• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Online sample focusing technique in capillary electrophoresis-amperometric detection for biogenic amines

    2016-11-28 10:45:30WANGGuanTANGWanrongGEShuliHANRuobingWANGQingjiangHEPingangFANGYuzhi
    關(guān)鍵詞:安培清江毛細(xì)管

    WANG Guan, TANG Wan-rong, GE Shu-li, HAN Ruo-bing, WANG Qing-jiang, HE Pin-gang, FANG Yu-zhi

    (Department of Chemistry,East China Normal University,Shanghai 200062,China)

    Online sample focusing technique in capillary electrophoresis-amperometric detection for biogenic amines

    WANG Guan, TANG Wan-rong, GE Shu-li, HAN Ruo-bing, WANG Qing-jiang, HE Pin-gang, FANG Yu-zhi

    (Department of Chemistry,East China Normal University,Shanghai 200062,China)

    An online focusing method,based on field-enhanced sample injection coupled with transient moving substitution boundary,was developed for the separation and capillary electrophoresis(CE)-amperometric detection(AD)of biogenic amines under acidic conditions for the first time.The proposed method was based on the substitution reaction between 18-crown-6-bonded biogenic amine complexes and Na+cations at the substitution boundary.By using this method,electrode fouling was prevented in electrochemical detection.The factors affecting extraction efficiency,separation,and detection were investigated.Under the optimum conditions, the limits of detection of five analytes in a sample,which was prepared in a low-conductivity matrix,ranging from 2.2 to 9.8 nmol/L(signal-to-noise ratio,S/N=3),and about 160-to 300-fold enhancement in concentration was achieved compared to the conventional CE-AD method. This method has great potential for the detection of biogenic amines.

    field-enhanced sample injection; moving substitution boundary; capillary electrophoresis; amperometric detection; biogenic amines

    0 Introduction

    Biogenic amines(BAs)are low-molecular-weight organic bases,formed by the enzymaticdecarboxylation of amino acids or by the amination and transamination of aldehydes and ketones in living organisms[1].They have powerful physiological effects and are commonly found in various organisms,plants,foods,and beverages.Despite their important roles in biological systems,some of the BAs cause food poisoning when present in significant amounts[2].For example,tyramine(Tyr)and phenylethylamine(Phe)have been associated with migraines and hypertension,whereas serotonin(5-HT)serves as the neurotransmitter in the central and peripheral nervous systems[2-3].Moreover,some studies have indicated a higher concentration of putrescine(Put)and spermine(Spm)in cancer patients compared to healthy subjects[4].Furthermore,the quantity of BAs is considered as a marker for the microbiological contamination level in food[5].Therefore,it is important to use an efficient and reliable analytical method to identify and quantify the BAs in food and environment.

    Several analytical methods such as high-performance liquid chromatography (HPLC)[6]and capillary electrophoresis(CE)[7]have been developed for the analysis of BAs in food and environment.Among these methods,CE has been proved to be an efficient separation technique for the analysis of BAs.The most common detection methods coupled to CE are ultraviolet(UV)absorbance and laser-induced fluorescence(LIF)spectroscopy[8-9].However,they require a cumbersome pretreatment or derivatization step.In this study,capillary electrophoresis-amperometric detection(CE-AD)method with high selectivity and sensitivity was used for the analysis of BAs,without prior pretreatment or derivatization of the samples.

    Moving reaction boundary(MRB)is a well-developed method to improve the sensitivity of separation in analytical chemistry[10],and consists of four parts:oving precipitate boundary(MPB),moving neutralization boundary(MNB),moving chelation boundary (MCB),and moving interaction boundary(MIB)[11-12].Crown ethers can form complexes with molecules containing primary amine groups.Furthermore,some metal cations form more stable complexes with crown ethers than with analytes containing primary amine groups[13].In CE,18-crown-6(18C6H4)has been used for chiral separation(CS)[14]. Therefore,the combination of crown ethers with MRB systems in CE has great potential to improve the separation and sensitivity of analytes simultaneously.

    In this study,an online sample focusing technique based on field-enhanced sample injection(FESI)coupled with moving substitution boundary(MSB)(FESI-MSB)similar to our previous study was used for the analysis of five BAs,including Spm,Tyr,Put,Phe, and 5-HT[15].18C6 H4 was used as the pseudo stationary phase(PSP)to transport,release,and accumulate the analytes at the substitution boundary.We applied the FESIMSB method to identify and separate the BAs under acidic conditions,which also maintained the sample matrix and running buffer at a constant p H.Separations were performed in a fused silica capillary(Polymicro Technologies,Phoenix,AZ,USA)with 25μm i. d.,360μm o.d,and 75 cm length.This FESI-MSB method could determine BAs at very low concentrations under the optimized conditions,thus resulting in an about 160-to 300-fold enhancement compared to the normal CE-AD method.

    1 Experimental

    The CE-AD system was constructed inhouse as described in our previous study[16].E-lectrophoresis was driven by a high-voltage supply(±30 k V,Shanghai Institute of Nuclear Research,Shanghai,China).Electrochemistry experiments were performed using a CH-2 amperometric detector(Jiangsu Electrochemical Analytical Instruments Factory, China).All the electropherograms were recorded using a ZF-10B data recorder(Shanghai Zhengfang Instrument Company,China).

    For CE-AD,a three-electrode system was used,consisting of a copper disk(300μm i.d.) working electrode,a saturated calomel reference electrode(SCE),and a platinum wire counter electrode.The entire system was housed in a plexiglass box equipped with an interlock for safety.All the solutions were degassed using an ultrasonic cleaning system (Branson Soest,NL).Deionized water was prepared using a Milli-Q water purification system(Millipore,Bedford,MA,USA).

    Spm and Tyr were purchased from Tokyo Chemical Industry Co.,Ltd.5-HT was purchased from J&K Scientific Inc.Ltd.Put and Phe were purchased from Alfa Aesar. Sodium hydroxide(NaOH),boric acid(H3BO3),phosphoric acid(H3PO4),acetic acid (CH3COOH),18C6 H4,and all other chemicals were purchased from Shanghai First Reagent Factory(Shanghai,China).All the reagents were of analytical grade and used as received without further purification unless otherwise stated.

    The running buffer consisted of 60 mmol/L CH3COOH,60 mmol/L H3PO4,and 80 mmol/L H3BO3in deionized water,and the p H of the solution was adjusted to 3.50 with 2 mol/L NaOH.The PSP matrix was prepared with 100 mmol/L 18C6 H4 in the running buffer.The stock solutions of each BA were prepared with a concentration of 5×10-4mol/L in deionized water and stored at 4°C.In the CE-AD experiments,a fresh working standard solution was prepared for injection by diluting appropriate amounts of stock solution with 150 mmol/L 18C6 H4 aqueous solution(p H 3.81).Prior to use,all the solutions were filtered through 0.22μm polypropylene Acrodisc syringe filters(XinyaPurification Instrument Factory,Shanghai,China)and sonicated for 5 min.The concentrations of the analyzed BAs are given in the text or figures,and their chemical structures are shown in Fig.1.

    Fig.1 Chemical structures of FESI-MSB model

    Fig.2 shows the FESI-MSB model in this experiment.First,a short plug of PSP matrix prepared with 18C6H4 in the background electrolyte(BGE)and a long sample plug prepared in a lower conductivity buffer were sequentially injected into the capillary filled with BGE(p H 3.50)(Fig.2A).After applying voltage,the effective electrophoretic mobility of the 18C6 H4-BA complexes containing positive charges was found to be equal to those of analytes and electroosmotic flow(EOF).Under the electrokinetic injection mode, the electric field strength in the sample zone was enhanced,thus introducing large sample volumes into the capillary.Simultaneously,the sample was focused into a narrow zone (Fig.2B).Then,the 18C6H4-BA complexes in the sample zone permeated the substitution boundary between the sample and PSP matrix,forming a sharp MSB zone(Fig.2C). In the transient MSB zone,the BAs were released from the 18C6 H4-BA complexes because of the substitution reaction between the 18C6H4-BA complexes and Na+cations.Finally,the focused analytes were brought to the detector point and separated according to general CE principles(Fig.2D).

    2 Results and discussion

    To identify the optimum conditions,several factors such as the p H and concentration of the running buffer,separation voltage,18C6H4 concentration in both sample and PSP matrices,and the injection time were investigated.Under the optimum conditions,five analytes were separated at a separation voltage of 16 k V and with separation buffer of mixed acid(60 mmol/L CH3COOH,60 mmol/L H3PO4,and 80 mmol/L H3BO3,p H 3.50),while maintaining 20 mmol/L NaOH as the buffer in the detection cell.The potential applied to the working electrode was 0.7 V(vs.SCE).The PSP matrix injection time was 20 s,followed by 90 s sample injection.All the experiments were performed at room temperature.

    Fig.2 FESI-MSB model

    2.1 Optimization of separation conditions

    To select an optimum working electrode,copper-and carbon-disc electrodes were investigated.In terms of the peak height of the BAs,the copper-disc electrode was better than the carbon-disc electrode under the same conditions.Because the copper-disc electrode is usually used in alkaline solutions,20 mmol/L NaOH solution was selected as the detection buffer.

    The behavior of BAs in a 20 mmol/L NaOH solution was studied using cyclic voltammetry (CV)to obtain the optimized potential.The results showed that the analytes generated recognizable anodic peaks at~0.5 V(vs.SCE).Moreover,the anodic peak was not observed in the blank NaOH solution.Fig.3 shows the results of hydrodynamic voltammetry(HDV)from 0.55 to 0.75 V range for the BAs.To obtain the best signal-to-noise(S/N)ratio,0.7 V was selected as the optimum detection potential.

    Buffer composition plays a crucial role in the migration time and separation efficiency in CE.To find the optimum separation buffer for the BAs,different buffer systems(such as phosphate,citrate,acetate,and boric acid buffer)at various p H values(from 3.20 to 5.60)were investigated.The experimental results showed that mixed acid buffer solutions (CH3COOH,H3PO4,and H3BO3)provided better resolution and higher peak current.Moreover,the separation resolution increased with decreasing p H value.To balance the resolution,sensitivity,and stability,the mixed acid solution(CH3COOH,H3PO4,and H3BO3)at p H 3.50 was selected as the optimal BGE.

    Fig.3 Hydrodynamic voltammograms of BAs

    The running buffer concentration is another important parameter affecting peak height and theoretical plate number because it can influence the EOF and viscosity of electrolyte. After a detailed comparison,the optimum running buffer concentration was determined to be 60 mmol/L CH3COOH,60 mmol/L H3PO4,and 80 mmol/L H3BO3,p H 3.50 considering migration time,separation efficiency,and baseline noise.Fig.4 shows the separation of the analytes prepared in BGE.

    Fig.4 Electropherogram of BAs diluted with BGE

    To investigate the separation efficiency of CE,12~18 k V separation voltage was used.A separation voltage of 16 k V was selected as the optimum separation voltage. Optimization of FESI experimental conditions

    In FESI,the 18C6H4 concentration in sample matrix is an important factor for stacking.Therefore,the effect of 18C6H4 concentration in the sample solution was also investigated without the injection of a PSP matrix plug by varying the amount of 18C6H4(50~200 mmol/L)added to the sample solution.As shown in Fig.5A,the BAs diluted with deionized water stacked together.As shown in Fig.5B~E,evidently,the resolution of the separation increased with increasing 18C6H4 concentration,and the baseline separation was achieved when the 18C6 H4 concentration was 150 mmol/L.Therefore,150 mmol/L 18C6H4 sample solution was selected as the optimal 18C6H4 concentration.

    Fig.5 Effect of 18C6H4 concentration in sample matrix

    The injection time can affect both peak current and peak shape as well as the overall precision of CE.To improve the sensitivity,the injection time was optimized from 50 to 90 s,as shown in Fig.6.The greatest enhancement in the total peak height was obtained at 80 s injection time.Therefore,80 s was selected as the injection time for FESI. Optimization of the MSB experimental conditions

    Fig.6 Effect of FESI injection time

    18C6 H4 concentration in the PSP matrix played a significant role in achieving the enrichment efficiency.The effect of the concentration of 18C6H4 solution on peak height was investigated between 50 and 150 mmol/L 18C6 H4 diluted with BGE in the PSP matrix.As shown in Fig.7,the maximum enrichment efficiency was obtained at a 18C6H4 concentration of 100 mmol/L in the PSP matrix.Therefore,100 mmol/L was selected as the optimum concentration of the PSP matrix,maximizing the focusing efficiency.

    Fig.7 Effect of 18C6H4 concentration in PSP matrix

    The ratio of the PSP matrix to the sample injection time(TPSPmatrix:Tsamplesolution)can affect both the injected volume of sample and focus efficiency.As shown in Fig.8,the results show that the maximum enrichment efficiency was obtained when the injection ratio was 2:9(Figs.8A-F).After the injection of a PSP matrix plug,the sample injection time increased from 80 s to 90 s(Figs.8A and B).Furthermore,a peak broadening caused by overloading appeared(Fig.8C and D).When the PSP matrix was injected longer than 20 s,peaks 3—5 were stacked together(Fig.8H).To maintain a stable MSB boundary and maximize the enrichment efficiency,the optimal PSP matrix injection time was selected as 20 s,followed by 90 s sample injection.

    Fig.8 Effect of the PSP matrix to sample injection time ratio(TPSPmatrix:Tsamplesolution)

    2.2 FESI-MSB method validation

    From the above mentioned experiments,the optimum separation and focusing conditions were established.A series of standard mixture solutions were tested under the optimum conditions for normal CE and FESI-MSB methods to determine the linearity of this method.The linearity range and detection limits of CE and FESI-MSB are listed in Table 1.For FESI-MSB,the linear range covered more than three orders of magnitude of concentrations,and all the curves exhibited two segments at different concentrations.As listed inTable 1,the limits of detection(LODs)of FESI-MSB(S/N=3)were 2.2~9.8 nmol/L.In comparison,the FESI-MSB method has a much lower detection limit,indicating that approximately 160-to 300-fold enhancement in the FESI-MSB method was achieved.The sensitivity in the detection of the five BAs using FESI-MSB was improved by two orders of magnitude over those of previously reported CE-AD methods[16].

    The relative standard deviations(RSDs)for FESI-MSB method are shown in Tab.1 (n=5).For FESI-MSB,the RSDs of migration time and peak height were about 1.7%~4.1%and 4.5%~6.3%,respectively,indicating good reproducibility and high precision.

    Tab.1 Performances of normal CE and FESI-MSB methods

    3 Conclusion

    We developed a sensitive method for the analysis of BAs based on the hyphenation of FESI and transient MSB in CE-AD.The FESI increased the introduction of large sample volumes into the capillary,and the MSB facilitated the substitution reaction between the 18C6H4-BA complexes in the sample matrix and the Na+cations in BGE.Using this method,five BAs were simultaneously focused and separated within 20 min.Compared to the conventional CE-AD method,the method could determine these BAs at very low concentrations(nmol/L),resulting in about 160-to 300-fold enhancement in peak height.The main advantage of this method is that it does not require cumbersome sample pretreatment or derivatization steps prior to the analysis.Furthermore,the method could prevent the electrode fouling in electrochemical detection.The FESI-MSB technique developed in this study can be used under both acidic and basic conditions.

    [1] HUANG Y,HUANG C,CHANG H.Capillary electrophoresis-based separation techniques for the analysis ofproteins[J].ELECTROPHORESIS,2006,27(23):4792-4807.

    [2] SANTOS S,HORENSIA M.Biogenic amines:Their importance in foods[J].International Journal of Food Microbiology,1996,29(2):213-231.

    [3] NGUYEN L,RIGO J M,ROCHER V.Striatal PSA-NCAM(+)precursor cells from the newborn rat express functional glycine receptors.[J].Cell and Tissue Research,2001,305(2):187-202.

    [4] NAIRN L M,LINDSAY G S,WOSTER P M.Cytotoxicity of novel unsymmetrically substituted inhibitors of polyamine biosynthesis in human cancer cells.[J].Journal of Cellular Physiology,2000,182(2):209-213.

    [5] LI S S,WU H L,LIU Y J.Simultaneous determination of methotrexate and its eight metabolites in human whole blood by capillary zone electrophoresis[J].Chin Chem Lett,2010,24(2013):239-242.

    [6] ZOTOU A,LOUKOU Z,SOUFLEROS E.A comparative survey of the simultaneous ultraviolet and fluorescence detection in the RP-HPLC determination of dansylated biogenic amines in alcoholic beverages[J].Chromatographia,2003,57(7):429-439.

    [7] HERREO M,GARCIA-CANAS V,SIMO C.Direct analysis of biogenic amines in water matrix by modified capillary zone electrophoresis with 18-crown-6[J].Electrophoresis,2010,31(1):205-228.

    [8] KANG L,YOU J,SUN Z.LC determination of trace biogenic amines in foods samples with fluorescence detection and MS identification[J].Chromatographia,2011,73(1):43-50.

    [9] LOUKOU Z,ZOTOU A.Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain[J].Chromatographia,2003,58(9):579-585.

    [10] CAO C X,FAN L Y,ZHANG W.Novel moving reaction boundary-induced stacking and separation of human hemoglobins in slab polyacrylamide gel electrophoresis[J].Analyst,2008,113(9):1139-1157.

    [11] FAN Y,LI S,FAN L.Visual offline sample stacking via moving neutralization boundary electrophoresis for analysis of heavy metal ion.[J].Talanta,2012,(95):42-49.

    [12] ZHANG W,CHEN J F,FAN L Y.Effective pre-concentration and analysis of heavy metals using ligand step gradient focusing in combination with isotachophoresis[J].Analyst,2010,135(1):140-148.

    [13] KUHN R.Chiral electromigration techniques in pharmaceutical and biomedical analysis[J].Electrophoresis, 1999,20(13):2605-2613.

    [14] XIA S,ZHANG L,LU M.Enantiomeric separation of chiral dipeptides by CE-ESI-MS employing a partial filling technique with chiral crown ether[J].Electrophoresis,2009,30(16):2837-2844.

    [15] GE S L,TANG W R,HAN R B.Sensitive analysis of aminoglycoside antibiotics via hyphenation of transient moving substitution boundary with field-enhanced sample injection in capillary electrophoresis[J].Journal of chromatography A,2013,(1295):128-135.

    [16] ZHANG S,DONG S,CHI L.Methods of extraction,preconcentration,and determination of quercetin[J].Talanta,2008,76(4):780-784.

    (責(zé)任編輯 張 晶)

    毛細(xì)管電泳安培檢測(cè)在線富集分析生物胺研究

    王 冠, 唐菀融, 葛淑麗, 韓若冰, 王清江, 何品剛, 方禹之
    (華東師范大學(xué)化學(xué)系,上海 200062)

    將場(chǎng)放大進(jìn)樣-移動(dòng)取代邊界與毛細(xì)管電泳-安培檢測(cè)聯(lián)用技術(shù)在酸性條件下進(jìn)一步發(fā)展,成功實(shí)現(xiàn)了生物胺的在線富集與檢測(cè).該技術(shù)利用18-冠-6-四羧酸與帶伯胺基團(tuán)的生物胺分子結(jié)合的絡(luò)合物與緩沖溶液中Na+發(fā)生的取代反應(yīng),在釋放生物胺分子的同時(shí)實(shí)現(xiàn)瞬時(shí)富集.通過對(duì)樣品溶液、偽穩(wěn)定相、進(jìn)樣時(shí)間等影響富集與分離的重要參數(shù)進(jìn)行研究,在最優(yōu)實(shí)驗(yàn)條件下,5種被測(cè)生物胺分子的檢測(cè)限可達(dá)到2.2~9.8 nmol/L(S/N=3),靈敏度較傳統(tǒng)方法相比提高了160~300倍.且無需復(fù)雜的預(yù)處理步驟.實(shí)驗(yàn)結(jié)果證明,該法快速高效,能有效避免電極被污染,亦可進(jìn)一步用于實(shí)際樣品的分析檢測(cè).

    毛細(xì)管電泳; 安培檢測(cè); 場(chǎng)放大進(jìn)樣; 移動(dòng)取代邊界; 冠醚; 生物胺

    2014-12

    儀器設(shè)備開發(fā)專項(xiàng)項(xiàng)目(國(guó)家級(jí))(2011YQ150072)

    王冠,女,碩士研究生,研究方向?yàn)槊?xì)管電泳.E-mail:wang_guan_108@163.com.

    王清江,男,博士,教授,研究方向?yàn)槲⒓{分離分析.E-mail:qjwang@chem.ecnu.edu.cn.

    O657.8 Document code:A

    10.3969/j.issn.1000-5641.2016.01.016

    1000-5641(2016)01-0123-11

    猜你喜歡
    安培清江毛細(xì)管
    南京市學(xué)黨史辦實(shí)事線上“安培超市”一網(wǎng)通辦
    毛細(xì)管氣相色譜法測(cè)定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    清江引
    影劇新作(2018年1期)2018-05-26 09:00:52
    電學(xué)巨人—安培
    魚躍清江 廣場(chǎng)舞
    文化交流(2017年8期)2017-09-14 22:03:27
    超聲萃取-毛細(xì)管電泳測(cè)定土壤中磺酰脲類除草劑
    健忘的安培
    毛細(xì)管氣相色譜法測(cè)定自釀葡萄酒中甲醇的含量
    中藥與臨床(2015年5期)2015-12-17 02:39:28
    同飲清江水 共護(hù)母親河——首個(gè)“清江保護(hù)日”在長(zhǎng)陽舉行
    用毛細(xì)管電泳檢測(cè)牦牛、犏牛和藏黃牛乳中β-乳球蛋白的三種遺傳變異體
    国产永久视频网站| 熟女人妻精品中文字幕| 日本与韩国留学比较| 亚洲国产精品一区二区三区在线| 精品少妇黑人巨大在线播放| 亚洲国产毛片av蜜桃av| 伊人久久国产一区二区| 韩国精品一区二区三区 | 日产精品乱码卡一卡2卡三| 国产永久视频网站| 久久免费观看电影| 全区人妻精品视频| 插逼视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产av一区二区精品久久| 97在线人人人人妻| 日日啪夜夜爽| videos熟女内射| 高清在线视频一区二区三区| 亚洲少妇的诱惑av| 亚洲国产精品国产精品| 黑人巨大精品欧美一区二区蜜桃 | av电影中文网址| 午夜福利影视在线免费观看| av电影中文网址| 久久国内精品自在自线图片| 欧美日韩国产mv在线观看视频| 丰满迷人的少妇在线观看| 成人漫画全彩无遮挡| 成人漫画全彩无遮挡| 日本av手机在线免费观看| av国产精品久久久久影院| 高清不卡的av网站| 久久午夜福利片| 性色avwww在线观看| 亚洲精品国产av成人精品| 精品久久久精品久久久| 成人亚洲精品一区在线观看| 国产精品人妻久久久久久| 国产精品人妻久久久久久| 国产成人一区二区在线| 欧美激情国产日韩精品一区| 欧美人与善性xxx| 高清视频免费观看一区二区| 国产成人一区二区在线| 免费看光身美女| 女人久久www免费人成看片| 老熟女久久久| 高清毛片免费看| 伊人久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 国产免费又黄又爽又色| 免费少妇av软件| 免费人成在线观看视频色| 日韩一区二区视频免费看| 国产午夜精品一二区理论片| 亚洲,欧美精品.| 国产伦理片在线播放av一区| 欧美+日韩+精品| 成人免费观看视频高清| 最近中文字幕2019免费版| 最近最新中文字幕大全免费视频 | 又大又黄又爽视频免费| 搡女人真爽免费视频火全软件| 色吧在线观看| 亚洲成国产人片在线观看| 在线观看三级黄色| av一本久久久久| 亚洲精品久久午夜乱码| av国产精品久久久久影院| 日韩欧美精品免费久久| 国内精品宾馆在线| 丝袜脚勾引网站| av片东京热男人的天堂| 各种免费的搞黄视频| 2018国产大陆天天弄谢| 久久影院123| 搡老乐熟女国产| 亚洲 欧美一区二区三区| 成人无遮挡网站| 大香蕉97超碰在线| 久久人人爽av亚洲精品天堂| 日本爱情动作片www.在线观看| 观看美女的网站| 成人影院久久| 综合色丁香网| 伦理电影免费视频| 高清av免费在线| 两个人看的免费小视频| 91精品伊人久久大香线蕉| 亚洲欧美清纯卡通| 黄色视频在线播放观看不卡| 欧美丝袜亚洲另类| 亚洲国产精品国产精品| 男女无遮挡免费网站观看| 99国产精品免费福利视频| 99国产综合亚洲精品| 男的添女的下面高潮视频| 亚洲天堂av无毛| 最近最新中文字幕免费大全7| 欧美国产精品一级二级三级| 日本爱情动作片www.在线观看| 亚洲综合精品二区| 欧美xxxx性猛交bbbb| 晚上一个人看的免费电影| 免费黄频网站在线观看国产| 考比视频在线观看| 性高湖久久久久久久久免费观看| 欧美xxⅹ黑人| 日本av免费视频播放| 亚洲国产av新网站| 午夜久久久在线观看| 综合色丁香网| 2021少妇久久久久久久久久久| 91在线精品国自产拍蜜月| 大香蕉97超碰在线| 超碰97精品在线观看| 午夜福利视频在线观看免费| 日韩成人伦理影院| 久久国产精品大桥未久av| av网站免费在线观看视频| 免费在线观看黄色视频的| 少妇的逼好多水| av国产精品久久久久影院| 色婷婷久久久亚洲欧美| 黄色 视频免费看| 国产色婷婷99| 国产成人精品一,二区| 亚洲,欧美精品.| 国产精品久久久久久久电影| 汤姆久久久久久久影院中文字幕| 日韩不卡一区二区三区视频在线| 少妇的逼好多水| 久久 成人 亚洲| 曰老女人黄片| 久久久久久久大尺度免费视频| 男女午夜视频在线观看 | 黑人高潮一二区| 午夜免费鲁丝| 国内精品宾馆在线| 晚上一个人看的免费电影| 成年美女黄网站色视频大全免费| 亚洲精品久久久久久婷婷小说| 搡女人真爽免费视频火全软件| 男女边吃奶边做爰视频| 一二三四中文在线观看免费高清| 9热在线视频观看99| 三上悠亚av全集在线观看| 日韩精品免费视频一区二区三区 | 日本vs欧美在线观看视频| 在线观看国产h片| 亚洲四区av| 久久久久久人人人人人| 美女视频免费永久观看网站| 国产xxxxx性猛交| 日本黄色日本黄色录像| 国产女主播在线喷水免费视频网站| 国产熟女午夜一区二区三区| 黑人高潮一二区| 国产av国产精品国产| 一二三四在线观看免费中文在 | 99视频精品全部免费 在线| 国产精品偷伦视频观看了| 少妇的丰满在线观看| 黄色毛片三级朝国网站| 王馨瑶露胸无遮挡在线观看| 啦啦啦啦在线视频资源| 精品一区二区三卡| 日韩,欧美,国产一区二区三区| 永久免费av网站大全| 日本wwww免费看| 欧美国产精品一级二级三级| av电影中文网址| 国产欧美日韩一区二区三区在线| 亚洲丝袜综合中文字幕| 欧美最新免费一区二区三区| 国产黄频视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久青草综合色| 人妻少妇偷人精品九色| 亚洲国产精品国产精品| 91精品三级在线观看| 午夜免费男女啪啪视频观看| 亚洲第一区二区三区不卡| 一区在线观看完整版| 男女边吃奶边做爰视频| 亚洲国产最新在线播放| 久久99热6这里只有精品| 久久久a久久爽久久v久久| 国产欧美亚洲国产| 午夜日本视频在线| 欧美精品国产亚洲| 亚洲精品国产色婷婷电影| 777米奇影视久久| 久久午夜福利片| 飞空精品影院首页| 久久亚洲国产成人精品v| 久久99一区二区三区| www.色视频.com| 高清不卡的av网站| 性色av一级| 国产不卡av网站在线观看| 亚洲欧美一区二区三区黑人 | 蜜臀久久99精品久久宅男| 五月玫瑰六月丁香| 好男人视频免费观看在线| 国产一级毛片在线| 亚洲人成网站在线观看播放| 天堂中文最新版在线下载| 精品国产一区二区久久| 日本av手机在线免费观看| 一边摸一边做爽爽视频免费| 亚洲国产看品久久| 九九在线视频观看精品| 国产欧美日韩综合在线一区二区| 免费大片18禁| 少妇 在线观看| 成人综合一区亚洲| 99视频精品全部免费 在线| 免费在线观看黄色视频的| 两个人看的免费小视频| 97精品久久久久久久久久精品| 国产成人精品一,二区| 一级毛片黄色毛片免费观看视频| 久久精品国产自在天天线| 中国国产av一级| 亚洲欧美日韩卡通动漫| 亚洲av综合色区一区| 午夜免费男女啪啪视频观看| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 日韩免费高清中文字幕av| 久久精品国产亚洲av天美| 99re6热这里在线精品视频| 亚洲精品久久久久久婷婷小说| 色哟哟·www| 五月天丁香电影| 精品亚洲成国产av| 大陆偷拍与自拍| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 在线观看www视频免费| 国产成人午夜福利电影在线观看| 永久免费av网站大全| 国产国拍精品亚洲av在线观看| 91精品国产国语对白视频| 精品少妇内射三级| 亚洲欧美清纯卡通| 老司机影院成人| 久久久久国产精品人妻一区二区| 一级毛片电影观看| www.色视频.com| 久久久久久久久久人人人人人人| 精品少妇内射三级| 亚洲精品一二三| 巨乳人妻的诱惑在线观看| 超碰97精品在线观看| 老司机亚洲免费影院| 精品一区二区三区视频在线| 99久久精品国产国产毛片| 男女高潮啪啪啪动态图| 久久久久人妻精品一区果冻| 91在线精品国自产拍蜜月| 人人妻人人添人人爽欧美一区卜| 在线观看美女被高潮喷水网站| 一区二区三区四区激情视频| 亚洲色图 男人天堂 中文字幕 | 亚洲欧美日韩另类电影网站| 日韩欧美精品免费久久| 亚洲性久久影院| 妹子高潮喷水视频| 免费观看a级毛片全部| 亚洲五月色婷婷综合| 又黄又粗又硬又大视频| 日本爱情动作片www.在线观看| 午夜91福利影院| 最近的中文字幕免费完整| 丝袜在线中文字幕| 丝袜喷水一区| 亚洲国产看品久久| kizo精华| 色网站视频免费| 另类精品久久| 美女福利国产在线| 两个人看的免费小视频| 在线观看三级黄色| 美女xxoo啪啪120秒动态图| 91精品国产国语对白视频| 春色校园在线视频观看| 国产精品99久久99久久久不卡 | 久久久亚洲精品成人影院| 日韩一本色道免费dvd| 亚洲av国产av综合av卡| 久久久久久伊人网av| 校园人妻丝袜中文字幕| a级毛片黄视频| 欧美日韩亚洲高清精品| 精品亚洲成a人片在线观看| 亚洲精品久久成人aⅴ小说| 久久久国产精品麻豆| 成人毛片a级毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| xxxhd国产人妻xxx| 亚洲综合精品二区| 国产亚洲精品久久久com| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久av网站| 26uuu在线亚洲综合色| 久久久精品94久久精品| 丝袜美足系列| 亚洲成人一二三区av| 夫妻午夜视频| 国产日韩一区二区三区精品不卡| 热99国产精品久久久久久7| 在线观看人妻少妇| 波野结衣二区三区在线| 欧美最新免费一区二区三区| 永久免费av网站大全| 少妇被粗大猛烈的视频| 日韩三级伦理在线观看| 人人澡人人妻人| 少妇人妻精品综合一区二区| 男女午夜视频在线观看 | 亚洲国产av新网站| 精品第一国产精品| 最近的中文字幕免费完整| 天天影视国产精品| 精品国产一区二区三区久久久樱花| 美女大奶头黄色视频| 街头女战士在线观看网站| 午夜福利网站1000一区二区三区| 制服诱惑二区| 91久久精品国产一区二区三区| 欧美 亚洲 国产 日韩一| 一区二区三区乱码不卡18| 韩国av在线不卡| 一区二区日韩欧美中文字幕 | 亚洲一码二码三码区别大吗| 久久韩国三级中文字幕| 麻豆精品久久久久久蜜桃| 国产色婷婷99| 久久国产精品大桥未久av| 视频在线观看一区二区三区| 日本色播在线视频| 国产高清国产精品国产三级| 人人澡人人妻人| 成人二区视频| 免费黄频网站在线观看国产| 国产欧美亚洲国产| 边亲边吃奶的免费视频| 亚洲av.av天堂| 国产亚洲欧美精品永久| 9热在线视频观看99| 精品亚洲乱码少妇综合久久| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 日本vs欧美在线观看视频| 国产1区2区3区精品| 亚洲成人一二三区av| 在线精品无人区一区二区三| 丝袜人妻中文字幕| 五月玫瑰六月丁香| 黄色毛片三级朝国网站| 日韩 亚洲 欧美在线| 80岁老熟妇乱子伦牲交| 成人亚洲欧美一区二区av| 亚洲久久久国产精品| 欧美亚洲 丝袜 人妻 在线| 久久免费观看电影| 日韩精品有码人妻一区| 国产片内射在线| 亚洲四区av| 涩涩av久久男人的天堂| 色94色欧美一区二区| 波多野结衣一区麻豆| 欧美性感艳星| 麻豆乱淫一区二区| 午夜影院在线不卡| 免费观看av网站的网址| 国产欧美日韩综合在线一区二区| 丰满迷人的少妇在线观看| 美女国产高潮福利片在线看| 十八禁高潮呻吟视频| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 91在线精品国自产拍蜜月| 久热久热在线精品观看| 国产伦理片在线播放av一区| 午夜av观看不卡| 黄片播放在线免费| 亚洲人与动物交配视频| 成人综合一区亚洲| 99精国产麻豆久久婷婷| 国产熟女午夜一区二区三区| 国产成人av激情在线播放| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 婷婷色麻豆天堂久久| 大片电影免费在线观看免费| 狂野欧美激情性bbbbbb| 人妻一区二区av| av免费观看日本| 国产高清国产精品国产三级| 免费观看无遮挡的男女| 九九爱精品视频在线观看| 久久精品人人爽人人爽视色| 一区在线观看完整版| av天堂久久9| 建设人人有责人人尽责人人享有的| 久久久久久久亚洲中文字幕| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 国产精品久久久久成人av| 亚洲国产看品久久| 精品久久久久久电影网| 日韩伦理黄色片| √禁漫天堂资源中文www| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕免费在线视频6| 成人毛片a级毛片在线播放| 亚洲,一卡二卡三卡| av在线app专区| av免费观看日本| 人妻少妇偷人精品九色| 天堂中文最新版在线下载| 最新的欧美精品一区二区| 狂野欧美激情性xxxx在线观看| 一级爰片在线观看| 大香蕉久久网| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 黄色毛片三级朝国网站| h视频一区二区三区| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 少妇人妻精品综合一区二区| www.av在线官网国产| 久久久国产一区二区| 热re99久久精品国产66热6| 亚洲精华国产精华液的使用体验| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 国产精品久久久久久精品电影小说| 久久狼人影院| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| 国产片特级美女逼逼视频| 亚洲,欧美,日韩| 午夜日本视频在线| 成人漫画全彩无遮挡| 国产亚洲av片在线观看秒播厂| 久久久久久久久久久免费av| 国产男女内射视频| a级毛色黄片| 久久久久久久久久人人人人人人| 狠狠精品人妻久久久久久综合| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 中文字幕最新亚洲高清| www.熟女人妻精品国产 | 免费观看无遮挡的男女| 国产成人91sexporn| 男的添女的下面高潮视频| 少妇的丰满在线观看| 美女内射精品一级片tv| 婷婷色av中文字幕| videosex国产| 男女高潮啪啪啪动态图| 丝瓜视频免费看黄片| 国产成人精品久久久久久| 免费久久久久久久精品成人欧美视频 | 国产男女超爽视频在线观看| 成人国产av品久久久| 少妇的丰满在线观看| 99热6这里只有精品| 黄色一级大片看看| 午夜激情久久久久久久| 亚洲国产精品成人久久小说| 赤兔流量卡办理| 五月伊人婷婷丁香| 免费日韩欧美在线观看| 亚洲国产日韩一区二区| √禁漫天堂资源中文www| 亚洲美女搞黄在线观看| 欧美日韩成人在线一区二区| 美女内射精品一级片tv| kizo精华| 亚洲国产av新网站| 99久国产av精品国产电影| 亚洲久久久国产精品| 国产一区亚洲一区在线观看| 久久精品夜色国产| 99精国产麻豆久久婷婷| 多毛熟女@视频| 乱人伦中国视频| 国产精品国产三级专区第一集| 精品视频人人做人人爽| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 少妇精品久久久久久久| 午夜日本视频在线| 欧美人与性动交α欧美软件 | 国产成人91sexporn| 久久久精品区二区三区| 日本黄大片高清| 久久综合国产亚洲精品| 成人综合一区亚洲| 精品国产一区二区久久| 超碰97精品在线观看| 亚洲精品视频女| av电影中文网址| 欧美+日韩+精品| 国产成人精品婷婷| 熟妇人妻不卡中文字幕| 久久久久久久久久久久大奶| 国产精品久久久久久av不卡| 成人午夜精彩视频在线观看| 草草在线视频免费看| 黄色 视频免费看| 一级,二级,三级黄色视频| 国产片特级美女逼逼视频| 全区人妻精品视频| 黑人欧美特级aaaaaa片| 国产爽快片一区二区三区| 国产黄色免费在线视频| 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| 999精品在线视频| 免费观看在线日韩| 午夜福利视频精品| 成年女人在线观看亚洲视频| 婷婷色综合大香蕉| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 欧美性感艳星| 久久精品国产鲁丝片午夜精品| 伊人亚洲综合成人网| 国语对白做爰xxxⅹ性视频网站| 亚洲精华国产精华液的使用体验| 国产一区亚洲一区在线观看| 99久久人妻综合| 婷婷色综合大香蕉| a级毛色黄片| 一级,二级,三级黄色视频| 国产亚洲精品久久久com| videosex国产| 亚洲色图综合在线观看| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 日韩制服丝袜自拍偷拍| 黄片无遮挡物在线观看| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 最新的欧美精品一区二区| 欧美日韩视频高清一区二区三区二| 国产一级毛片在线| 久久婷婷青草| 国产成人一区二区在线| 日韩精品有码人妻一区| av不卡在线播放| 免费少妇av软件| 免费高清在线观看视频在线观看| av国产精品久久久久影院| 99久久人妻综合| 亚洲美女搞黄在线观看| 亚洲欧美一区二区三区黑人 | 欧美精品国产亚洲| 日本欧美视频一区| 日日撸夜夜添| 极品少妇高潮喷水抽搐| 亚洲av成人精品一二三区| 国产精品久久久久久精品古装| freevideosex欧美| 少妇熟女欧美另类| 全区人妻精品视频| 最后的刺客免费高清国语| 国产一区二区激情短视频 | 国产又色又爽无遮挡免| 在线观看三级黄色| 成人综合一区亚洲| 亚洲综合色网址| 国产亚洲av片在线观看秒播厂| av免费在线看不卡| 午夜精品国产一区二区电影| 2022亚洲国产成人精品| www日本在线高清视频| 香蕉丝袜av| 亚洲精品国产av成人精品| 性高湖久久久久久久久免费观看| 国精品久久久久久国模美| 成年人免费黄色播放视频| 久久热在线av| 亚洲性久久影院| 人人妻人人添人人爽欧美一区卜| 午夜福利,免费看| 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| 黑人猛操日本美女一级片| 少妇的逼水好多| 多毛熟女@视频| 亚洲人成网站在线观看播放| 欧美少妇被猛烈插入视频| 日韩一区二区视频免费看| 久久久久人妻精品一区果冻| 欧美老熟妇乱子伦牲交| 国产精品一区二区在线不卡| kizo精华| 久久青草综合色| 亚洲久久久国产精品| 校园人妻丝袜中文字幕| 日韩,欧美,国产一区二区三区| 国产成人av激情在线播放|