• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    采用稀釋成鹽法從富硼濃縮鹽鹵中合成的鎂硼酸鹽化合物及其結(jié)構(gòu)與性質(zhì)

    2016-11-28 09:36:31彭姣玉林鋒楊波王立平DinnebierRobertc董亞萍李武
    無機化學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:鹽法鹽鹵硼酸鹽

    彭姣玉 林鋒 楊波 王立平 Dinnebier E.Robertc 董亞萍*,,2 李武

    (1中國科學(xué)院青海鹽湖研究所,西寧810008)(2中國科學(xué)院大學(xué),北京100049)(3中國科學(xué)院鹽湖資源綜合高效利用重點實驗室,西寧810008) (4德國馬克斯-普朗克固體研究所,斯圖加特70569)

    采用稀釋成鹽法從富硼濃縮鹽鹵中合成的鎂硼酸鹽化合物及其結(jié)構(gòu)與性質(zhì)

    彭姣玉1,2,3林鋒1,2,3楊波1王立平1,2,3Dinnebier E.Robertc4董亞萍*,1,2李武1

    (1中國科學(xué)院青海鹽湖研究所,西寧810008)(2中國科學(xué)院大學(xué),北京100049)(3中國科學(xué)院鹽湖資源綜合高效利用重點實驗室,西寧810008) (4德國馬克斯-普朗克固體研究所,斯圖加特70569)

    通過稀釋成鹽法在富硼濃縮鹽鹵體系Na-K-Mg-Cl-SO4中合成了一種新的六硼酸鎂Mg[B6O7(OH)6]·5H2O化合物。根據(jù)X射線粉末衍射數(shù)據(jù)對其晶體結(jié)構(gòu)進(jìn)行了精修,并采用紅外及拉曼光譜法對其結(jié)構(gòu)進(jìn)行了表征,分析了其光譜及結(jié)構(gòu)特征。結(jié)果表明,該化合物由1個Mg原子、1個B6O7(OH)6基團(tuán)和5個H2O分子構(gòu)成,Mg原子以六配位形式與氧結(jié)合形成畸變MgO6八面體構(gòu)型;熱重分析表明,高溫分解過程該化合物脫水轉(zhuǎn)化為四硼酸鎂MgB4O7;通過紫外可見漫反射法求得其禁帶寬度為4.44 eV。

    鎂硼酸鹽;含硼鹽鹵;稀釋成鹽法;結(jié)構(gòu);熱穩(wěn)定性

    0Introduction

    Boron and its compounds are important inorganic salt products.Especially materials enriched in boron-10arewidelyusedinnuclearpower,military equipment,and pharmaceuticals,etc,based on the property that boron-10 can absorb thermal neutrons. For example,the boric acid enriched in boron-10 used as neutron absorber in nuclear power can effectively ensure the nuclear reactor′s safe operation[1]. Furthermore,boron minerals,owing to their high heat resistance,light weight,fire retardency,nonlinear optics and anti-wear properties,can be widely applied inceramics,metallurgy,buildingmaterialsand electronic areas[2-5].In recent years,with the increasing demandofboronproductsandthedifficulty exploitationoflowgradeboronores,boron exploitation from salt lake brine has become an important means to produce boron products[6].

    Lake Da Qaidam is one of the magnesium sulfate subtype salt lakes found on Qinghai Tibet Plateau in western China.The brine of which is abundant in sodium,potassium,magnesium,lithium and boron mineral resources.The main composition of the brine is Na-K-Mg-Cl-SO4.And the crystallization path about summer brine during evaporation was[7]:

    halite→halite+epsomite→halite+epsomite+ hexahydrite+sylvite→halite+hexahydrite+sylvite+ carnallite→halite+hexahydrite+carnallite+bischofite.

    When the brine evaporation path went into bischofite crystallization,the brine is rich in boron and lithium resources and can be used as raw material for the production of boron and lithium products.Gao and Li have investigated the chemical behavior of the borate during brine evaporation[8].They found that the borate in this brine,in general,does not crystallize out but accumulates in the highly concentrated brine,in the form of polyborate anions of“tetraborate”bystatistics.Thesupersolubilityof boron enriched in the brine can reach up to 5.82%in B2O3[9].However,the fact will be exactly the opposite when diluting the boron-bearing highly concentrated brine with some water.Kinds of Mg-borate salts would participate after diluting the brine for a period of time and the deposit salts changed with the dilution ratio of brine[10].This phenomenon is quite different to crystallization by evaporation.Gao called it as“crystallization by dilution”.The salts precipitated from diluted brine contain magnesium borate hydrate(MgO(B2O3)3·6H2O),macallisterite(Mg2[B6O7(OH)6]2·9H2O),admontite(MgO(B2O3)3·7H2O),hungchsaoite(Mg(H2O)5B4O5(OH)4·2H2O),kurnakovite(MgB3O3(OH)5(H2O)4·H2O) andinderite(MgB3O3(OH)5(H2O)4·H2O).The above results of“crystallization by dilution”indicate a possible economic extraction of boron resources from brine. Thus,we just call it as dilution method compared with traditional methods of acid precipitation and solvent extraction.During the dilution crystallization process, we found a new Mg-borate compound of Mg[B6O7(OH)6] ·5H2Ofromthehighlyconcentratedbrine.The present study aims to report the synthesis,structural characterization,optical and thermal properties of this new compound.

    1 Experimental

    1.1Materials and measurements

    Mirabilite ores(Na2SO4·10H2O)were used to remove parts of Mg2+ion from brine for further evaporation purpose.The Raman spectra were recorded using a Raman spectrometer(ALMEGA-TM,Therm Nicolet,American)with the linearly polarized 532.0 nm line of a diode laser.The spectra were taken from 300 to 1 500 cm-1since the characteristic peaks of borate compounds were given in the range of 1 500~500 cm-1[11].The FTIR spectrum was obtained on a Fourier transform IR spectrometer(NEXUS,Therm Nicolet,American)with KBr pellet in the range of 400~4 000 cm-1at room temperature.The DSC and TGmeasurementswereperformedsimultaneously using a scanning calorimeter(NETZSCH STA,449F3) heating from 30 to 1 200℃in nitrogen atmosphere with a constant heating rate of 5℃·min-1.The Mg and B elements of the product was investigated by the inductivecouplingplasma(ICP)spectrometer (Thermo,6500)and the O element was measured by an Oxford series X-ray energy dispersion spectrometer(EDS).The UV/Vis diffuse spectrum for Mg[B6O7(OH)6] ·5H2O was recorded with a Agilent Cary5000 spectrophotometer in the range from 200 to 800 nm at room temperature.

    1.2Preparation of the concentrated boron-bearing brine

    When the brine evaporation path went into bischofite crystallization,the boron content in brine is about 1.3%in B2O3which is too low to extract boron from brine by dilution method.Further evaporation is needed to concentrate the boron element.However, since the brine with saturated bischofite is extremely high-saline,viscous and hygroscopic and tends to absorb humidity from the air rather than drying.This brine can hardly be further concentrated by natural evaporation.In this study,according to the following reaction: some mirabilite ores were added into the brine at 25℃to react with the magnesium chloride generating magnesium sulfate and sodium chloride.Then the brine saturated with epsomite and halite can be easily further evaporated at room temperature.Therefore,the concentrated boron-bearing brine can be obtained by evaporation.

    1.3Synthesis of the magnesium borate of Mg[B6O7(OH)6]·5H2O

    The concentrated boron-bearing brine with boron content above 4%B2O3was used as materials to synthesize the new compound of Mg[B6O7(OH)6]·5H2O. First,an amount of the concentrated brine was diluted with some water,the mass ratio of brine and water was 1∶0.25.The solution was stirred for about 20 min each day at room temperature until the participation of solid phase,then aged and filtrated after a week. The sediment was washed by water and absolute alcohol,respectively,and dried in a vacuum drying oven for 24 h.The chemical composition of the obtained product was analyzed by titration.

    1.4X-ray powder diffraction crystallography

    A laboratory powder diffractometer(X′Pert PRO, 2006 PANalytical,Cu Kα1),with a tube voltage and current of 40 kV and 30 mA,was used to confirm the Mg[B6O7(OH)6]·5H2O phase purity.The powder pattern was measured in the scanning range from 3.502 0°to 109.998 0°,2θ with a scan step of 0.002°and at a fixed counting time of 16 s per step.

    Owing to the difficulty to grow crystals suitable for single-crystal structure determination,the crystal structure was solved and refined using conventional X-ray powder diffraction techniques.The TOPAS 4.2 program suite[12]was used for indexing,obtaining structure solution,and refinement of the crystal structure model.The iterative least squares algorithm(LSI)[13]was employed to index the pattern,and resulted in a primitive monoclinic lattice.The unit cell and profile parameters were refined by a Pawley fit[14]using the fundamental parameters approach[15].The background was modelled by a Chebychev polynamial of 10th order.

    2Results and discussion

    Fig.1Crystallization path of brine DL1at metastable diagram of Na+,K+,Mg2+/Cl,SO42-//H2O at 25℃

    2.1Evaporation crystallization path

    Thebrineevolutionduringevaporationwas representedgraphicallyonthemetastablephase diagram of Na+,K+,Mg2+/Cl,SO/H2O at 25℃[16](Fig.1).Its composition was listed in Table 1.In Fig. 1,DL0was the residue bittern of Da Qaidam salt lake during evaporation and its system was located in the bischofite phase.After removing parts of Mg2+ion by adding some mirabilite ores,the brine system“DL1”gone into the epsomite region and is easy to concentrate by evaporation.When the crystallization pathevolved from epsomite(DL1)to bischofite(DL3),the boron content in brine was concentrated to about 3% in B2O3(Table 1).This brine can be used to extract boron by dilution method.But,for the synthesis of the new compound,it will be further evaporated until the boron content is above 4%B2O3.Therefore,the concentrated boron-bearing brine DL5or DL6obtained byevaporationwereusedasmaterialsforthe synthesis of the new compound.

    2.2XRD pattern and crystal structure characterization

    Fig.2 shows the X-ray diffraction pattern of Mg[B6O7(OH)6]·5H2O and the results of the Rietveld refinement[17].The refined structural parameters are presented in Table 2.The obtained product was phase pure according to the X-ray powder diffraction.The chemical elements analyzed by titration and the crystal water measured by TG are shown in Table 3. The measured composition values fit well with the given formula.

    Table 1 Evolution of major ion concentrations during evaporation at ambient temperature

    Fig.2 X-ray diffraction pattern of Mg[B6O7(OH)6]·5H2O and results of the rietveld refinement

    In Fig.2,the X-ray diffraction pattern shows remarkable similarity to the pattern of Ni[B6O7(OH)6]· 5H2O[18].Forcomparability reasons,the standard crystallographic space group setting P21/c of Ni[B6O7(OH)6]·5H2O was keptforMg[B6O7(OH)6]·5H2O (Element analysis:Mg 6.38%,B 15.99%,O 73.20%) leading to lattice parameters of a=0.898 87(3)nm,b= 2.179 35(7)nm,c=0.720 79(2)nm,γ=99.8759(6)°, and V=1.391 07(8)nm3.

    In the crystal structure of Mg[B6O7(OH)6]·5H2O (Fig.3),the asymmetric unit consists of one Mg atom, one B6O7(OH)6cluster and five H2O molecules.The B atoms are in both 3-and 4-coordinated environments forming BO3triangles and BO4tetrahedra.Three BO3and three BO4units are connected by sharing a common O atom to form B6O7(OH)6.The Mg atom is 6-coordinatedwithsixOatomstoformaMgO6octahedron.In each units MgO6octahedron,the Mg atom shares two common O atoms with one B6O7(OH)6cluster and four common O atoms with four H2Oforming a 3D Mg(H2O)4B6O7(OH)6framework.Furthermore,the last one H2O connects with the Mg(H2O)4B6O7(OH)6framework to form the whole structure of Mg[B6O7(OH)6]·5H2O.

    In the B6O7(OH)6cluster,the B-O distances of BO3triangles are in the range of 0.135 7~0.138 5 nm (average 0.136 8 nm),and the B-O distances of BO4tetrahedra are in the range of 0.143 8~0.152 4 nm (average 0.147 7 nm).The O-B-O angles of the BO3triangles and the BO4tetrahedra are in the range of 115.018°~122.712°and 107.226°~111.398°,respectively.The Mg-O distances are in the range of 0.203 5~0.213 7 nm.The bond distances and angles of the compoundareinagreementwithotherborate compounds reported previously[19-21].

    Table 2Crystallographic and rietveld renement data for Mg[B6O7(OH)6]·5H2O

    Table 3Titration analysis of the Mg[B6O7(OH)6]·5H2O phase

    Fig.3Crystal structure of the Mg[B6O7(OH)6]·5H2O compound

    2.3FTIR and raman spectroscopy

    Fig.4and Fig.5 show the FT-IR and Raman spectra of Mg[B6O7(OH)6]·5H2O,respectively.In the FT-IR spectrum,the bands at high wavenumbers of 3 200~3 600 cm-1belonged to stretching of hydroxyl(ν(O-H));and the peak at 1 663 cm-1corresponded to bending of H-O-H.According to literatures[11,22],The bands at 1 420,1 350 cm-1were assigned to asymmetric stretching of the three-coordinate boron(νas(B(3)-O)). The bending of B-O-H was observed at band of 1 253 cm-1.The peaks between 1 174 and 1 053 cm-1belonged to asymmetric stretching of four-coordinated boron (νas(B(4)-O)).The symmetric stretching of B(3)-O and B(4)-O was observed in the range of 807~944 cm-1.And the band around 682 was out-of-plane bending of B(3)-O.

    Fig.4FT-IR spectrum of the Mg[B6O7(OH)6]·5H2O compound

    Fig.5Raman spectrum of the Mg[B6O7(OH)6]·5H2O compound

    In the Raman spectrum,based on the assignment of borates[22-24],weak bands in the region of 1 200~1 400 cm-1and 1 110~1 000 cm-1were asymmetric stretching of the three-coordinate boron(νas(B(3)-O))and four-coordinate boron(νas(B(4)-O)),respectively.The band at 937 cm-1was assigned to symmetric stretching ofthethree-coordinateboron(νs(B(3)-O));and the bands around 899,808 cm-1were νs(B(4)-O).Generally, the bands in the range of 610~650 cm-1were associated with the symmetric pulse vibration of triborate anion or hexaborate anion[22].In this study,the strong band at 612 cm-1belonged to the characteristic peaks of νp(B6O7(OH)62-).Besides,the peaks at and below 477 cm-1were assigned to bending of four-coordinate boron(δ(B(4)-O)).

    3.4Thermal analysis

    TG and DSC analyses of the Mg[B6O7(OH)6]· 5H2O phase are shown in Fig.6.Three endothermic peaks(151,211 and 994℃)and one exothermic peak (694℃)occurred in the DSC curve.In the first step, the weight loss is about 20%which was similar to the theoretical values of five water molecules weight of 22.90%,indicating there were five water molecules in the compound.In the second step,the weight loss was about 17%,which can be regarded as the weight of six hydroxyls(theoretical value of 13.75%)and the remaining water.The above total weight loss is about 37%correspondingtotheweightoffivewater molecules and six hydroxyl(theoretical values of 36.65%)in the compound.In the third step,the structure of the compound was changed after removing five water molecules and six hydroxyl.The fourth step indicates the melting point of the calcined crystals.

    Fig.6TG and DSC analyses of the Mg[B6O7(OH]6·5H2O compound

    To study the thermal decomposition behavior,the dehydrated products calcined at 400,800 and 1 000℃were confirmed by XRD analysis(Fig.7).Before XRD analysis,the dehydrated product calcined at 800℃was treated with methanol solution by esterification reaction to remove B2O3which occurred together with the dehydrated product during calcination process.In Fig.7,the exothermic peak around 694℃marked the transition of the dehydrated amorphous product toMgB4O7(PDF card:00-01-0927).While the calcined temperature went up to about 1 000℃,the MgB4O7crystal began to melt and stuck in the alumina crucible during cooling process.Therefore,a whole decomposition process is presented by the following chemical reactions:

    3.4Results of optical measurements

    Fig.8 shows the absorption spectrum of Mg[B6O7(OH)6]·5H2O compound.The absorption data were calculated from the following Kubelka-Munk function: F(R)=(1-R)2/(2R),where R is the reflectance.The energy gap Egwas calculated by the function:Eg=1 240/ λ,where λ is the wavelength.In Fig.8,the energy gap Egof Mg[B6O7(OH)6]·5H2Ocompounddetermined from extrapolation of high energy part of absorption spectra is about 4.44 eV.

    Fig.7XRD patterns of dehydrated products

    Fig.8Optical absorption spectra of Mg[B6O7(OH)6]·5H2O compound

    3Conclusions

    A new magnesium borate mineral,Mg[B6O7(OH)6] ·5H2O has been synthesized by dilution method from boron-bearing salt lakes for the first time at room temperature.The low reaction temperature used in this study provides a green chemistry approach for the synthesis of magnesium borate.The dilution crystallization method also provides a possible economic extraction of boron resources from salt lake brine.The crystal structure of this new compound was solved by laboratoryX-raypowderdiffractiondata.The compound crystallizes in the monoclinic space group P21/c.Its crystal structure consists of infinite chains of B6O7(OH)6clusters,intercalated by MgO6and H2O molecules,forming a 3D framework.The vibrational spectroscopy of FTIR and Raman reveals the presence of BO3triangles,BO4tetrahedra,water H2O and the characteristic B6O7(OH)62-anion in the compound, which further verifies the structural characterization by X-ray powder diffraction.The thermal analysis(TG and DSC)showed that there were at least four phases occurred during decomposi-tion process.The thermal behaviorgoesthroughthetransformationfrom amorphous to crystal phase of MgB4O7.The optical measurement found that the energy gap of the new magnesium borate is about 4.44 eV.

    References:

    [1]XU Jiao(許姣),ZHANG Wei-Jiang(張衛(wèi)江).Nucl.Sci.Eng. (核科學(xué)與工程),2012,32:238-243

    [2]Mhareb M H A,Hashima S,Ghoshal S K,et al.Opt.Mater., 2014,37:391-397

    [3]Chen S H,Zhang D F,Sun G.Mater.Lett.,2014,121:206-208

    [4]Li Y,Fan Z,Lu J G,et al.Chem.Mater.,2004,16:2512-2514

    [5]Zhu W,Li G,Zhang Q,et al.Powder Technol.,2010,203: 265-271

    [6]Xu L,Liu Y Q,Hu H P,et al.Desalination,2012,294:1-7

    [7]GAO Shi-Yang(高世揚),Song Peng-Sheng(宋彭生),XIAShu-Ping(夏樹屏),et al.Proceedings of Salt Lake Chemistry: Vol.2(鹽湖化學(xué)論文集:第2冊).Qinghai:Qinghai Bureau Printing House,1995:18-32

    [8]GAO Shi-Yang(高世揚),LI Guo-Ying(李國英).Chem.J. Chinese Universities(高等學(xué)校化學(xué)學(xué)報),1982,3:141-148

    [9]GAO Shi-Yang(高世揚),FU Ting-Jin(符廷進(jìn)),WANG Jian-Zhong(王建中).Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報), 1985,1:97-102

    [10]GAO Shi-Yang(高世揚),XU Kai-Fen(許開芬),LI Gang(李剛),et al.Acta Chim.Sinica(化學(xué)學(xué)報),1986,44:1229-1233

    [11]Jia Y Z,Gao S Y,Xia S P,et al.Spectrochim.Acta A, 2000,56:1291-1297

    [12]TOPAS4.2,BrukerAXSInc.:Madison,Wisconsin,USA,2009.

    [13]Coelho A A.J.Appl.Crystallogr.,2003,36:86-95

    [14]Pawley G S.J.Appl.Crystallogr.,1981,14:357-361

    [15]Cheary R W,Coelho A A,Cline J P.J.Res.Nat.Inst. Stand.Technol.,2004,109:1-25

    [16]JIN Zuo-Mei(金作美),XIAO Xian-Zhi(肖顯志),LIANG Shi-Mei(梁式梅).Acta Chim.Sinica(化學(xué)學(xué)報),1980,38: 313-321

    [17]Rietveld H M.J.Appl.Crystallogr.,1969,2:65-71

    [18]Silin E Y,Ievinsh A F.Z.Kristallogr.,1977,22:505-509

    [19]Liu Z H,Li L Q,Zhang W J.Inorg.Chem.,2006,45:1430-1432

    [20]Wu H Q,Wei Q,He H,et al.Inorg.Chem.Commun.,2014, 46:69-72

    [21]Sohr G,Falkowski V,Huppertz H.J.Solid State Chem., 2015,225:114-119

    [22]Li J,Xia S P,Gao S Y.Spectrochim.Acta,1995,51A:519-532

    [23]Liu Z H,Gao B,Hu M C,et al.Spectrochim.Acta Part A, 2003,59:2341-2345

    [24]JIA Yong-Zhong(賈永忠),GAO Shi-Yang(高世揚),XIA Shu-Ping(夏樹屏),et al.Chem.J.Chinese Universities(高等學(xué)?;瘜W(xué)學(xué)報),2001,22:199-103

    Synthesis,Structure and Properties of a Magnesium Borate in Concentrated Boron-Bearing Salt Lake Brine by Dilution Method

    PENG Jiao-Yu1,2,3LIN Feng1,2,3YANG Bo1WANG Li-Ping1,2,3Dinnebier E.Robertc4DONG Ya-Ping*,1,2LI Wu1
    (1Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining 810008,China) (2University of Chinese Academy of Sciences,Beijing 100049,China) (3Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science,Xining 810008,China)
    (4Max-Planck Institute for Solid State Research,Stuttgart 70569,Germany)

    A new magnesium borate mineral,Mg[B6O7(OH)6]·5H2O was synthesized via dilution method from boron-bearing Na-K-Mg-Cl-SO4salt lakes.The crystal structure of the new phase was solved and refined using X-ray powder diffraction data and characterized with FTIR and Raman.Its asymmetric unit consists of one Mg atom,one B6O7(OH)6cluster and five H2O molecules.The Mg atom is 6-coordinated with six O atoms to form a MgO6octahedron.Thermal gravimetry(TG/DSC)was used to investigate the thermal behavior of the new compound.During the high temperature decomposition process the dehydrated product MgB4O7formed.The optical absorption characteristic of this new mineral was investigated by UV-Vis spectrometer and its energy gap Egis about 4.44 eV.

    magnesium borate;boron-bearing salt lake;dilution method;structure;thermal behavior

    O611.4

    A

    1001-4861(2015)02-0305-08

    10.11862/CJIC.2015.042

    2015-07-13。收修改稿日期:2015-10-21。

    國家青年科學(xué)基金(No.21501187),青海省科技支撐項目(No.2013-G-138A),青海省(應(yīng)用)基礎(chǔ)研究計劃項目(NO.2013-Z-705),中國科學(xué)院儀器設(shè)備功能開發(fā)技術(shù)創(chuàng)新項目(No.Y410031012)資助。

    *通信聯(lián)系人。E-mail:Dongyaping@hotmail.com

    猜你喜歡
    鹽法鹽鹵硼酸鹽
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    鹵水黑豆豆腐制作工藝研究
    斯鹽最靈,此籍可餐
    ——鹽業(yè)古籍整理新成果《河?xùn)|鹽法備覽合集簡注》出版
    鹽鹵水法制作豆花的工藝
    《多功能金屬硼酸鹽合成與應(yīng)用》
    傳統(tǒng)鹽鹵豆腐20元一塊
    甜蕎麥麩皮蛋白質(zhì)提取工藝研究
    廢雜銅中硼酸鹽熔劑除鉛的實驗研究
    AISI E52100鋼在1-乙基-3-甲基咪唑四氟硼酸鹽離子液體中的腐蝕行為
    N-正丁基吡啶四氟硼酸鹽離子液體的合成
    女警被强在线播放| 亚洲国产欧美网| 美国免费a级毛片| 999精品在线视频| 欧美在线黄色| 亚洲熟妇熟女久久| 一级毛片高清免费大全| 日本三级黄在线观看| 精品一区二区三区av网在线观看| 亚洲国产精品合色在线| 黄色 视频免费看| 啦啦啦免费观看视频1| 国产精品日韩av在线免费观看 | 欧美人与性动交α欧美精品济南到| 国产成人啪精品午夜网站| 欧美日韩国产mv在线观看视频| 色哟哟哟哟哟哟| av在线播放免费不卡| 亚洲狠狠婷婷综合久久图片| 久久天躁狠狠躁夜夜2o2o| 99久久精品国产亚洲精品| 黄色a级毛片大全视频| 欧美日韩精品网址| 男人舔女人的私密视频| 亚洲自拍偷在线| 亚洲片人在线观看| 国产精品免费一区二区三区在线| 久久精品影院6| 国产有黄有色有爽视频| 国产精品久久视频播放| 成人黄色视频免费在线看| e午夜精品久久久久久久| 欧美成人免费av一区二区三区| 黄片播放在线免费| 热re99久久国产66热| 免费日韩欧美在线观看| 韩国精品一区二区三区| 99国产精品免费福利视频| 一级片免费观看大全| 久久草成人影院| 两个人看的免费小视频| 亚洲国产精品合色在线| 无遮挡黄片免费观看| 久久久精品欧美日韩精品| 久9热在线精品视频| 国产精品一区二区在线不卡| 亚洲av五月六月丁香网| 美女大奶头视频| 久久久精品欧美日韩精品| 日韩有码中文字幕| 黑人欧美特级aaaaaa片| 国产精品一区二区精品视频观看| 久久久久亚洲av毛片大全| 亚洲av成人av| av超薄肉色丝袜交足视频| aaaaa片日本免费| 夜夜躁狠狠躁天天躁| 日韩免费高清中文字幕av| 亚洲成人久久性| 岛国视频午夜一区免费看| av超薄肉色丝袜交足视频| 欧美日韩亚洲国产一区二区在线观看| 精品久久久精品久久久| 波多野结衣高清无吗| 国产一区二区激情短视频| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 亚洲自偷自拍图片 自拍| 久久欧美精品欧美久久欧美| 日韩三级视频一区二区三区| 欧美精品一区二区免费开放| 中文字幕最新亚洲高清| 久热爱精品视频在线9| 国产不卡一卡二| 日日干狠狠操夜夜爽| 亚洲人成伊人成综合网2020| 丝袜美足系列| 三上悠亚av全集在线观看| 免费高清视频大片| 黄片大片在线免费观看| 国产av一区在线观看免费| 老熟妇乱子伦视频在线观看| 欧美在线黄色| 精品免费久久久久久久清纯| 亚洲成a人片在线一区二区| 色播在线永久视频| 伊人久久大香线蕉亚洲五| 久久久久久久午夜电影 | 天天躁夜夜躁狠狠躁躁| 亚洲熟妇熟女久久| 一区在线观看完整版| 50天的宝宝边吃奶边哭怎么回事| 日韩中文字幕欧美一区二区| 精品国产美女av久久久久小说| 1024视频免费在线观看| 午夜久久久在线观看| 激情在线观看视频在线高清| 国产一区在线观看成人免费| 亚洲七黄色美女视频| 中出人妻视频一区二区| 欧美 亚洲 国产 日韩一| 波多野结衣av一区二区av| 叶爱在线成人免费视频播放| av片东京热男人的天堂| 在线观看舔阴道视频| 亚洲精品在线观看二区| 久久精品人人爽人人爽视色| 精品国产一区二区久久| 国产成人精品久久二区二区免费| 精品电影一区二区在线| 免费高清视频大片| 亚洲av第一区精品v没综合| 欧美日韩福利视频一区二区| 最近最新中文字幕大全电影3 | 搡老岳熟女国产| 天天添夜夜摸| 操美女的视频在线观看| 咕卡用的链子| 久久人人精品亚洲av| 99国产综合亚洲精品| 桃色一区二区三区在线观看| 亚洲一区二区三区不卡视频| 人人妻,人人澡人人爽秒播| 黑丝袜美女国产一区| 成人国语在线视频| 中文字幕精品免费在线观看视频| 欧美中文综合在线视频| 好看av亚洲va欧美ⅴa在| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 一级毛片精品| 99国产极品粉嫩在线观看| 国产精品av久久久久免费| 久久精品国产99精品国产亚洲性色 | 久久午夜亚洲精品久久| 夜夜躁狠狠躁天天躁| 三上悠亚av全集在线观看| 午夜福利免费观看在线| 精品一区二区三区四区五区乱码| 色综合婷婷激情| 涩涩av久久男人的天堂| 中文字幕另类日韩欧美亚洲嫩草| 精品欧美一区二区三区在线| 激情在线观看视频在线高清| 国产蜜桃级精品一区二区三区| 国产黄色免费在线视频| 国产精品一区二区免费欧美| 色哟哟哟哟哟哟| 国产午夜精品久久久久久| 精品国产一区二区久久| 搡老熟女国产l中国老女人| 日韩成人在线观看一区二区三区| 高清黄色对白视频在线免费看| 在线av久久热| 又黄又粗又硬又大视频| 亚洲 国产 在线| 日韩三级视频一区二区三区| 香蕉国产在线看| 窝窝影院91人妻| 波多野结衣高清无吗| 久久人妻熟女aⅴ| 高清av免费在线| 一边摸一边做爽爽视频免费| 国产欧美日韩精品亚洲av| 女警被强在线播放| 香蕉久久夜色| av欧美777| 超色免费av| 人妻丰满熟妇av一区二区三区| 欧美+亚洲+日韩+国产| 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 日韩中文字幕欧美一区二区| 19禁男女啪啪无遮挡网站| 精品国产一区二区久久| 免费在线观看视频国产中文字幕亚洲| 午夜a级毛片| 超色免费av| 真人做人爱边吃奶动态| 最好的美女福利视频网| 大陆偷拍与自拍| 国产亚洲欧美精品永久| 久久国产精品影院| 日韩欧美三级三区| 麻豆国产av国片精品| 搡老熟女国产l中国老女人| avwww免费| 在线观看午夜福利视频| 法律面前人人平等表现在哪些方面| 精品国产国语对白av| 热re99久久精品国产66热6| 国产蜜桃级精品一区二区三区| 18禁美女被吸乳视频| 日本vs欧美在线观看视频| 国产成人精品久久二区二区免费| 欧美日韩亚洲高清精品| 男女床上黄色一级片免费看| 最近最新免费中文字幕在线| 成人三级做爰电影| 欧美日韩瑟瑟在线播放| 亚洲成人免费av在线播放| 琪琪午夜伦伦电影理论片6080| 一级作爱视频免费观看| 久久人人爽av亚洲精品天堂| 国产精品99久久99久久久不卡| 一a级毛片在线观看| 国产亚洲精品久久久久5区| 视频区图区小说| 脱女人内裤的视频| 国产视频一区二区在线看| 久久亚洲精品不卡| 久久99一区二区三区| 欧美黄色淫秽网站| 又黄又粗又硬又大视频| 最好的美女福利视频网| 免费女性裸体啪啪无遮挡网站| 老司机午夜十八禁免费视频| 成人精品一区二区免费| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲| 很黄的视频免费| 亚洲午夜理论影院| 99久久人妻综合| 国产亚洲欧美在线一区二区| 一区在线观看完整版| 黄色a级毛片大全视频| 国产亚洲精品久久久久久毛片| 国产蜜桃级精品一区二区三区| a级毛片在线看网站| 久久伊人香网站| 久热爱精品视频在线9| 亚洲视频免费观看视频| 久久精品91无色码中文字幕| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 1024香蕉在线观看| 黄片大片在线免费观看| 最新美女视频免费是黄的| 亚洲成人免费电影在线观看| 99热只有精品国产| 十八禁人妻一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 亚洲欧美精品综合一区二区三区| 午夜福利一区二区在线看| 亚洲国产欧美一区二区综合| 国产精品 欧美亚洲| 一级黄色大片毛片| 91麻豆精品激情在线观看国产 | av免费在线观看网站| 黄色女人牲交| 日韩高清综合在线| 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 国产精品九九99| 三级毛片av免费| 国产一卡二卡三卡精品| 久久99一区二区三区| www.精华液| 一级a爱视频在线免费观看| 国产精品国产av在线观看| 亚洲五月婷婷丁香| 91老司机精品| 大型黄色视频在线免费观看| 成人亚洲精品一区在线观看| 亚洲免费av在线视频| 欧美人与性动交α欧美软件| 久久狼人影院| 99riav亚洲国产免费| 高潮久久久久久久久久久不卡| 丝袜在线中文字幕| 久久久久久久午夜电影 | 国产男靠女视频免费网站| 亚洲九九香蕉| 亚洲欧美精品综合久久99| 又黄又爽又免费观看的视频| 精品人妻在线不人妻| 欧美精品一区二区免费开放| 国产精品电影一区二区三区| 婷婷精品国产亚洲av在线| 国产亚洲精品久久久久5区| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 国产成年人精品一区二区 | 免费在线观看影片大全网站| 久久香蕉国产精品| 女人被狂操c到高潮| 9热在线视频观看99| 精品国产美女av久久久久小说| 香蕉国产在线看| 一级毛片高清免费大全| 亚洲美女黄片视频| 亚洲av熟女| 正在播放国产对白刺激| 丝袜在线中文字幕| 午夜福利免费观看在线| 亚洲第一欧美日韩一区二区三区| 97人妻天天添夜夜摸| 亚洲精品一二三| 如日韩欧美国产精品一区二区三区| 亚洲色图综合在线观看| 亚洲伊人色综图| 亚洲aⅴ乱码一区二区在线播放 | 日日爽夜夜爽网站| 亚洲精品一区av在线观看| 久久99一区二区三区| svipshipincom国产片| 国产精品亚洲一级av第二区| 啦啦啦 在线观看视频| 别揉我奶头~嗯~啊~动态视频| 午夜免费鲁丝| 欧美+亚洲+日韩+国产| 久久中文字幕人妻熟女| 人妻久久中文字幕网| 久久国产精品影院| 欧美黑人欧美精品刺激| 久久这里只有精品19| 久久久久国产精品人妻aⅴ院| 国产精品国产av在线观看| 99在线视频只有这里精品首页| 成人精品一区二区免费| 亚洲美女黄片视频| a级毛片在线看网站| 久久久久久久久免费视频了| 18禁观看日本| 久久人妻熟女aⅴ| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 国产精品av久久久久免费| 成人亚洲精品av一区二区 | 夜夜爽天天搞| 久久草成人影院| 老司机午夜十八禁免费视频| 色在线成人网| 欧美日韩亚洲高清精品| 丰满饥渴人妻一区二区三| 久久人人爽av亚洲精品天堂| 国产在线精品亚洲第一网站| 久久精品国产综合久久久| 欧美日韩黄片免| 在线永久观看黄色视频| 国产欧美日韩综合在线一区二区| 成人影院久久| 欧美精品啪啪一区二区三区| 欧美精品啪啪一区二区三区| 亚洲专区字幕在线| 一边摸一边做爽爽视频免费| 久久久国产欧美日韩av| 19禁男女啪啪无遮挡网站| 国产黄色免费在线视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 国产人伦9x9x在线观看| 婷婷六月久久综合丁香| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品影院久久| 国产精品秋霞免费鲁丝片| 麻豆久久精品国产亚洲av | www.999成人在线观看| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 精品午夜福利视频在线观看一区| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 色在线成人网| 老司机福利观看| 新久久久久国产一级毛片| 精品熟女少妇八av免费久了| 老熟妇仑乱视频hdxx| 91国产中文字幕| 一区二区三区国产精品乱码| 天堂√8在线中文| 精品第一国产精品| 婷婷六月久久综合丁香| 夫妻午夜视频| 国产免费av片在线观看野外av| 免费久久久久久久精品成人欧美视频| 国产一区在线观看成人免费| 国产激情久久老熟女| 亚洲欧美日韩无卡精品| 成熟少妇高潮喷水视频| 国产主播在线观看一区二区| 在线播放国产精品三级| 国产精品免费一区二区三区在线| 最新美女视频免费是黄的| 亚洲精品一二三| 免费av中文字幕在线| 国产av一区二区精品久久| 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 久久这里只有精品19| 亚洲 国产 在线| 国产国语露脸激情在线看| 12—13女人毛片做爰片一| 午夜精品久久久久久毛片777| 日本黄色视频三级网站网址| 真人一进一出gif抽搐免费| 夜夜看夜夜爽夜夜摸 | 欧美乱色亚洲激情| av中文乱码字幕在线| 午夜福利欧美成人| 亚洲精品成人av观看孕妇| 一进一出抽搐gif免费好疼 | 精品国产乱码久久久久久男人| 国产欧美日韩综合在线一区二区| 一级毛片女人18水好多| 又紧又爽又黄一区二区| 久久中文字幕人妻熟女| 午夜福利影视在线免费观看| 亚洲九九香蕉| 亚洲va日本ⅴa欧美va伊人久久| 大型av网站在线播放| www日本在线高清视频| 国产伦人伦偷精品视频| 欧美日韩瑟瑟在线播放| 久久久久久久精品吃奶| 曰老女人黄片| 1024视频免费在线观看| 亚洲精品在线美女| 99精品久久久久人妻精品| 亚洲全国av大片| 在线观看日韩欧美| 乱人伦中国视频| 欧美丝袜亚洲另类 | 国产一区二区三区在线臀色熟女 | 啪啪无遮挡十八禁网站| 水蜜桃什么品种好| 色精品久久人妻99蜜桃| 亚洲精品中文字幕在线视频| 成人手机av| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 人人妻,人人澡人人爽秒播| 国产精品秋霞免费鲁丝片| 19禁男女啪啪无遮挡网站| av网站在线播放免费| 日韩 欧美 亚洲 中文字幕| 男女高潮啪啪啪动态图| 欧美黄色片欧美黄色片| 可以在线观看毛片的网站| 欧美日韩中文字幕国产精品一区二区三区 | 最近最新中文字幕大全免费视频| 曰老女人黄片| 男人的好看免费观看在线视频 | www国产在线视频色| 久久人人97超碰香蕉20202| av片东京热男人的天堂| 在线观看一区二区三区激情| 美女扒开内裤让男人捅视频| 淫秽高清视频在线观看| 亚洲一区二区三区不卡视频| 中文字幕人妻丝袜制服| 黄色成人免费大全| 亚洲色图 男人天堂 中文字幕| 三上悠亚av全集在线观看| 老司机午夜十八禁免费视频| 国产一区在线观看成人免费| av天堂久久9| 天堂√8在线中文| 色综合婷婷激情| 国产亚洲精品久久久久5区| 成年版毛片免费区| 黄片大片在线免费观看| 天天躁夜夜躁狠狠躁躁| 中文字幕色久视频| 久久亚洲精品不卡| 国产99久久九九免费精品| videosex国产| 亚洲国产精品合色在线| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 欧美人与性动交α欧美精品济南到| 大型黄色视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 在线观看一区二区三区| 人人澡人人妻人| 欧美日韩中文字幕国产精品一区二区三区 | 天堂影院成人在线观看| 国产一区二区三区综合在线观看| 久久精品国产综合久久久| 高清黄色对白视频在线免费看| 在线观看免费视频日本深夜| 男人操女人黄网站| 91成人精品电影| 一级片'在线观看视频| 另类亚洲欧美激情| 中文字幕av电影在线播放| 久久人妻熟女aⅴ| 精品福利观看| 国产熟女午夜一区二区三区| 亚洲精品一区av在线观看| 99久久综合精品五月天人人| 精品乱码久久久久久99久播| 一级毛片高清免费大全| 黄频高清免费视频| 动漫黄色视频在线观看| 99香蕉大伊视频| 亚洲少妇的诱惑av| 久久久国产一区二区| av视频免费观看在线观看| xxxhd国产人妻xxx| 国产精品自产拍在线观看55亚洲| 亚洲午夜精品一区,二区,三区| 99riav亚洲国产免费| 午夜精品国产一区二区电影| 中文字幕色久视频| 在线免费观看的www视频| 国产1区2区3区精品| 99国产综合亚洲精品| 亚洲午夜精品一区,二区,三区| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡 | 欧美精品啪啪一区二区三区| 99riav亚洲国产免费| 欧美一区二区精品小视频在线| 性欧美人与动物交配| 1024香蕉在线观看| 亚洲av成人一区二区三| 亚洲五月天丁香| 激情视频va一区二区三区| 人人妻人人澡人人看| 美女午夜性视频免费| 淫妇啪啪啪对白视频| 天天添夜夜摸| 亚洲五月色婷婷综合| 免费在线观看黄色视频的| 一级a爱片免费观看的视频| svipshipincom国产片| 国产一区二区激情短视频| 国产免费男女视频| 中文欧美无线码| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 成在线人永久免费视频| 中文亚洲av片在线观看爽| bbb黄色大片| avwww免费| 精品国内亚洲2022精品成人| 天堂中文最新版在线下载| 在线观看www视频免费| 国产成人欧美在线观看| 亚洲,欧美精品.| 香蕉久久夜色| 香蕉国产在线看| 亚洲国产毛片av蜜桃av| 91老司机精品| 欧美日韩乱码在线| 亚洲 欧美 日韩 在线 免费| 女人精品久久久久毛片| 国产精品二区激情视频| 亚洲一区二区三区不卡视频| 黄片大片在线免费观看| 亚洲国产毛片av蜜桃av| 精品国内亚洲2022精品成人| 高清黄色对白视频在线免费看| 女人被躁到高潮嗷嗷叫费观| 欧洲精品卡2卡3卡4卡5卡区| 女生性感内裤真人,穿戴方法视频| 午夜激情av网站| 精品久久久久久电影网| 两个人免费观看高清视频| 精品高清国产在线一区| 亚洲五月天丁香| 国产深夜福利视频在线观看| 色尼玛亚洲综合影院| 久久久国产精品麻豆| 黄色成人免费大全| 女人精品久久久久毛片| 美女高潮喷水抽搐中文字幕| 好看av亚洲va欧美ⅴa在| 成年人黄色毛片网站| 午夜影院日韩av| 久久人妻av系列| 精品国产乱码久久久久久男人| 在线观看www视频免费| 可以免费在线观看a视频的电影网站| 人人妻人人爽人人添夜夜欢视频| 国产伦一二天堂av在线观看| 十八禁人妻一区二区| a级毛片黄视频| 性色av乱码一区二区三区2| 看黄色毛片网站| 国产精品一区二区三区四区久久 | 人妻久久中文字幕网| 亚洲国产欧美日韩在线播放| 中文欧美无线码| 在线观看66精品国产| 色精品久久人妻99蜜桃| 久久精品亚洲熟妇少妇任你| 露出奶头的视频| 老司机福利观看| 久久人人97超碰香蕉20202| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 一进一出好大好爽视频| 色尼玛亚洲综合影院| 丰满的人妻完整版| 法律面前人人平等表现在哪些方面| 亚洲国产看品久久| 中出人妻视频一区二区| 国产又爽黄色视频| xxx96com| 大型av网站在线播放| 人人妻,人人澡人人爽秒播| 高潮久久久久久久久久久不卡| 精品福利永久在线观看| 日本五十路高清| 50天的宝宝边吃奶边哭怎么回事| 欧美在线一区亚洲| 国产av在哪里看| 亚洲情色 制服丝袜|