Soc.,1989,136(7):2015-2024

    Sensitive and Accurate Measurement of Interstitial Oxygen and Substitutional Carbon in Single Crystalline Silicon by Multiple Transmission-Reflection Infrared Spectroscopy(MTR-IR)

    LU Xiao-BinXIAO Shou-Jun*
    (State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Nanjing University, Nanjing 210093,China)

    A new infrared spectroscopic measurement of interstitial oxygen and substitutional carbon in silicon wafers at room temperature by Multiple Transmission-Reflection Infrared Spectroscopy(MTR-IR)has been established.The superiority of MTR-IR to conventional IR has been analyzed first in principle by theoretical calculation and then verified by practical measurements of single crystalline silicon samples.The advantages of MTR-IR over conventional IR with a single normal incidence are:(1)The absorption bands of interstitial oxygen at 1 107 cm-1and substitutional carbon at 605 cm-1can be enhanced linearly with the simplified transmission times(N)between 6 and 12,which consequentlyextendsthe detection limit of oxygen and carbon at least one order of magnitude lower.(2)The strength of interference fringes can be decreased for a 0.2 mm thin silicon slice by 23 times as that from the single normal incidence and 11 times as that from the Brewster angle transmission respectively.(3)Not like the conventional IR method,only collecting data from one sampling point at each measurement,MTR-IR collects data from multiple sampling points in a longer sample for one measurement.Overall,both theoretical calculations and experimental results demonstrate the high sensitivity,reliability,and reproducibility of the MTR-IR spectroscopy on the measurement ofimpurities of interstitial oxygen and substitutional carbon of single crystalline silicon.

    multiple transmission-reflection(MTR);infrared Spectroscopy(IR);interstitial oxygen;substitutional carbon

    O611.5

    A

    1001-4861(2016)02-0351-09

    10.11862/CJIC.2016.044

    2015-11-03。收修改稿日期:2015-12-03。

    國家重點基礎(chǔ)研究發(fā)展計劃(No.2013CB922101),國家自然科學(xué)基金(No.91027019)資助項目。

    *通信聯(lián)系人。E-mail:sjxiao@nju.edu.cn

    猜你喜歡
    代位單晶硅南京大學(xué)
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    代位追償引發(fā)糾紛
    公民與法治(2022年6期)2022-07-26 06:16:20
    論法國代位清償制度及對我國的啟示
    《南京大學(xué)學(xué)報數(shù)學(xué)半年刊》征稿簡則
    論抵押權(quán)物上代位的實現(xiàn)制度
    法制博覽(2018年22期)2018-01-23 03:31:24
    單晶硅回歸
    能源(2016年2期)2016-12-01 05:10:32
    單晶硅各向異性濕法刻蝕的形貌控制
    添加劑對單晶硅太陽電池表面織構(gòu)化的影響
    再保險人適用代位求償權(quán)之法理分析
    法制博覽(2016年36期)2016-02-02 14:17:03
    Comprendre et s'entendre
    波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| 精品久久久久久久毛片微露脸| 韩国av一区二区三区四区| 日本a在线网址| 欧美+亚洲+日韩+国产| 十八禁人妻一区二区| 波多野结衣高清无吗| 日韩一卡2卡3卡4卡2021年| 国产成人系列免费观看| 在线观看www视频免费| 欧美成狂野欧美在线观看| 一区二区日韩欧美中文字幕| 男男h啪啪无遮挡| 亚洲第一欧美日韩一区二区三区| 亚洲一码二码三码区别大吗| 欧美黑人欧美精品刺激| 村上凉子中文字幕在线| 日韩欧美在线二视频| 久久九九热精品免费| 黄色视频,在线免费观看| 婷婷六月久久综合丁香| 国产免费现黄频在线看| 男人舔女人的私密视频| 九色亚洲精品在线播放| 成人永久免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 久久伊人香网站| 亚洲一区高清亚洲精品| 一级作爱视频免费观看| 免费人成视频x8x8入口观看| 久久久精品欧美日韩精品| 国产无遮挡羞羞视频在线观看| 人妻丰满熟妇av一区二区三区| 啦啦啦在线免费观看视频4| 亚洲av成人一区二区三| 变态另类成人亚洲欧美熟女 | 久久精品aⅴ一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲狠狠婷婷综合久久图片| 国产成+人综合+亚洲专区| 久久国产精品人妻蜜桃| 亚洲一区高清亚洲精品| 99热国产这里只有精品6| 18美女黄网站色大片免费观看| 啪啪无遮挡十八禁网站| 国产精品av久久久久免费| 亚洲熟妇熟女久久| 一进一出好大好爽视频| 久久久久亚洲av毛片大全| 亚洲熟女毛片儿| 好看av亚洲va欧美ⅴa在| 久久国产精品人妻蜜桃| 正在播放国产对白刺激| 日本撒尿小便嘘嘘汇集6| 国产精华一区二区三区| 黄频高清免费视频| 亚洲男人天堂网一区| 一级a爱片免费观看的视频| 免费在线观看影片大全网站| 97人妻天天添夜夜摸| 亚洲精品久久午夜乱码| 欧美日韩亚洲国产一区二区在线观看| 中文字幕人妻熟女乱码| 高清毛片免费观看视频网站 | 天堂中文最新版在线下载| 日本黄色日本黄色录像| 国产主播在线观看一区二区| 嫩草影视91久久| 欧美精品亚洲一区二区| 欧美精品啪啪一区二区三区| 亚洲精品av麻豆狂野| 美女扒开内裤让男人捅视频| 99久久精品国产亚洲精品| 18禁裸乳无遮挡免费网站照片 | 国产成人精品久久二区二区91| 长腿黑丝高跟| 日韩精品免费视频一区二区三区| 三上悠亚av全集在线观看| 欧美不卡视频在线免费观看 | 18美女黄网站色大片免费观看| 国产黄a三级三级三级人| 欧美激情 高清一区二区三区| 国产精品久久久av美女十八| 老熟妇仑乱视频hdxx| 国产精品亚洲一级av第二区| 国产乱人伦免费视频| 老司机亚洲免费影院| 亚洲欧美一区二区三区久久| 成人18禁高潮啪啪吃奶动态图| 成人国语在线视频| 最好的美女福利视频网| 又紧又爽又黄一区二区| 男女高潮啪啪啪动态图| 久久精品91无色码中文字幕| 女生性感内裤真人,穿戴方法视频| 91麻豆精品激情在线观看国产 | 欧美精品一区二区免费开放| 狠狠狠狠99中文字幕| 天天添夜夜摸| 国产精品免费一区二区三区在线| 国产精品久久久人人做人人爽| 一级a爱片免费观看的视频| 久久人人精品亚洲av| 韩国精品一区二区三区| 伊人久久大香线蕉亚洲五| 18禁观看日本| 国产一区二区三区视频了| 亚洲av五月六月丁香网| 午夜激情av网站| 日韩精品中文字幕看吧| 一边摸一边抽搐一进一出视频| 天天躁夜夜躁狠狠躁躁| av在线播放免费不卡| 精品乱码久久久久久99久播| 国产xxxxx性猛交| 精品国产一区二区三区四区第35| 波多野结衣av一区二区av| 久久婷婷成人综合色麻豆| 黑人巨大精品欧美一区二区mp4| 欧美日韩精品网址| av免费在线观看网站| 97人妻天天添夜夜摸| 国产精品99久久99久久久不卡| 欧美 亚洲 国产 日韩一| 在线国产一区二区在线| 99久久99久久久精品蜜桃| 色综合婷婷激情| 久久影院123| 久久热在线av| 丁香六月欧美| 色播在线永久视频| 在线观看舔阴道视频| 欧美乱码精品一区二区三区| 日日夜夜操网爽| 美女福利国产在线| 看片在线看免费视频| 中文字幕高清在线视频| 亚洲七黄色美女视频| 亚洲成av片中文字幕在线观看| 亚洲激情在线av| 久久中文字幕人妻熟女| 99热国产这里只有精品6| 国产成人av激情在线播放| 精品国产乱子伦一区二区三区| 在线观看免费视频日本深夜| 97人妻天天添夜夜摸| 岛国在线观看网站| 欧美不卡视频在线免费观看 | 好看av亚洲va欧美ⅴa在| 一边摸一边做爽爽视频免费| 亚洲专区中文字幕在线| 久久人人精品亚洲av| av欧美777| 一区福利在线观看| 国产精品国产av在线观看| 88av欧美| 叶爱在线成人免费视频播放| 日韩人妻精品一区2区三区| 后天国语完整版免费观看| 午夜精品久久久久久毛片777| 97超级碰碰碰精品色视频在线观看| 精品久久久久久成人av| 级片在线观看| 可以在线观看毛片的网站| 精品卡一卡二卡四卡免费| 老司机亚洲免费影院| 又紧又爽又黄一区二区| 黄色怎么调成土黄色| 人人妻人人添人人爽欧美一区卜| 真人做人爱边吃奶动态| 亚洲av片天天在线观看| 岛国在线观看网站| 又黄又粗又硬又大视频| 色婷婷久久久亚洲欧美| 国产无遮挡羞羞视频在线观看| 久久欧美精品欧美久久欧美| 久久国产乱子伦精品免费另类| 久久亚洲精品不卡| 国产精品一区二区三区四区久久 | 国产单亲对白刺激| 免费在线观看亚洲国产| 91麻豆av在线| 精品国产乱子伦一区二区三区| 亚洲在线自拍视频| 日韩大尺度精品在线看网址 | 高清在线国产一区| 国产成人一区二区三区免费视频网站| 久久久久国产一级毛片高清牌| 亚洲成a人片在线一区二区| √禁漫天堂资源中文www| 久久久国产成人精品二区 | 不卡一级毛片| 黄色 视频免费看| 色综合站精品国产| 国产一卡二卡三卡精品| 欧美激情 高清一区二区三区| 亚洲人成77777在线视频| 性色av乱码一区二区三区2| 亚洲国产欧美一区二区综合| 日韩人妻精品一区2区三区| 国产成人影院久久av| 国产成人影院久久av| 欧美色视频一区免费| 亚洲一卡2卡3卡4卡5卡精品中文| 两人在一起打扑克的视频| 人妻久久中文字幕网| 一级片'在线观看视频| 国产精品久久电影中文字幕| 国产99久久九九免费精品| 黄色成人免费大全| 久久人人精品亚洲av| 精品久久久久久久毛片微露脸| 久久99一区二区三区| 日韩高清综合在线| 久久久国产成人免费| 久久亚洲真实| 久久久久国产精品人妻aⅴ院| 黄片小视频在线播放| 亚洲精品中文字幕在线视频| 天天添夜夜摸| 男人的好看免费观看在线视频 | 五月开心婷婷网| 久久人妻福利社区极品人妻图片| 日本a在线网址| 亚洲色图 男人天堂 中文字幕| 精品国产一区二区久久| 老司机福利观看| 精品高清国产在线一区| 亚洲美女黄片视频| 91麻豆精品激情在线观看国产 | 日韩大尺度精品在线看网址 | 久久久久久久久中文| 日韩国内少妇激情av| 成人av一区二区三区在线看| 亚洲国产看品久久| 欧美日本中文国产一区发布| 在线观看免费日韩欧美大片| www.熟女人妻精品国产| 精品福利观看| 91成人精品电影| 亚洲精品一二三| 老汉色av国产亚洲站长工具| 欧美乱妇无乱码| 国产在线精品亚洲第一网站| 黑人操中国人逼视频| 麻豆成人av在线观看| 国产99白浆流出| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久大精品| 黄色片一级片一级黄色片| 自拍欧美九色日韩亚洲蝌蚪91| av天堂久久9| 欧美 亚洲 国产 日韩一| 亚洲成人免费电影在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产又色又爽无遮挡免费看| 女性生殖器流出的白浆| 国产成人影院久久av| 久久精品国产99精品国产亚洲性色 | 日韩精品中文字幕看吧| 午夜精品国产一区二区电影| 天天躁狠狠躁夜夜躁狠狠躁| 国产欧美日韩精品亚洲av| 亚洲av熟女| 精品熟女少妇八av免费久了| 国产av一区在线观看免费| 国产亚洲精品综合一区在线观看 | 久久久国产欧美日韩av| 91av网站免费观看| 精品久久久久久成人av| 亚洲欧美一区二区三区久久| 精品一区二区三区视频在线观看免费 | 97人妻天天添夜夜摸| 日韩欧美国产一区二区入口| 久久精品国产清高在天天线| 国产精品自产拍在线观看55亚洲| 亚洲色图 男人天堂 中文字幕| 午夜成年电影在线免费观看| 丝袜美足系列| 又紧又爽又黄一区二区| 日韩成人在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 国产伦人伦偷精品视频| 真人一进一出gif抽搐免费| 国产激情久久老熟女| 中文字幕高清在线视频| 国产精品久久久久成人av| 国产深夜福利视频在线观看| 亚洲成av片中文字幕在线观看| 69av精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| av网站在线播放免费| 欧美乱色亚洲激情| 国产深夜福利视频在线观看| 在线免费观看的www视频| 久久久精品欧美日韩精品| 久久性视频一级片| 9色porny在线观看| 亚洲va日本ⅴa欧美va伊人久久| 少妇粗大呻吟视频| 亚洲第一青青草原| 欧美成人性av电影在线观看| 很黄的视频免费| 黄片播放在线免费| 欧美 亚洲 国产 日韩一| 自线自在国产av| 88av欧美| 18美女黄网站色大片免费观看| 首页视频小说图片口味搜索| 一级毛片高清免费大全| 精品一区二区三区视频在线观看免费 | 国产视频一区二区在线看| 在线视频色国产色| 视频区欧美日本亚洲| av超薄肉色丝袜交足视频| 国产成人欧美在线观看| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 美女午夜性视频免费| 国产成人精品在线电影| a在线观看视频网站| 精品日产1卡2卡| 久久精品国产99精品国产亚洲性色 | 日本免费一区二区三区高清不卡 | 久久精品aⅴ一区二区三区四区| 国产三级黄色录像| 国产熟女午夜一区二区三区| 级片在线观看| 欧美乱色亚洲激情| 波多野结衣高清无吗| 日本黄色日本黄色录像| 亚洲五月婷婷丁香| 少妇的丰满在线观看| 亚洲av成人一区二区三| 少妇粗大呻吟视频| 宅男免费午夜| 久久久久久大精品| 麻豆国产av国片精品| 久久 成人 亚洲| 老司机靠b影院| 日韩三级视频一区二区三区| 精品熟女少妇八av免费久了| 亚洲欧美日韩高清在线视频| 身体一侧抽搐| 久久精品aⅴ一区二区三区四区| 狠狠狠狠99中文字幕| 法律面前人人平等表现在哪些方面| 欧美日韩精品网址| 日本欧美视频一区| 大型av网站在线播放| 欧美中文综合在线视频| 精品福利观看| 黄色女人牲交| 国产黄色免费在线视频| 多毛熟女@视频| 日韩免费高清中文字幕av| 国产男靠女视频免费网站| 极品教师在线免费播放| 国产成人一区二区三区免费视频网站| 日日爽夜夜爽网站| 久久久久亚洲av毛片大全| 久久人妻福利社区极品人妻图片| 桃色一区二区三区在线观看| 精品卡一卡二卡四卡免费| 伊人久久大香线蕉亚洲五| 亚洲人成77777在线视频| 极品人妻少妇av视频| av国产精品久久久久影院| 黑人巨大精品欧美一区二区蜜桃| 在线天堂中文资源库| 女人精品久久久久毛片| 亚洲va日本ⅴa欧美va伊人久久| 色在线成人网| 电影成人av| 亚洲在线自拍视频| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区 | 日韩国内少妇激情av| 久久国产乱子伦精品免费另类| 午夜亚洲福利在线播放| 欧美丝袜亚洲另类 | 咕卡用的链子| 日本黄色视频三级网站网址| 亚洲男人天堂网一区| 午夜福利在线观看吧| 两个人看的免费小视频| 欧美日韩av久久| 欧美在线黄色| 亚洲七黄色美女视频| 老司机福利观看| 777久久人妻少妇嫩草av网站| 80岁老熟妇乱子伦牲交| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线美女| 免费高清视频大片| 免费在线观看亚洲国产| 国产亚洲精品一区二区www| 波多野结衣av一区二区av| 免费观看人在逋| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 一进一出好大好爽视频| 69精品国产乱码久久久| 久久久久久久久中文| 亚洲成人免费av在线播放| 欧美成人性av电影在线观看| www.www免费av| 欧美人与性动交α欧美精品济南到| 99精品在免费线老司机午夜| 伊人久久大香线蕉亚洲五| 十八禁网站免费在线| 制服诱惑二区| 一级毛片女人18水好多| 亚洲伊人色综图| 久久中文字幕一级| 亚洲精品国产一区二区精华液| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 人人妻人人澡人人看| 欧美乱码精品一区二区三区| 亚洲片人在线观看| 久久香蕉激情| 美国免费a级毛片| 久久天堂一区二区三区四区| 久久久国产成人免费| 国产成人免费无遮挡视频| 色在线成人网| 午夜免费激情av| 看片在线看免费视频| 亚洲国产精品sss在线观看 | 成人国语在线视频| 一区福利在线观看| 动漫黄色视频在线观看| 亚洲美女黄片视频| 黄色视频不卡| 十八禁人妻一区二区| 亚洲avbb在线观看| 69精品国产乱码久久久| 桃色一区二区三区在线观看| 午夜成年电影在线免费观看| 在线观看免费高清a一片| 欧美日韩av久久| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| av网站在线播放免费| 9色porny在线观看| 成人永久免费在线观看视频| 日韩精品青青久久久久久| 免费在线观看完整版高清| 成年人黄色毛片网站| 亚洲人成电影免费在线| 午夜日韩欧美国产| 亚洲少妇的诱惑av| 男女之事视频高清在线观看| 久久午夜综合久久蜜桃| 成人av一区二区三区在线看| 99在线人妻在线中文字幕| 操出白浆在线播放| 精品国产国语对白av| a级片在线免费高清观看视频| 久久精品亚洲av国产电影网| 国产亚洲精品综合一区在线观看 | 欧美日韩精品网址| 日韩欧美三级三区| x7x7x7水蜜桃| 久热爱精品视频在线9| 亚洲av电影在线进入| 精品久久久久久久久久免费视频 | 国产欧美日韩精品亚洲av| 三级毛片av免费| 人人妻人人爽人人添夜夜欢视频| 久久久久九九精品影院| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看| 亚洲成a人片在线一区二区| 夜夜看夜夜爽夜夜摸 | 精品一区二区三区四区五区乱码| 亚洲 欧美 日韩 在线 免费| 亚洲av第一区精品v没综合| 久久人妻av系列| 新久久久久国产一级毛片| 久9热在线精品视频| 久久香蕉精品热| 大陆偷拍与自拍| 久久热在线av| 丁香欧美五月| 国产精品秋霞免费鲁丝片| 一边摸一边抽搐一进一出视频| 国产精品九九99| 国产精品久久电影中文字幕| 身体一侧抽搐| 又大又爽又粗| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久毛片微露脸| 午夜免费鲁丝| 一进一出好大好爽视频| 欧美一级毛片孕妇| 成人国产一区最新在线观看| 中文欧美无线码| 中文字幕av电影在线播放| 国产精品久久久人人做人人爽| 国产单亲对白刺激| 三上悠亚av全集在线观看| 最近最新免费中文字幕在线| 一本综合久久免费| 女生性感内裤真人,穿戴方法视频| xxx96com| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 新久久久久国产一级毛片| 人人妻人人澡人人看| 成人av一区二区三区在线看| 欧美日韩一级在线毛片| 老司机靠b影院| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 久久人人爽av亚洲精品天堂| 国产三级在线视频| 久久精品成人免费网站| 国产精品一区二区在线不卡| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸 | 神马国产精品三级电影在线观看 | 热re99久久精品国产66热6| 亚洲精品美女久久久久99蜜臀| 亚洲黑人精品在线| 熟女少妇亚洲综合色aaa.| 亚洲人成网站在线播放欧美日韩| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看| 男女做爰动态图高潮gif福利片 | 男人的好看免费观看在线视频 | 99国产综合亚洲精品| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 久久 成人 亚洲| 日本欧美视频一区| 久久精品91无色码中文字幕| 一本综合久久免费| 一个人免费在线观看的高清视频| 国产激情欧美一区二区| 男女床上黄色一级片免费看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| 亚洲熟女毛片儿| 视频在线观看一区二区三区| 一级黄色大片毛片| 国产精品 国内视频| 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 午夜福利影视在线免费观看| 丝袜美腿诱惑在线| 亚洲国产欧美网| 国产区一区二久久| 亚洲av成人不卡在线观看播放网| 国产熟女午夜一区二区三区| 91精品国产国语对白视频| 亚洲av美国av| 亚洲 欧美一区二区三区| 亚洲av成人av| 丰满迷人的少妇在线观看| 亚洲成人国产一区在线观看| 国产精品永久免费网站| 亚洲国产看品久久| 老司机福利观看| 日韩精品免费视频一区二区三区| 老司机午夜福利在线观看视频| 在线观看一区二区三区激情| 女人精品久久久久毛片| 久久人人精品亚洲av| 99久久国产精品久久久| www.自偷自拍.com| 国产成人一区二区三区免费视频网站| 99久久久亚洲精品蜜臀av| 国产精品美女特级片免费视频播放器 | 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免费看| 久久久国产一区二区| 国产高清激情床上av| 精品欧美一区二区三区在线| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看| 精品一品国产午夜福利视频| 国产激情久久老熟女| 久久欧美精品欧美久久欧美| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 在线av久久热| 精品一品国产午夜福利视频| 国内久久婷婷六月综合欲色啪| 另类亚洲欧美激情| 制服人妻中文乱码| www.999成人在线观看| 国产99久久九九免费精品| 叶爱在线成人免费视频播放| 国产精品1区2区在线观看.| 亚洲人成电影观看| 每晚都被弄得嗷嗷叫到高潮| 视频区图区小说| 99国产极品粉嫩在线观看| 色婷婷av一区二区三区视频| 丝袜美腿诱惑在线| 日韩国内少妇激情av| a级毛片在线看网站| 精品一区二区三区视频在线观看免费 | 亚洲欧美一区二区三区黑人|