劉泳慶, 邵曉田, 李一品, 王愛華, 王帥
(北京理工大學 信息與電子學院,北京 100081)
?
基于內插型雙邊帶濾波器的時域自適應濾波
劉泳慶, 邵曉田, 李一品, 王愛華, 王帥
(北京理工大學 信息與電子學院,北京 100081)
針對過采樣條件下直接序列擴頻(DSSS)系統(tǒng)中采樣樣值相關性造成在使用傳統(tǒng)時域自適應濾波窄帶干擾抑制方法時擴頻信號失真的問題,提出一種改進的時域自適應濾波方法. 該方法基于內插型雙邊帶濾波器,采用抽取-內插結構,結合最小均方(LMS)算法進行自適應權值更新,實現窄帶干擾抑制. 理論分析和仿真結果表明,在高信噪比情況下,該方法與常規(guī)自適應濾波方法比較,具有更小的信噪比回退和有用信號畸變;同時低信噪比情況下,其誤碼率性能也略有優(yōu)勢.
過采樣;時域自適應濾波;干擾抑制;LMS算法
擴頻通信系統(tǒng)由于其抗截獲、抗干擾特性而被廣泛應用,但是當信道中有意或無意的干擾超過系統(tǒng)擴頻增益時,就需要使用干擾抑制手段以確保系統(tǒng)的工作性能. Milstein[1]總結了擴頻系統(tǒng)中的常規(guī)窄帶干擾抑制技術,包括時域自適應濾波技術和變換域濾波干擾抑制技術. 其中,時域自適應濾波是在輸入信號的統(tǒng)計特性未知的情況下,以滿足某種準則為前提,根據有用信號與窄帶干擾信號不同的自相關特性,自適應迭代調節(jié)自身參數,實現最優(yōu)濾波的窄帶干擾抑制方法. 由于其資源消耗少、算法復雜度低、干擾抑制性能優(yōu)越等優(yōu)點,在擴頻通信抗干擾中得到廣泛應用[2].
過采樣是使用大于奈奎斯特采樣率的頻率對輸入信號進行采樣. 過采樣不僅可以降低抗混疊濾波器設計的難度,還能改善工作頻段內的信噪比[3]. 時域自適應濾波利用有用信號和干擾信號在相關性上的差異進行干擾抑制,而過采樣恰恰增加了信號采樣點之間的相關性,這樣會導致在抑制窄帶干擾的同時,也對有用信號造成損傷,降低接收端信噪比,影響系統(tǒng)性能[4-7].
本文提出一種基于內插型雙邊帶濾波器的時域自適應濾波窄帶干擾抑制方法,采用抽取-內插結構,基于最小均方(LMS)算法進行自適應權值更新. 該方法可選擇性地規(guī)避采樣樣值之間的相關性所帶來的影響,從而在幾乎不損傷有用信號的前提下完成干擾抑制,干擾抑制性能好,實現復雜度低,且在高信噪比的情況下性能更加優(yōu)越.
時域自適應濾波作為一種實用的窄帶干擾抑制技術,可應用于直接序列擴頻通信系統(tǒng)中以提升系統(tǒng)的抗干擾性能. 針對過采樣條件下的時域自適應濾波,典型的實現結構如圖1所示. 抽取-內插結構完成對于基帶數據的降采樣和升采樣. 抽取操作是將高采樣率的基帶信號降采樣至奈奎斯特采樣速率,內插濾波則完成高采樣速率的恢復.
降采樣至奈奎斯特采樣率不僅能保證基帶信號不會發(fā)生混疊,對于自適應濾波還可以帶來兩方面的好處:其一是降采樣之后,對相同階數的干擾抑制濾波器,其陷波性能和通帶平坦性能會有顯著提升;其二是降采樣之后通過時分復用的流水線操作,可有效減少硬件資源消耗.
偽隨機序列具有良好的相關特性,因而以碼片速率對直接序列擴頻信號采樣時,其采樣值之間具有低相關性,無法從過去的采樣值預測當前的采樣值;而對于窄帶干擾信號,其采樣值之間具有較強的相關性,可以利用過去的采樣值去估計當前的樣值. 然而,接收端的采樣速率大于碼片速率時,會增加擴頻信號采樣樣值間的相關性,導致自適應濾波器在預測窄帶干擾的同時也估計了擴頻信號,造成信號損傷,降低系統(tǒng)性能.
圖2給出了過采樣條件下傳統(tǒng)自適應濾波器在抗窄帶干擾時的性能示意. 仿真條件為:調制方式采用BPSK,擴頻碼采用長度為255的m序列,過采樣倍數設為6,10%的窄帶干擾加在載波頻率16.84 M處,干信比(JSR)為30 dB,Eb/No為50 dB. 考慮到自適應濾波器的可實現性,濾波器的階數選為18階. 從仿真結果可見,傳統(tǒng)的自適應濾波器收斂的結果不僅對窄帶干擾進行了陷波,對擴頻信號也進行了嚴重抑制,與上述理論分析相吻合.
本文提出一種基于內插型雙邊帶中心抽頭濾波器的時域自適應濾波窄帶干擾抑制方法. 其中,改進的自適應濾波器結構如圖3所示. 輸入數據xi+2N,…,xi+2,xi,xi-2,…,xi-2N是降采樣至奈奎斯特采樣率后的基帶數據,濾波器的延遲單元為2Tnyq.
在高信噪比無干擾的情況下進行分析. 此時輸入信號矢量為
(1)
因此,
(2)
(3)
可得到維納解
(4)
即線性組合器的所有抽頭系數都為0,陷波器等效為全通濾波器.
誤差信號,即自適應濾波器的輸出信號為
e(n)=d(n)-(n)=x(n)-wHx(n)=x(n),
(5)
(6)
綜上所述,在高信噪比情況下,本文提出的內插型雙邊帶中心抽頭濾波器對有用信號幾乎沒有損傷.
采用內插型雙邊帶中心抽頭濾波器結構的目的就在于規(guī)避相鄰輸入數據之間的相關性,因為此時參與自適應權值更新的輸入數據速率為擴頻碼速率,基于擴頻碼的偽隨機性,其相關性很低,這也正是自適應濾波適用于直接序列擴頻系統(tǒng)的基石. 采用內插型雙邊帶中心抽頭濾波器進行自適應濾波,收斂到穩(wěn)態(tài)的干擾抑制陷波器幅頻響應如圖4所示,其仿真條件與圖3完全相同.
可見,基于內插型的濾波器在干擾頻率處形成零陷,且在信號通帶內的平坦度遠好于傳統(tǒng)雙邊帶濾波器.
本節(jié)對基于內插型雙邊帶中心抽頭橫向濾波器結構的時域自適應濾波方法的抗干擾性能進行仿真分析. 自適應算法采用最小均方(LMS)算法. 不失一般性,仿真平臺搭建如下:調制方式采用BPSK,擴頻碼采用長度為255的m序列,過采樣倍數設為6,10%的窄帶干擾加在載波頻率16.84 M處. 考慮到自適應濾波器的可實現性,濾波器的階數選為18階.
3.1 輸出信噪比回退性能仿真分析
針對不同干信比(JSR)下濾波器輸出信噪比(SNR)相對于濾波器輸入信噪比的性能回退(G)進行了仿真分析,如表1和圖5所示.
表1 窄帶干擾,WRBW=10%,RJSR=10、25和40 dB時的輸出信噪比改善增益
Tab.1 NBI,WRBW=10%, output SNR improvement forRJSR=10,25 and 40 dB
RJSR//dB102540RSNR_in/dBRSNR_out1/dBRSNR_out2/dBG1/dBG2/dBΔG/dB-234-242-240-08-0602-194-208-203-14-0905-154-172-168-18-1404-114-136-129-22-1507-74-100-91-26-1709-34-65-53-31-191206-29-15-35-2114460824-38-2216-234-260-251-26-1709-194-226-213-32-1913-154-191-175-37-2116-114-156-138-42-2418-74-117-100-43-2617-34-79-62-45-281706-40-23-46-291746-0116-47-3017-234-277-260-43-2617-194-238-221-44-2717-154-200-183-46-2917-114-163-143-49-2920-74-128-106-54-3222-34-94-69-6-352506-59-31-65-372846-2305-69-4128
其中RSNR_out1和G1表示傳統(tǒng)雙邊帶濾波器的輸出信噪比以及信噪比損失,同理RSNR_out2和G2表示內插型雙邊帶濾波器的輸出信噪比及信噪比的損失,ΔG為兩者的差值.
通過對比表1的各項數據和圖5的兩條曲線不難看出,本文提出的內插型中心抽頭濾波器結構的輸出信噪比比傳統(tǒng)的雙邊帶濾波器結構改善了1~3 dB,尤其在高信噪比環(huán)境下更有優(yōu)勢. 這是因為在對相關性強的干擾進行陷波的同時,傳統(tǒng)的雙邊帶濾波器結構對有用信號也造成了一定程度的損傷,而改進的濾波器對有用信號的損傷則很小.
3.2 輸出功率性能仿真分析
在無干擾、其他仿真條件相同的情況下,將輸入功率固定,然后對兩種濾波器結構的輸出功率進行仿真分析. 用歸一化輸出功率Pnorm_out衡量兩種濾波器的性能,其定義如式(7)所示,表示輸出功率相對于輸入功率的歸一化表征. 仿真結果如圖6所示.
(7)
由圖6可以看出,隨著信噪比提高,由于過采樣而造成的DSSS信號相關性增強,傳統(tǒng)自適應濾波器對有用信號的損傷不斷增加,并在信噪比增加到一定程度后性能明顯惡化. 而本文提出的內插型雙邊帶中心抽頭濾波器,規(guī)避了相鄰信號采樣的相關性,所以幾乎不會對有用信號產生損傷.
本文提出了一種基于內插型雙邊帶中心抽頭濾波器的時域自適應濾波方法,基于抽取-內插結構實現窄帶干擾抑制. 理論分析和仿真研究表明,在過采樣的直擴通信系統(tǒng)中,該方法與傳統(tǒng)的自適應濾波方法相比:收斂至穩(wěn)態(tài)的陷波器幅頻響應通帶更加平坦;高信噪比情況下信噪比的回退減少3 dB,輸出功率損失減小5 dB;同時在低信噪比情況下的誤碼率性能也略好;因此具有很強的實用價值.
[1] Milstein L B. Interference rejection techniques in spread spectrum communications[J]. Proceedings of the IEEE, 1988,76(6):657-671.
[2] Rusch L A, Poor H V. Narrowband interference suppression in CDMA spreadspectrum communications[J]. IEEE Trans Commun, 1994,42(234):1969-1979.
[3] 謝鋼.GPS原理與接收機設計[M].北京:電子工業(yè)出版社,2009.
Xie Gang. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics Industry, 2009. (in Chinese)
[4] 劉春霞.過采樣條件下的抗干擾接收機研究[D].長沙:國防科學技術大學,2004.
Liu Chunxia. The anti-jamming receiver research under the condition of over-sampling[D]. Changsha: National University of Defense Technology, 2004. (in Chinese)
[5] Oppenheim A V, Schafer R W. Discrete-time signal processing[M]. [S.l.]: Pearson Higher Education, 2001.
[6] Li L M,Milstein L B. Rejection of narrow-band interference in PN spread-spectrum systems using transversal filters [J].IEEE Transactions on Communications, 1982,30(5):925-928.
[7] 龔耀寰.自適應濾波[M].2版.北京:電子工業(yè)出版社,2003.
Gong Yaohuan. Adaptive filtering [M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2003. (in Chinese)
(責任編輯:李兵)
Time-Domain Adaptive Filtering Algorithms Based on Interpolating Transversal Filter with Two-Sided Taps
LIU Yong-qing, SHAO Xiao-tian, LI Yi-pin, WANG Ai-hua, WANG Shuai
(School of Information and Electronics,Beijing Institute of Technology, Beijing 100081, China)
In order to solve the problem of spread spectrum signal distortion caused by raised correlation between the samples with general time-domain adaptive filtering narrowband interference suppression method in the oversampling direct sequence spread spectrum (DSSS) system, an improved time-domain adaptive filtering algorithm was proposed based on interpolating transversal filter with two-sided taps and the minimum mean square (LMS) algorithm to update the weights adaptively. Combined with downsample-upsample structure, it could effectively suppress narrowband interference. Both theoretical analysis and simulations show that, compared with traditional adaptive filter method, the proposed algorithm can not only lower signal-to-noise ratio (SNR) loss, but also get excellent characteristics as small distortion of desired signal in high SNR conditions, meanwhile it has a slight advantage in bit error rate(BER) performance in the low SNR conditions.
over-sampling; time-domain adaptive filter; interference suppression; LMS algorithm
2014-05-09
國家八六三計劃項目(2012AA01A505);國家自然科學基金資助項目(61271258)
劉泳慶(1987—),男,博士生,E-mail:liuyongqing@bit.edu.cn.
王愛華(1965—),女,教授,E-mail:wah@bit.edu.cn.
TN 914.4
A
1001-0645(2016)10-1085-05
10.15918/j.tbit1001-0645.2016.10.018