• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多次透射反射紅外光譜法靈敏和準(zhǔn)確地測量單晶硅中間隙氧和代位碳的含量

    2016-11-28 09:36:38路小彬肖守軍
    無機(jī)化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:代位單晶硅南京大學(xué)

    路小彬 肖守軍

    (配位化學(xué)國家重點實驗室,南京大學(xué)化學(xué)化工學(xué)院,南京210093)

    多次透射反射紅外光譜法靈敏和準(zhǔn)確地測量單晶硅中間隙氧和代位碳的含量

    路小彬肖守軍*

    (配位化學(xué)國家重點實驗室,南京大學(xué)化學(xué)化工學(xué)院,南京210093)

    建立了室溫下使用多次透射反射紅外光譜法(MTR-IR)測量單晶硅中間隙氧和代位碳含量的新紅外光譜吸收方法,在理論和實驗上證明了MTR-IR優(yōu)于常規(guī)使用的單次垂直透射紅外(IR)吸收測量方法。與IR法相比較,MTR-IR法的優(yōu)點為:(1)間隙氧在1 107 cm-1處和代位碳在605 cm-1處的吸收峰與MTR-IR法中紅外光透過硅片的的次數(shù)N(6~12)成線性增加的正比例關(guān)系,因此單晶硅中間隙氧和代位碳含量的檢測限至少比IR法低一個數(shù)量級;(2)MTR-IR法測量薄硅片如0.2 mm的厚度時產(chǎn)生的干涉條紋強(qiáng)度是單次垂直透射紅外吸收法(IR)的1/23、是單次Brewster角透射紅外吸收法的1/11;(3)單次垂直透射紅外吸收法(IR)1次只測量樣品上的1個點,MTR-IR法則在更長的樣品上1次測量多個樣品點,每次測量更具有代表性。理論計算和實驗結(jié)果都證實了MTR-IR吸收法測量晶體硅中間隙氧和代位碳雜質(zhì)含量的高靈敏度、可靠性和重復(fù)性。

    多次透射反射;紅外;間隙氧;代位碳

    0Introduction

    Silicon-basedsemiconductorindustry,asa miracle in the human beings history,continues to develop at considerably high growth rates already for half a century.Recently,solar energy has been recognized in common as an alternative sustainable energy source due to the increased awareness of the global energy crisis[1].Silicon solar cells have become the most important photovoltaic products owing to the sophisticatedmanufacturingtechnologyandthe reliable cell quality.The quality control of silicon materials is crucial to both semiconductor and solar cell industries of silicon.During the Czochralski(CZ) procedureingrowingsiliconsinglecrystalsfor semiconductor and photovoltaic industry,oxygen and carbon are incorporated into the molten silicon to different extents from the quartz crucibles and the graphite heaters.As oxygen atoms can find sites within the lattice structure among silicon atoms, interstitial oxygen(Oi)appears.Moreover,carbon atoms occupy positions generally taken by silicon atoms in the lattice structure,and this kind of impurity is defined as substitutional carbon(Cs)[1-3].

    Interstitial oxygen and substitutional carbon are the main forms of oxygen and carbon impurities existinginsilicon.Theirdifferentlevelscause different physical and electrical effects in silicon, whichhavebeenextensivelyinvestigatedand correlated[4-6].Although Oi in suitable concentrations possesses an advantage to enhance the mechanical strength of silicon because of its nailing for stretching ofdislocationinthesiliconlattice,higher concentrations will result in electrically active defects that decrease the performance of the devices.Thus a gettering technique has been developed to decrease Oi and avoid defects during the silicon crystal growth procedure.High content of Cs affects the way Oi nucleates and precipitates,as well as resulting in softening and breakdown of electronic components[7-10]. Consequently,to control the silicon quality for high performance devices,it is absolutely necessary to monitor the content of Oi and Cs in silicon wafers more accurately and sensitively.

    Varioustechniqueshavebeenappliedto determine the content of Oi and Cs in bulk silicon. Thesetechniquesconsistofgasfusionanalysis, secondary ion mass spectrometry,charged particle activation analysis and neutron activation analysis etc.,all of which are destructive,costly and time consuming[1].In addition,the above methods measure the total content of elemental oxygen and carbon, including Oi and Cs and other forms of oxygen and carbon.Thus they are not specific for measuring the concentration of Oi(atoms per cm3,abbreviated as cOi, cm-3)and of Cs(atoms per cm3,abbreviated as cCs, cm-3).By contrast,infrared analysis is specific to cOiand cCsin silicon.Silicon atoms form bonds with the adjacent oxygen atoms(Si-O-Si)and carbon atoms(Si-C)in the lattice structure[11-13].The interstitial oxygen is in the form of Si-O-Si,giving three vibration peaks centered at 1 107 cm-1(strong),513 cm-1(medium) and 1 718 cm-1(weak)respectively.Among the three bands,the strongest one at 1 107 cm-1is usually used to determine cOi[14-16].The substitutional carbon in the form of Si-C gives a vibration band at 605 cm-1. However the Si-C band overlaps with the strong silicon lattice vibration(Si-Si)at 605 cm-1,which renders the measurement of cCsdelicate.The amount of light absorbed by Si-O-Si and Si-C is proportional to the concentration of atoms forming the bonds.Thus their corresponding infrared bands are measured and manipulated to quantitate cOiand cCsrespectively.The calculation procedure is composed of subtraction of a reference(free of Oi and Cs)absorption band from a samples band,and subsequently calculation of cOiand cCsusing the following formulae generally.

    A=αbα=εc

    where A is the measured absorbance;ε is the absorption coefficient of a particular bond,cm2;b is the thickness of the sample,cm;c is the concentration of the impurity,cm-3.

    The IR method for the levels of Oi and Cs can be carried out at ambient or low temperature.Although the latter is more accurate than the former,it is costly and time consuming to handle the measurement at thecryogenic temperature.Furthermore,the reflection loss of infrared light at both cryostat windows outweighs its advantages[17-20].

    The room temperature IR method for cOiand cCsmeasurements is most commonly used in industry because it is easy and simple to operate.Generally the presentlyacceptedstandardmethodusedin industry for cOiand cCsmeasurements is restricted to a silicon slice with a thickness of 2 mm and a diameter of the infrared beam by a one-time perpendicular transmission of the infrared beam(we name it“conventional IR”).The detection limits of cOiand cCsfor a 2.0 mm thick single crystalline silicon are 1×1016and 5×1015cm-3respectively[21-22].The above quantitative analysis meets challenges in practice such as:1) measurement errors become larger when cOiand cCsreachtheirowndetectionlimits,2)interference fringes from thin wafers below 0.3 mm thickness interferethetargetbandsignal,3)thesingle transmission measurement approach in a spot provides a localized spectrum with poor specimen statistics, compared to the multi-spot data collection in MTR-IR. Our newly developed MTR-IR(Scheme 1)provides an excellent quantitative approach for analysis of cOiand cCs,duetoitsuptooneorderofmagnitude enhancement of infrared absorption signals on the samesiliconslicefromtheconventionalIR measurement[23-26].In this letter,we applied the MTRIR spectroscopy in analysis of cOiand cCsof 0.45 mm thick silicon wafers.Our MTR-IR method greatly improves the measurement sensitivity and accuracy, for example,reaching detection limits of cOiat 1×1015cm-3and cCsat 5×1014cm-3for the standard silicon specimens with a 2.0 mm thickness,which is one order of a magnitude lower than from the standard method.MTR-IRalsoattenuatestheinterference fringes of thin wafers greatly,and advances the representativeness of data collections.

    Scheme 1Scheme of the MTR-IR optical path

    1 Experimental

    1.1Substrates

    Double-side-polished and〈100〉oriented n-type silicon wafers(B doped,resistivity of 15 Ω·cm(CZ) and 3 000 Ω·cm(FZ)respectively,0.45 mm thick, from Shanghai Junhe Electronic Materials Co.Ltd., China)were cut into rectangular shapes(16 mm×50 mm)for infrared analysis.CZ silicon wafers were used as samples and FZ as reference to measure the impurity concentrations of Oi and Cs respectively.

    1.2Wafer cleaning

    Siliconwaferswerecleanedwith“piranha solution”(concentrated H2SO4/30%H2O2,3∶1,V/V)for 4 h(caution:piranha solution reacts violently with organic materials and should be handled with great care)to remove organic pollutants,followed by boiling in the mixture of NH3·H2O/H2O/H2O2(1∶1∶1,V∶V∶V) for 30 min,then cooling to room temperature,rinsing with water,and storing in water.Silicon samples were immersed in 1%HF for 5 min to eliminate the native passivation silicon oxide layer,and dried with a stream of nitrogen just before the measurement.

    1.3Measurement

    The optical setup was designed to adapt to any commercial FTIR spectrometers,which is Bruker 80v FTIR,in our case.MTR accessory with a Brewster incident angle of 74°was used.Unless specified,a DTGS detector and scan times of 100 at 4 cm-1resolutionwereusedformeasurementoverthewavenumber range from 400 to 4 000 cm-1.

    The silicon sample was inserted between the two Aumirrors,withoneendofthesiliconslice protruding about 5 mm out of the incident spot,in order to make sure that the first incidence shot was on the silicon surface.The two guiding mirrors can be moved back and forth to get the maximal luminous flux in the DTGS detector.The incident angle was controlled at 74°by a micro-adjuster with a minimal angle scale of 0.225.

    The whole measurement procedure was performed according to ASTM F 1188 and ASTM F 1391[21-22,30]. Eight random samples from different batches were used.Each sample was measured successively 4 times by MTR and IR by slightly relocating the Si wafer each time in order to measure different sampling points.Therefore for each sample,4 different sampling points were measured by IR,whereas 40 different sampling points measured by MTR-IR if N equals 10. 1.4Theory/calculation

    1.4.1Comparisonofcomputationmodelsfor

    conventional IR and MTR-IR

    1.4.1.1Conventional IR method

    In the conventional IR method,the normal incident light passes a Si wafer(for convenience,a slightly oblique incidence is drawn in Fig.1),the transmittance canbeexpressedasinEq.(1)and(2)[21-22].

    where T is the transmittance of normal incidence, %;R is reflectivity;n is refractive index;σ is wavenumber,cm-1;ψ is the phase change due to the interfering multiple reflections on the boundaries of the sample.

    1.4.1.2Brewster angle single incidence

    The expression of TBfor the single Brewster incidence refers to Eq.(3)[29].

    Fig.1 Light path of computation model for IR

    where TBis the transmittance of the Brewster angle single transmission,%;Rsand Rpindicate the reflectance of s-and p-polarization respectively;the first(Rp=0)and the second term(Rshas a value)in the formula represent transmittance energy of ppolarization and s-polarization respectively,because the total transmittance energy equals the sum of ppolarization and s-polarization(p-or s-polarization holds 1/2 of the original light energy);the phase change introduced by the interfering multiple reflections on the boundaries of a silicon is considered.

    1.4.1.3MTR method[27]

    The light path of the computation model for MTR-IR refers to Scheme 1.Comparing Scheme 1 to Fig.2,we observed that two gold mirrors enforce the light transmit through the silicon slice N times and simultaneously taking away the message of oxygen and carbon of the silicon sample.The optical path in the MTR-IR setup of Scheme 1 is N times of bBat theBrewster incidence.For simplicity,only the main light path is drawn in Scheme 1 with N=6,all other light paths by multiple reflections in the MTR setup are ignored.The transmittance for MTR-IR(TMTR)is deduced as follows(See supporting information for details of derivation of the formula of MTR-IR):

    Fig.2 Light path of the computation model for Brewster angle single transmission

    Fig.3 Comparison of Oi and Cs spectra for MTR-IR and conventional IR

    where TMTRis the transmittance of MTR,%;RAuis the reflectivity of gold;bMTRis the optical path through a silicon sample in the MTR-IR measurement,cm. 1.4.2Theory of signal enhancement of MTR-IR

    Presently,theconventionalIRmethodfor measurement of cOiand cCsis to place a 2 mm thick single crystalline silicon slice normally(or within the margin of error of a slightly oblique angle≤10°)in the light path.The sampling length equals to the thickness of the slice.The illuminated area is a circle with a diameter of the light spot,so the resulting cOiand cCsjust represent the impurities within a cylinder with a diameter of the light spot(depending on the aperture)and a height of 2 mm.Whereas in the MTRIR setup,the infrared light reflects back and forth manytimesbetweentwogoldmirrorsand simultaneously passes through the sampling silicon slice repeatedly and takes away the information of Oi and Cs by the resonance of Si-O-Si and Si-C bonds. So,the optical path is N(1+1/n2)1/2times of the thickness of a silicon wafer(b),and correspondingly the absorbance is amplified N(1+1/n2)1/2times[29].

    At the Brewster angle of 74,when Rp=0,Rs=0.70, RAu=1,the phase change of p polarization light ψ=π, the following formula can be deduced from Eq.(1)and(4).

    From Eq.(6),the sampling length is enlarged N(1+1/n2)1/2times,assuming the recorded infrared spectral signal comes from the main optical path illustrated in Scheme 1,and all other infrared signals are ignored.The infrared light passes through a silicon slice N times in different regions,thus the collected signal is an integrated one of the whole optical path,physically and statistically representing Oi and Cs in the silicon slice better.

    2 Results and discussion

    2.1Comparison of infrared traces between the conventional IR method and the MTR-IR method

    We listed two spectral traces of the same sample in Fig.3,where the upper trace was obtained from MTR-IR and the lower trace from the conventional IR. All bands bear the same shape but their absorbance strength in MTR-IR is much higher than from IR, especially for the two strongest bands of Oi at 1 107 cm-1and Cs at 605 cm-1.From the view point of quantitation,the bigger the absorbance value,the less the measurement error of Oi and Cs.Consequently cOiand cCsare more accurate and will have a lower detection limit.Because the absorption of Cs at 605 cm-1overlaps with the strongest absorption of the silicon lattice vibration(Si-Si)centered at 610 cm-1,a FZ silicon reference is needed to subtract the silicon lattice vibration.Further,the real advantage of MTRIR over the conventional IR not only lies in its ability to measure the spectra of Oi and Cs with stronger signals,but also with more sampling points for robust and representative measurements.

    In Fig.3,the peak height ratios of Oi and Cs (MTR-sample/IR-sample)were measured to be~10 and~8 respectively.Generally speaking,cCsis more difficult to be measured than cOiusing the conventional IR method,due to two factors:(1)It is very tough to extract the much smaller Si-C peak from the strong Si-Si lattice band and therefore artificial results are often derived individually,thus an accurate quantitation is nearlyimpossible.(2)TheCslevelinsingle crystalline silicon is always an order of magnitude lowerthanthatofOi.Judgedfromthesignal enhancement,it is possible to extend the limit of detection of cOiat 1×1016to 1×1015cm-3and cCsat 5× 1015to 5×1014cm-3for a 2.0 mm thick single crystalline silicon.

    We randomly chose 8 samples to measure their cOiand cCs,both by the conventional IR and the MTRIR methods,for verification of the MTR-IR method by the correlation curve in Fig.4a and 4b(calculation details please see Supporting Information:2.Data calculation).As it can be seen in Fig.4a and 4b,both cOiandcCsarelinearlycorrelated.Thelinear relationshipofbothcOiandcCsprovedthe measurement accuracy of the MTR-IR method for determination of cOiand cCsin single crystalline silicon materials.

    Fig.4 aOi concentration at 1 107 cm-1for eight samples measuredbyMTR-IRvsconventionalIR

    The interference fringes become much stronger when a silicon wafer thickness is close to the infrared wavelength.Thefringesarewellrecognizedto interrupt the IR measurement,they obscure the weak features of the spectra,as well as reduce the accuracyof quantitative analysis.Both IR and MTR-IR are able to measure a silicon slice with a thickness above 0.3 mmbecausethemultiplebeamsresultedfrom multiple reflections and transmissions are out of phase andthusthesebeamsgenerateneglectable interference fringes[29].

    However,when the sample thickness is less than 0.2 mm,the interference fringes become more obvious and cannot be ignored when measuring Oi and Cs. The amplitude of interference fringes depends on the interaction mode between the incident light and the sample.Eq.(1),(3)and(4)are used to calculate the transmittance of three modes respectively:normal incidence,Brewster angle single transmission,and MTR.For the Brewster angle incidence,RPis equal to 0,while RSis 0.70.Obviously the oscillation of transmittance is derived from the phase change of ψ, thus the p-polarization does not cause any oscillation of transmittance at the Brewster angle incidence.In (1),the whole term affects the amplitude of oscillation, while in(3)and(4),the second term bearing the phase change of ψ becomes weaker and weaker when N increases.Therefore the amplitude of oscillations must be reduced with increasing N.In Fig.5,the variation of oscillations caused by phase change(ψ)is shown for the normal incidence,the Brewster angle single transmission,and the MTR mode respectively. The amplitude of the oscillationis 0.058for the normal incidence(T),0.029 for the Brewster angle single transmission(TB),and only 0.002 5 for the MTR-IR approach(TMTR).In this case,theoretically compared to the normal incidence,the Brewster angle single transmission reduces the oscillation amplitude by a factor of 2,whereas,the MTR setup reduces the oscillation amplitude by a factor of 23.The above theoretical analysis demonstrates the overwhelming advantages of the MTR setup for measuring cOiand cCsin a thin silicon slice.

    Fig.4bCs concentration at 605 cm-1for eight samples measured by MTR-IR vs conventional IR

    Fig.5Theoretical simulation of the transmittance oscillations as a function of the wavenumber σ calculated from Eq.(1),(3)and(4), corresponding to the normal incidence, the Brewster angle single transmission and MTR respectively

    To prove the theoretical calculation,we recorded the spectra of a 0.20 mm thin silicon wafer in Fig.6with normal incidence(bottom trace as“normal incidence”),Brewsteranglesingletransmission (middle trace as“Brewster angle single transmission”) and MTR(upper trace as“MTR”)respectively.From the three curves,it is easily observed that interference fringes appear heavily for the normal incidence, moderately for the Brewster angle single transmission, and negligibly for the MTR.The interference fringe strengthratiosofMTR/Brewsteranglesingle transmission/normal incidence are close to 20∶2∶1 in most regions.

    From Fig.6,not only the interference fringes in MTR-IR are greatly attenuated,the target signals inthe region of 400 to 1 200 cm-1are also significantly magnified.Thus the signal to noise ratio is enhanced several orders of magnitude higher in MTR for much thinner silicon slices less than 0.3 mm thickness.The use of a thin silicon wafer can decrease the sampling volume,save the cost of an experiment,and fits the requirements of the solar energy industry.From both thetheoreticalcalculationsofFig.5andthe experimental spectra of Fig.6,obviously the currently used standard IR method is not suitable,whereas MTR-IR is much more powerful for measurement of Oi and Cs in a thin silicon slice less than 0.3 mm thick.That is also why MTR-IR is needed urgently for the silicon solar cell industry.

    Finally,we present the evolution of 7 infrared traces against N in Fig.7a.We have demonstrated the linear relationship of the absorbance strength of a band against the number of simplified transmission times(N) in our previous report[23].Since the detection limit of an analysis method depends on the signal to noise ratio. For the measurements of Fig.3 and Fig.7a,their baselines are flat enough,therefore,we can assign the spectral noise from 0.3~2.0 mm thick silicon samples to the instrumental noise,which possess the same value. With this hypothesis,we can deduce the detection limits of Oi and Cs,shown in Fig.7b,at different N from 6 to 12 by dividing the standard detection limits with the peak magnification times of MTR/normal incidence (peak height of Oi or Cs in Fig.7/peak height of Oi or Cs in IR-sample in Fig.3).It is observed that our MTRIR method significantly improves the detection limits of cOiand cCsfor the standard 2.0 mm thick single crystalline silicon,reaching cOiand cCsat 1×1015and 5× 1014cm-3,respectively.

    Fig.6Experimental results of interference fringes corresponding to normal incidence,Brewster angle single transmission and MTR respectively

    Fig.7(a)Variation of the absorbance of Oi and Cs in silicon wafers vs N from the MTR setup(b)Comparison of the limit of detection of cOiand cCsin silicon wafers measured with IR and MTR-IR

    3 Conclusions

    In conclusion,our experiments confirm that the MTR-IR method can reach a higher sensitivity and better spectral quality than the most commonly used conventional IR.The signal of the Oi peak at 1 107 cm-1obtained by MTR can be enhanced 10 times than by the conventional IR method,the one of the Cs peak at 605 cm-18 times.The MTR sampling length is N(1+1/n2)1/2times long as the one in the conventional IR,thus the measured cOiand cCsare morerepresentative.SinceMTR-IRreducestheinterference fringes greatly for silicon slices with a thickness thinner than 0.3 mm,it will be the most powerful tool to characterize the ultrathin silicon wafers and therefore the portable and foldable silicon devices.Due to its simple operation,MTR-IR satisfies thepracticalneedsinindustrialapplications, especially for semiconductor and silicon solar cell industries.

    Several parameters still need improvement in further works.For example,the theoretical equations are deduced from the main light path,neglecting other multiple reflections and transmissions on silicon and gold mirrors.The MTR formulas still need more experimental data for calibration.

    Considering the conclusion above,we believe that the MTR-IR method will be established as a standard method for measurement of interstitial oxygen andsubstitutionalcarbonforcrystallinesilicon materials.

    Acknowledgments:We acknowledge financial support from the National Basic Research Program of China(No. 2013CB922101)and the NSFC,No.91027019.

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1]Boyle R.Thermo Scientific Application Note,2008,50640:1-4

    [2]CravenRA,KorbHW.SolidStateTechnol.,1981,24(7):55-61

    [3]Benson K E,Lin W,Martin E P.Semiconductor Silicon 1981.Pennington N.J.:Electrochem.Soc.Inc.,1981:33-48

    [4]Abe T,Kikuchi K,Shirai S,et al.Semiconductor Silicon 1981.Pennington N.J.:Electrochem.Soc.Inc.,1981:54-71

    [5]Rava P,Gatos H C,Lagowski J.Semiconductor Silicon 1981.PenningtonN.J.:Electrochem.Soc.Inc.,1981:232-243

    [6]Ohsawa A,Honda K,Yoshikawa M.Fujitsu Scie.Techn.J., 1980,16(3):123-134

    [7]Kishino S,Matsushita Y,Kanamori M.Appl.Phys.Lett., 1979,35(3):213-215

    [8]Ogino M.Appl.Phys.Lett.,1982,41(9):847-849

    [9]Oehrlein G S,Lindstrom J L,Corbett J W.Appl.Phys.Lett., 1982,40(3):241-243

    [10]Ohsawa A,Takizawa R,Honda K,et al.Appl.Phys.,1982, 53(8):5733-5737

    [11]Pajot B.Analusis.,1977,5:293-303

    [12]Hrostowski H J A B J.J.Chem.Phys.,1960,33:980-990

    [13]Corbett J W,Mcdonald R S,Watkins G D.J.Phys.Chem. Solids,1964,25:873-879

    [14]Kaiser W,Keck P H,Lange C F.Phys.Rev.,1956,101(4): 1264-1267

    [15]Kaiser W,Keck P H.J.Appl.Phys.,1957,28(8):882-885

    [16]Kaiser W,Frisch H L,Reiss H.Phys.Rev.,1958,112(5): 1546-1554

    [17]Bosomworth D R,Hayes W,Spray A R L,et al.Royal Soc. London,1970,317(1528):133-152

    [18]Pajot B,Deltour J P.Infrared Phys.,1967,7:195-200

    [19]Oeder R,Wagner P.Defects in SemiconductorsⅡ.N.Y.: North-Holland,1983:171-175

    [20]Kolbesen B O,Kladenovi T.Krist.Tech.,1980,15(1):k1-k3

    [21]ASTM.Designation F1188:Test Method for Interstitial Atomic Oxygen Content of Silicon by Infrared Absorption.

    [22]ASTM.Designation F1391:Test Method for Substitutional Atomic Carbon Content by Infrared Absorption.

    [23]Liu H,Xiao S,Chen Y,et al.J.Phys.Chem.B,2006,110 (36):17702-17705

    [24]Guo P,Liu H,Liu X,et al.J.Phys.Chem.C,2010,114(1): 333-341

    [25]Liu H,Venkataraman N V,Bauert T E,et al.J.Phys.Chem. A,2008,112(48):12372-12377

    [26]LiuH,VenkataramanNV,SpencerND,etal.Chemphyschem, 2008,9(14):1979-1981

    [27]LIU Hong-Bo(劉洪波).Thesis for the Doctorate of Nanjing University(南京大學(xué)博士論文).2008.

    [28]Xiao S,Liu H,Tobias B.China Patent,2006,10097859.4. 2006-11-16.

    [29]Leroueille J.Appl.Spectrosc.,1982,36(2):153-155

    [30]Baghdadi A,BullisWM,CroarkinMC,etal.J. Electrochem.Soc.,1989,136(7):2015-2024

    Sensitive and Accurate Measurement of Interstitial Oxygen and Substitutional Carbon in Single Crystalline Silicon by Multiple Transmission-Reflection Infrared Spectroscopy(MTR-IR)

    LU Xiao-BinXIAO Shou-Jun*
    (State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Nanjing University, Nanjing 210093,China)

    A new infrared spectroscopic measurement of interstitial oxygen and substitutional carbon in silicon wafers at room temperature by Multiple Transmission-Reflection Infrared Spectroscopy(MTR-IR)has been established.The superiority of MTR-IR to conventional IR has been analyzed first in principle by theoretical calculation and then verified by practical measurements of single crystalline silicon samples.The advantages of MTR-IR over conventional IR with a single normal incidence are:(1)The absorption bands of interstitial oxygen at 1 107 cm-1and substitutional carbon at 605 cm-1can be enhanced linearly with the simplified transmission times(N)between 6 and 12,which consequentlyextendsthe detection limit of oxygen and carbon at least one order of magnitude lower.(2)The strength of interference fringes can be decreased for a 0.2 mm thin silicon slice by 23 times as that from the single normal incidence and 11 times as that from the Brewster angle transmission respectively.(3)Not like the conventional IR method,only collecting data from one sampling point at each measurement,MTR-IR collects data from multiple sampling points in a longer sample for one measurement.Overall,both theoretical calculations and experimental results demonstrate the high sensitivity,reliability,and reproducibility of the MTR-IR spectroscopy on the measurement ofimpurities of interstitial oxygen and substitutional carbon of single crystalline silicon.

    multiple transmission-reflection(MTR);infrared Spectroscopy(IR);interstitial oxygen;substitutional carbon

    O611.5

    A

    1001-4861(2016)02-0351-09

    10.11862/CJIC.2016.044

    2015-11-03。收修改稿日期:2015-12-03。

    國家重點基礎(chǔ)研究發(fā)展計劃(No.2013CB922101),國家自然科學(xué)基金(No.91027019)資助項目。

    *通信聯(lián)系人。E-mail:sjxiao@nju.edu.cn

    猜你喜歡
    代位單晶硅南京大學(xué)
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    代位追償引發(fā)糾紛
    公民與法治(2022年6期)2022-07-26 06:16:20
    論法國代位清償制度及對我國的啟示
    《南京大學(xué)學(xué)報數(shù)學(xué)半年刊》征稿簡則
    論抵押權(quán)物上代位的實現(xiàn)制度
    法制博覽(2018年22期)2018-01-23 03:31:24
    單晶硅回歸
    能源(2016年2期)2016-12-01 05:10:32
    單晶硅各向異性濕法刻蝕的形貌控制
    添加劑對單晶硅太陽電池表面織構(gòu)化的影響
    再保險人適用代位求償權(quán)之法理分析
    法制博覽(2016年36期)2016-02-02 14:17:03
    Comprendre et s'entendre
    久久综合国产亚洲精品| 亚洲国产欧美在线一区| 国产成人精品在线电影| 日韩欧美一区视频在线观看| 国产日韩欧美视频二区| www日本在线高清视频| 最近中文字幕高清免费大全6| 久久久久视频综合| 久久97久久精品| 啦啦啦啦在线视频资源| 国产午夜精品一二区理论片| 国产精品成人在线| 欧美日韩视频高清一区二区三区二| 国产片特级美女逼逼视频| 国产野战对白在线观看| 日本免费在线观看一区| 欧美精品国产亚洲| 亚洲国产精品成人久久小说| 三上悠亚av全集在线观看| 欧美成人午夜免费资源| 久久久久国产精品人妻一区二区| 18禁观看日本| 亚洲人成77777在线视频| av福利片在线| 少妇猛男粗大的猛烈进出视频| 欧美亚洲日本最大视频资源| 女性生殖器流出的白浆| 婷婷色综合大香蕉| 午夜福利视频精品| 国产欧美日韩一区二区三区在线| 国产成人精品在线电影| 18禁裸乳无遮挡动漫免费视频| 在线观看免费高清a一片| 欧美成人精品欧美一级黄| 人妻一区二区av| 18在线观看网站| 亚洲欧洲日产国产| 在线观看www视频免费| 亚洲精华国产精华液的使用体验| 国产黄频视频在线观看| av在线播放精品| 欧美亚洲日本最大视频资源| 成年人免费黄色播放视频| 哪个播放器可以免费观看大片| 黑人欧美特级aaaaaa片| 在线亚洲精品国产二区图片欧美| 欧美激情极品国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 在线观看国产h片| 一级a爱视频在线免费观看| 日韩电影二区| 天天操日日干夜夜撸| 日韩中文字幕视频在线看片| a 毛片基地| 男人添女人高潮全过程视频| 最近最新中文字幕大全免费视频 | 欧美xxⅹ黑人| 多毛熟女@视频| 97人妻天天添夜夜摸| 巨乳人妻的诱惑在线观看| 亚洲欧美一区二区三区黑人 | 国产成人午夜福利电影在线观看| 青草久久国产| 啦啦啦在线免费观看视频4| 黄色 视频免费看| 99国产精品免费福利视频| 久久精品亚洲av国产电影网| 精品第一国产精品| 久久人人97超碰香蕉20202| 欧美日本中文国产一区发布| 精品一区二区三区四区五区乱码 | 女人精品久久久久毛片| a级毛片黄视频| 日韩一区二区视频免费看| av网站免费在线观看视频| 97在线视频观看| 日韩 亚洲 欧美在线| 两个人免费观看高清视频| 精品人妻偷拍中文字幕| 天堂8中文在线网| 老汉色∧v一级毛片| 岛国毛片在线播放| 免费播放大片免费观看视频在线观看| 夜夜骑夜夜射夜夜干| 波多野结衣av一区二区av| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 黄网站色视频无遮挡免费观看| 欧美激情 高清一区二区三区| 一区二区三区精品91| 黄色怎么调成土黄色| 晚上一个人看的免费电影| 国产欧美亚洲国产| 亚洲成国产人片在线观看| 免费在线观看视频国产中文字幕亚洲 | 欧美人与善性xxx| 亚洲熟女精品中文字幕| 人妻人人澡人人爽人人| 欧美av亚洲av综合av国产av | www.精华液| 精品少妇一区二区三区视频日本电影 | av在线app专区| 欧美激情高清一区二区三区 | 午夜激情av网站| 另类亚洲欧美激情| 日韩一本色道免费dvd| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频| 国产有黄有色有爽视频| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| 精品国产一区二区三区久久久樱花| 成年女人毛片免费观看观看9 | 色哟哟·www| 在线免费观看不下载黄p国产| 国产精品不卡视频一区二区| 亚洲伊人久久精品综合| 人体艺术视频欧美日本| 日本av免费视频播放| 9色porny在线观看| 午夜激情av网站| 亚洲精品久久成人aⅴ小说| 欧美xxⅹ黑人| 99久久中文字幕三级久久日本| 午夜福利视频精品| 欧美日韩亚洲高清精品| 欧美老熟妇乱子伦牲交| 一级,二级,三级黄色视频| 色哟哟·www| 男人爽女人下面视频在线观看| videos熟女内射| 国产男女超爽视频在线观看| 视频区图区小说| 9色porny在线观看| 2021少妇久久久久久久久久久| 一边摸一边做爽爽视频免费| 丁香六月天网| 深夜精品福利| 满18在线观看网站| 国产成人91sexporn| 制服人妻中文乱码| 国产精品久久久久成人av| 狠狠精品人妻久久久久久综合| 少妇的逼水好多| 丝袜美腿诱惑在线| 国产欧美日韩综合在线一区二区| 一级片'在线观看视频| 国产视频首页在线观看| 国产av国产精品国产| 亚洲欧美一区二区三区久久| 国产精品久久久久久精品古装| 美女中出高潮动态图| 欧美日韩综合久久久久久| 只有这里有精品99| 亚洲精品乱久久久久久| 啦啦啦在线免费观看视频4| 少妇人妻精品综合一区二区| 老女人水多毛片| 黄色一级大片看看| 一区在线观看完整版| 久久97久久精品| 亚洲国产毛片av蜜桃av| 国产精品一国产av| 9热在线视频观看99| 免费在线观看完整版高清| 久久久久精品久久久久真实原创| 少妇 在线观看| www.av在线官网国产| 十分钟在线观看高清视频www| 国产精品99久久99久久久不卡 | 欧美日韩视频精品一区| 观看美女的网站| 在线免费观看不下载黄p国产| 久久精品国产鲁丝片午夜精品| a级片在线免费高清观看视频| 国产av精品麻豆| 亚洲天堂av无毛| 高清av免费在线| 男男h啪啪无遮挡| 国产日韩欧美视频二区| av视频免费观看在线观看| 色网站视频免费| 日韩一本色道免费dvd| 国产精品无大码| 国产成人91sexporn| 一级毛片电影观看| 啦啦啦视频在线资源免费观看| 成年人午夜在线观看视频| 亚洲精品在线美女| 高清在线视频一区二区三区| 人妻 亚洲 视频| 亚洲视频免费观看视频| 五月开心婷婷网| 交换朋友夫妻互换小说| 日韩伦理黄色片| 最近最新中文字幕免费大全7| 777米奇影视久久| 久久综合国产亚洲精品| 亚洲国产最新在线播放| 亚洲欧美精品综合一区二区三区 | 日本91视频免费播放| 国产精品国产av在线观看| 精品酒店卫生间| 纵有疾风起免费观看全集完整版| av免费观看日本| 亚洲av成人精品一二三区| 免费久久久久久久精品成人欧美视频| 丰满迷人的少妇在线观看| 午夜91福利影院| 久久久久国产精品人妻一区二区| 久久久久久人妻| 国产午夜精品一二区理论片| 国产男女超爽视频在线观看| 日韩一本色道免费dvd| 一级片'在线观看视频| 亚洲av免费高清在线观看| 国产精品一二三区在线看| 精品人妻一区二区三区麻豆| 久久久欧美国产精品| 不卡视频在线观看欧美| 欧美日韩综合久久久久久| 欧美日韩成人在线一区二区| 成人国语在线视频| 最近中文字幕高清免费大全6| 老司机亚洲免费影院| 蜜桃国产av成人99| 国产一区有黄有色的免费视频| 亚洲久久久国产精品| 亚洲精品aⅴ在线观看| 免费在线观看黄色视频的| 国产一区亚洲一区在线观看| 一区二区三区四区激情视频| 水蜜桃什么品种好| 精品人妻一区二区三区麻豆| 亚洲男人天堂网一区| 在线亚洲精品国产二区图片欧美| videos熟女内射| 中文字幕人妻丝袜一区二区 | 91精品三级在线观看| av网站免费在线观看视频| 日本vs欧美在线观看视频| 久久久久久久久免费视频了| 国产在视频线精品| 亚洲国产欧美日韩在线播放| 一区二区日韩欧美中文字幕| 成人亚洲欧美一区二区av| 国产精品偷伦视频观看了| 大片电影免费在线观看免费| 午夜福利视频精品| 欧美精品亚洲一区二区| 精品亚洲乱码少妇综合久久| 熟女av电影| 国产成人精品久久二区二区91 | 国产成人精品福利久久| 国产男女超爽视频在线观看| 日本av免费视频播放| 免费av中文字幕在线| 亚洲国产欧美网| 免费看av在线观看网站| 青春草视频在线免费观看| 欧美日本中文国产一区发布| 男女啪啪激烈高潮av片| 国产一区亚洲一区在线观看| 少妇猛男粗大的猛烈进出视频| 日韩一区二区三区影片| 美女中出高潮动态图| 欧美日韩一区二区视频在线观看视频在线| 黄片无遮挡物在线观看| 免费av中文字幕在线| 免费在线观看视频国产中文字幕亚洲 | xxx大片免费视频| 丝袜美足系列| 欧美亚洲日本最大视频资源| 久久这里有精品视频免费| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女午夜一区二区三区| 国产视频首页在线观看| 下体分泌物呈黄色| 午夜福利视频在线观看免费| 99国产综合亚洲精品| 26uuu在线亚洲综合色| 久久久久人妻精品一区果冻| 成年人午夜在线观看视频| 91成人精品电影| 伦理电影大哥的女人| 亚洲精品自拍成人| 啦啦啦在线观看免费高清www| videossex国产| 中文字幕制服av| 欧美人与善性xxx| 汤姆久久久久久久影院中文字幕| 可以免费在线观看a视频的电影网站 | 国产福利在线免费观看视频| 99久久中文字幕三级久久日本| 啦啦啦视频在线资源免费观看| 精品国产超薄肉色丝袜足j| 两个人免费观看高清视频| 久久99一区二区三区| 日韩三级伦理在线观看| videossex国产| 伊人久久大香线蕉亚洲五| 中文字幕人妻丝袜一区二区 | 男女下面插进去视频免费观看| av免费在线看不卡| 亚洲欧美一区二区三区久久| 久久久久久久国产电影| 不卡视频在线观看欧美| 国产精品偷伦视频观看了| 欧美国产精品一级二级三级| 亚洲精品日本国产第一区| 国产亚洲av片在线观看秒播厂| 大香蕉久久网| 香蕉国产在线看| av天堂久久9| 国产黄色视频一区二区在线观看| 在线观看一区二区三区激情| 老司机影院毛片| 免费播放大片免费观看视频在线观看| 久久99热这里只频精品6学生| 久久精品久久久久久久性| 亚洲第一青青草原| 久久免费观看电影| 国产激情久久老熟女| 美女国产高潮福利片在线看| 欧美97在线视频| 国产成人精品久久二区二区91 | 久久99精品国语久久久| 久久 成人 亚洲| 国产野战对白在线观看| 天天操日日干夜夜撸| 大码成人一级视频| 狂野欧美激情性bbbbbb| 中文字幕人妻丝袜一区二区 | 欧美另类一区| 美女视频免费永久观看网站| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| www日本在线高清视频| 国产毛片在线视频| 亚洲一区二区三区欧美精品| 久久精品国产综合久久久| a级片在线免费高清观看视频| 一本—道久久a久久精品蜜桃钙片| 午夜日韩欧美国产| 欧美老熟妇乱子伦牲交| 亚洲国产av新网站| 久久精品夜色国产| 国产白丝娇喘喷水9色精品| 黑人猛操日本美女一级片| 九九爱精品视频在线观看| 亚洲欧美精品自产自拍| 观看美女的网站| 日日啪夜夜爽| 制服丝袜香蕉在线| 国产成人精品婷婷| 超碰97精品在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲四区av| 一个人免费看片子| 丝袜美腿诱惑在线| 亚洲成国产人片在线观看| 免费日韩欧美在线观看| 美女午夜性视频免费| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 人妻少妇偷人精品九色| 成人午夜精彩视频在线观看| 亚洲国产精品一区二区三区在线| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说| 成人午夜精彩视频在线观看| 91aial.com中文字幕在线观看| 夜夜骑夜夜射夜夜干| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 下体分泌物呈黄色| 在线看a的网站| 在线 av 中文字幕| 一级片免费观看大全| 最近的中文字幕免费完整| 国产精品 国内视频| 少妇 在线观看| 日产精品乱码卡一卡2卡三| 日韩一区二区三区影片| 亚洲天堂av无毛| 欧美日韩亚洲高清精品| 精品久久久久久电影网| 国产精品久久久av美女十八| 有码 亚洲区| 亚洲人成网站在线观看播放| 亚洲国产精品一区三区| 九草在线视频观看| 亚洲国产最新在线播放| 国产成人精品无人区| 美女国产高潮福利片在线看| 丝袜人妻中文字幕| 国产精品蜜桃在线观看| 99热网站在线观看| 精品国产一区二区三区四区第35| 国产亚洲午夜精品一区二区久久| 亚洲国产精品999| 久久综合国产亚洲精品| 成人免费观看视频高清| 一区二区三区乱码不卡18| 丝袜美腿诱惑在线| 亚洲欧美中文字幕日韩二区| 久久99精品国语久久久| 亚洲精品国产av蜜桃| 亚洲欧洲国产日韩| 欧美精品高潮呻吟av久久| 欧美日韩亚洲国产一区二区在线观看 | 日韩三级伦理在线观看| 人妻 亚洲 视频| 青春草亚洲视频在线观看| 91精品三级在线观看| 久久国产亚洲av麻豆专区| 最近中文字幕2019免费版| 99久久精品国产国产毛片| 天天操日日干夜夜撸| 侵犯人妻中文字幕一二三四区| 丝袜人妻中文字幕| 三上悠亚av全集在线观看| 精品久久久久久电影网| 精品国产一区二区三区四区第35| 在线观看国产h片| 国产在线视频一区二区| 欧美精品高潮呻吟av久久| 只有这里有精品99| 久久人人97超碰香蕉20202| 菩萨蛮人人尽说江南好唐韦庄| 日本91视频免费播放| 一边亲一边摸免费视频| 午夜福利,免费看| 一区二区三区四区激情视频| 一级毛片黄色毛片免费观看视频| a 毛片基地| 亚洲精品,欧美精品| 欧美 日韩 精品 国产| 日韩制服骚丝袜av| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一av免费看| 制服人妻中文乱码| 色94色欧美一区二区| 超碰成人久久| 亚洲人成电影观看| 亚洲美女搞黄在线观看| 精品久久蜜臀av无| 黄片小视频在线播放| 久久99热这里只频精品6学生| 久久女婷五月综合色啪小说| 亚洲一区中文字幕在线| 久久99蜜桃精品久久| 久久人人97超碰香蕉20202| 亚洲精品乱久久久久久| 赤兔流量卡办理| 久久精品久久精品一区二区三区| 在线天堂最新版资源| 国产成人aa在线观看| 黄片无遮挡物在线观看| 亚洲少妇的诱惑av| 国产男女内射视频| 99国产精品免费福利视频| 大片免费播放器 马上看| 男女免费视频国产| 激情视频va一区二区三区| 国产极品粉嫩免费观看在线| 巨乳人妻的诱惑在线观看| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| 曰老女人黄片| 欧美精品一区二区免费开放| 涩涩av久久男人的天堂| 国产视频首页在线观看| 国产免费现黄频在线看| 在线 av 中文字幕| 男人操女人黄网站| 午夜福利视频在线观看免费| 国产人伦9x9x在线观看 | 五月天丁香电影| 亚洲精品,欧美精品| 韩国精品一区二区三区| 有码 亚洲区| 国产在线视频一区二区| 日本欧美国产在线视频| 黄片无遮挡物在线观看| 91成人精品电影| 亚洲精品国产色婷婷电影| 黄色配什么色好看| 国产精品嫩草影院av在线观看| 汤姆久久久久久久影院中文字幕| 亚洲图色成人| 97在线视频观看| 黄色一级大片看看| 国产精品嫩草影院av在线观看| 久久99蜜桃精品久久| 精品人妻一区二区三区麻豆| 欧美精品av麻豆av| 久久久久久久久久人人人人人人| 久久精品夜色国产| 国产精品秋霞免费鲁丝片| 午夜福利乱码中文字幕| 久久国产亚洲av麻豆专区| 国产成人精品久久二区二区91 | 久久久a久久爽久久v久久| 欧美精品av麻豆av| 老司机影院毛片| 一级a爱视频在线免费观看| 26uuu在线亚洲综合色| 欧美97在线视频| 校园人妻丝袜中文字幕| 肉色欧美久久久久久久蜜桃| 三级国产精品片| 国产精品秋霞免费鲁丝片| 一区二区日韩欧美中文字幕| 久久国产亚洲av麻豆专区| 亚洲精品aⅴ在线观看| 欧美成人精品欧美一级黄| 亚洲国产欧美在线一区| 老汉色av国产亚洲站长工具| 女性被躁到高潮视频| 国产精品一国产av| 巨乳人妻的诱惑在线观看| 黄色怎么调成土黄色| 成年美女黄网站色视频大全免费| 婷婷成人精品国产| 啦啦啦在线观看免费高清www| 久久久久精品人妻al黑| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡| 97在线视频观看| 亚洲经典国产精华液单| 97精品久久久久久久久久精品| 一区二区av电影网| 国产不卡av网站在线观看| videossex国产| 亚洲av中文av极速乱| 高清在线视频一区二区三区| 成人影院久久| 欧美日韩综合久久久久久| 国产精品国产三级国产专区5o| 国产成人免费观看mmmm| a级片在线免费高清观看视频| 精品久久久精品久久久| 两性夫妻黄色片| 精品亚洲成a人片在线观看| 亚洲av电影在线观看一区二区三区| 亚洲经典国产精华液单| 韩国av在线不卡| 国产成人91sexporn| 宅男免费午夜| 春色校园在线视频观看| 一区在线观看完整版| 男人添女人高潮全过程视频| 高清不卡的av网站| 1024视频免费在线观看| 91成人精品电影| 观看美女的网站| 国产成人精品无人区| 久久久久久人妻| 亚洲精品国产色婷婷电影| 国产精品av久久久久免费| 国产精品一二三区在线看| 成年女人毛片免费观看观看9 | 狠狠精品人妻久久久久久综合| 777米奇影视久久| 热99久久久久精品小说推荐| 人人澡人人妻人| 五月开心婷婷网| 亚洲精品国产av成人精品| 午夜福利在线免费观看网站| 久久国内精品自在自线图片| 欧美精品人与动牲交sv欧美| 三级国产精品片| 日本午夜av视频| 久久精品国产亚洲av天美| 亚洲成国产人片在线观看| 亚洲国产看品久久| 久久热在线av| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| av免费观看日本| 新久久久久国产一级毛片| 熟女少妇亚洲综合色aaa.| 亚洲欧美成人精品一区二区| 国产av国产精品国产| 午夜福利在线免费观看网站| 99久国产av精品国产电影| 亚洲精品日韩在线中文字幕| 欧美日韩亚洲高清精品| 国产成人91sexporn| 国产淫语在线视频| 欧美精品av麻豆av| 大香蕉久久网| 超碰成人久久| 亚洲精品,欧美精品| 国产欧美日韩一区二区三区在线| 精品久久久久久电影网| 精品人妻在线不人妻| 看免费av毛片| 黄频高清免费视频| 麻豆乱淫一区二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品美女久久久久99蜜臀 | 欧美日韩国产mv在线观看视频| 成人黄色视频免费在线看| 久久精品aⅴ一区二区三区四区 | 五月开心婷婷网| 丝袜脚勾引网站| 亚洲色图 男人天堂 中文字幕|