• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An improved α-cut approach to trans forming fuzzy membership function into basic belief assignment

    2016-11-24 00:48:56YngYiRongLiHnDeqing
    CHINESE JOURNAL OF AERONAUTICS 2016年4期

    Yng Yi,X.Rong Li,Hn Deqing

    aSKLSVMS,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Electrical Engineering,University of New Orleans,New Orleans,LA 70148,USA

    cCenter for In formation Engineering Science Research,Xi’an Jiaotong University,Xi’an 710049,China

    An improved α-cut approach to trans forming fuzzy membership function into basic belief assignment

    Yang Yia,X.Rong Lib,Han Deqiangc,*

    aSKLSVMS,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China

    bDepartment of Electrical Engineering,University of New Orleans,New Orleans,LA 70148,USA

    cCenter for In formation Engineering Science Research,Xi’an Jiaotong University,Xi’an 710049,China

    In practical applications,pieces of evidence originated from different sources might be modeled by different uncertainty theories.To implement the evidence combination under the Dempster–Shafer evidence theory(DST)framework,trans formations from the other type of uncertainty representation into the basic belief assignment are needed.α-Cut is an important approach to trans forming a fuzzy membership function into a basic belief assignment,which provides a bridge between the fuzzy set theory and the DST.Some drawbacks of the traditional α-cut approach caused by its normalization step are pointed out in this paper.An improved α-cut approach is proposed,which can counteract the drawbacks of the traditional α-cut approach and has good properties.Illustrative examples,experiments and related analyses are provided to show the rationality of the improved α-cut approach.

    1.Introduction

    Uncertainty modeling and reasoning is a very crucial research field in in formation fusion.Probability theory,rough set theory,1fuzzy sets theory,2and Dempster–Shafer evidence theory(DST)3are major theories and tools for dealing with various types of uncertainty.

    DST is an important modeling and reasoning tool for uncertainty such as ambiguity4,5(including non-specificity and discord),and it has been widely used in many applications such aspattern recognition,6,7in formation fusion8and decision-making.9–11In DST,the basic belief assignment(BBA)is used to model the uncertainty.When multiple BBAs are available,they can be combined to reduce the uncertainty.However,in practical applications,we will usually encounter different types of in formation sources,where the uncertainty is modeled by different uncertainty theories.In such cases,how to implement the combination or fusion of different types of in formation under the framework of DST?It needs trans formations from other types of uncertainty representation into BBAs.12,13This paper focus on the trans formation from a fuzzy membership function(FMF)2into a BBA.

    Many approaches6,12–16to trans forming an FMF into a BBA have emerged,where the α-cut approach14is a simple yet effective and commonly used approach.However,it includes a normalization step.This leads to drawbacks,e.g.,in some cases,it has counter-intuitive results.In some extreme cases,it can even not be executed.In this paper,we propose an improved α-cut approach without the problematic normalization.More rational results can be obtained using the improved version.Furthermore,it has some desired properties when compared with the traditional one.Experiments and simulations are provided to illustrate the new α-cut approach and show its efficiency.

    2.Basics of DST

    In DST,3elements in the frame of discernment(FOD)Θ are mutually exclusive and exhaustive.Assume that 2Θdenotes the power set of FOD.m:2Θ→[0,1]is called a BBA ifit satisfies

    ?A ? Θ,when m(A)>0,A is called a focal element.A BBA is also called a mass function.

    Belieffunction(Bel)and plausibility function(Pl)are defined by Ref.3

    isalso aBBA.Eq.(4)iscalled Dempster’sruleof combination.3

    Besides Dempster’s rule of combination,some other alternative combination rules,e.g.,robust combination rule(RCR),17proportional conflict redistribution rule 6(PCR6),18and the mean rule19are given as follows.

    (1)RCR

    In RCR,17the conjunctive rule and the disjunctive rule are jointly used.

    Here mDisis the BBA obtained by the disjunctive rule,mConjis the BBA obtained by the conjunctive rule,and α(K),β(K)are the weights satisfying

    where K is the conflict coefficient.Robust combination rule can be considered as a weighted sum of the BBAs obtained using the disjunctive rule and the conjunctive rule,respectively.

    (2)PCR6

    Considers BBA sdenoted bym1(˙s),m2(˙s),...,ms(˙s).PCR6,18which redistributes the partial conflicting mass values to the elements involved,is defined as

    It should be noted that PCR6 coincides with PCR5 when combining two sources,18but differs from PCR5 when combining more than two sources altogether and PCR6 is considered more efficient than PCR5 because it is compatible with classical frequentist probability estimate.18

    (3)Mean rule

    Mean rule19aims to find the average of the BBAs to be combined as

    After the combination,we can use the pignistic probability trans formation(PPT)20in Eq.(9):

    to make a probabilistic decision,where|A|denotes the cardinality of the focal element A.

    Besides the DST,there are also many other theories of uncertainty,where fuzzy set theory and its fuzzy membership function(FMF)2are widely used in many applications.For the DST,the BBA is essentially defined using random sets,which is a unified framework for almost all the existing uncertainty theories.To combine the in formation in terms of the BBA and that in terms of the FMF,the FMF should be trans formed into a BBA.There are many available trans formations of an FMF into a BBA.6,12–16α-cut approach14is simple and commonly used.

    3.Traditional α-cut approach

    3.1.Basics of fuzzy sets and fuzzy membership function

    A fuzzy set2is a set to describe the fuzzy concepts,which are not crisp.A fuzzy set is of ten defined by an FMF(θ):Θ?[0,1],quantifying the degree of membership of the element θ to thefuzzy setGiven α ∈∈[0,1],an α-cut of a fuzzy setis a crisp set(subset of Θ)such that= {θ∈ Θ|μ(θ)≥ α}.

    μA~(θ)is briefly denoted by μ(θ)below when no confusion arises.

    3.2.α-Cut approach

    Suppose that the FOD is Θ ={θ1,θ2,...,θn}and the FMF is μ(θi),i=1,2,...,n,the corresponding BBA generated using M α-cuts14(0= α0< α1< α2< ···< αM≤ 1), where M ≤ |Θ|=n.

    where Bj, for j=1,2,...,M,(M ≤ |Θ|)denotes thefocal element.α-Cut approach is illustrated in Example 1.

    3.3.Example 1:Illustrative example of α-cut approach

    A given FMF is μ(θ1)=0.2, μ(θ2)=0.6, μ(θ3)=0.4,μ(θ4)=0.8 and α1=0.2, α2=0.4, α3=0.6, α4=0.8.According to Eq.(10),the BBA trans formed from the FMF is given in Table 1.

    The details of the trans formation are given as follows.

    Step 1.Since all the μ(θi)≥ α1=0.2,i∈{1,2,3,4},B1={θ1,θ2,θ3,θ4}, αM=0.8,then m(B1)=(α1- α0)/αM=0.25.

    Step 2.Since μ(θi)≥ α2=0.4,where i∈{2,3,4},B2={θ2,θ3,θ4},then,m(B2)=(α2- α1)/αM=0.25.

    Step 3.Since μ(θi)≥ α3=0.6, where i∈{2,4}, B3={θ2,θ4},then,m(B3)=(α3- α2)/αM=0.25.

    Step 4.Since μ(θi)≥ α4=0.8,where i=4,B4={θ4},then,m(B4)=(α4- α3)/αM=0.25.

    The procedure can also be illustrated in Fig.1.

    Note that α could be unequal to the given FMF.For example,when α1=0.3,α2=0.5,the BBA obtained from the given FMF using the α-cut approach is shown in Table 2.

    There are less focal elements,since the length of α is small.

    When α1=0.1, α2=0.3, α3=0.5, α4=0.8,the BBA obtained using the α-cut approach is shown in Table 3.

    Given different α’s,the corresponding BBAs obtained from a given FMF using the α-cut approach might be different.When using α with smaller length,the BBA obtained is simpler,which can be used as an approximation.13Note that in our work,the focus is the mechanism of trans formation from an FMF to a BBA when α is given.

    As we can see,there involves a normalization at each step of α-cut approach.This can assure the unity of the BBA obtained;however,it may lead to counter-intuitive results in some cases,as illustrated later.

    4.Drawbacks of traditional α-cut approach

    Using the traditional α-cut approach with normalization might lead to counter-intuitive results shown as follows.

    4.1.Example 2:Invariance of fixed ratio FMFs

    Suppose that the FOD is Θ ={θ1,θ2,θ3}.

    Three FMF sare μ1(θ1)=0.01, μ1(θ2)=0.03, μ1(θ3)=0.04; μ2(θ1)=0.10, μ2(θ2)=0.30, μ2(θ3)=0.40;and μ3(θ1)=0.25,μ3(θ2)=0.75,μ3(θ3)=1.

    For simplicity,we sort each μi(·)in ascending order to generate their corresponding α values.

    For μ1(·), α1=0.01, α2=0.03, α3=0.04.For μ2(·)α1=0.10, α2=0.30, α3=0.40.For μ3(·), α1=0.25,α2=0.70, α3=1.Then,their corresponding BBAs using αcut approach are m1(θ3)=0.25,m1(θ2,θ3)=0.50,m1(Θ)=0.50,m2(θ3)=0.25,m2(θ2,θ3)=0.50,m2(Θ)=0.50,and m3(θ3)=0.25,m3(θ2,θ3)=0.50,m3(Θ)=0.50.

    As we can see,three different FMFs correspond to the same BBA.Note that as far as the ratios between different μ(θi)are fixed,the α-cut trans formed BBAs are always the same due to the normalization involved.For μ1(s˙),the membership degree of θ3is very small(μ1(θ3)=0.04,i.e.,a close to zero possibility)while for μ3(s˙),the membership degree of θ3is much greater(μ3(θ3)=1,i.e.,almost sure)compared with μ1(θ3).However, m1({θ3})=m3({θ3})=0.25, and BetP1(θ3)=BetP3(θ3)=0.5833.For μ1(·),θ3has a very low possibility,while it has a possibility greater than 0.5 after the trans formation into BBA followed by the PPT,which is counter-intuitive.

    Table 1 BBA obtained in Example 1 using α-cut approach.

    Fig.1 Illustration of Example 1 using α-cut approach.

    Table 2 BBA obtained in Example 1 using α-cut approach(α1=0.3,α2=0.5).

    Table 3 BBA obtained in Example 1 using α-cut approach(α1=0.1,α2=0.3,α3=0.5,α4=0.8).

    4.2.Example 3:Inability to handle singular cases

    For an FMF μ(θi)=0, ?i=1,2,...,n,traditional α-cut approach cannot be executed due to the normalization step(αM=0).This is a limitation of α-cut,that is,it is unable to handle the singular case(all-zero case).

    4.3.Example 4:Lack of discriminability

    For an FMF μ(·)defined on Θ ={θ1,θ2,...,θn},μ(θi)=a ∈[0,1],and μ(θj)=0,?j≠ i,where i,j∈{1,2,...,n}.By using the traditional α-cut approach,the BBA obtained is always m({θi})=1.For example, for the two FMFs defined on Θ ={θ1,θ2}: μ1(θ1)=0.01, μ1(θ2)=0; μ2(θ1)=0.99, μ2(θ2)=0.Their corresponding BBA sarethesame:m({θ1})=1,although μ1(·)and μ2(·)are very different.So m1({θ1})and m2({θ1})cannot be discriminated.This is counter-intuitive.

    4.4.Example 5:Inability to reflect the magnitude of FMF

    Suppose that the FOD is Θ ={θ1,θ2}.Two FMFs are μ1(·):μ1(θ1)=0.010,μ1(θ2)=0.012;μ2(·):μ2(θ1)=0.450,μ2(θ2)=0.400.

    Using the traditional α-cut approach,their corresponding BBAs are

    m1(·):m1({θ2})=0.1667,m1({θ1,θ2})=0.8333;m2(·):m2({θ1})=0.1111,m2({θ1,θ2})=0.8889.

    Using Dempster’s rule of combination,the combined BBA is

    m({θ1})=0.0943,m({θ2})=0.1509,m({θ1,θ2})=0.7547.

    Using PPT,BetP(θ2)=0.5283 is the maximum one;thus,the decision results is θ2.However,μ1(θ1)is only slightly smaller than μ1(θ2)(the additive difference is 0.002)and μ2(θ1)is larger than μ2(θ2)with the additive difference 0.05.When using the averaging rule for the two FMFs,μ12(θ1)=0.23,μ12(θ2)=0.206,then,θ1is more preferred.Due to the normalization,the α-cut approach only emphasizes the relative values of the FMF between different alternatives.That is,the absolute magnitude of the values of FMF is not in formative by the α-cut approach.

    For more general case,suppose that FOD is{θ1,θ2}.Two FMFs are μ1(θ1)=a,μ1(θ2)=b and μ2(θ1)=d,μ2(θ2)=c,where b > a,d > c.Using the traditional α-cut approach,the two corresponding BBAs are m1({θ2})=1-a/b;m1({θ1,θ2})=a/b and m2({θ1})=1-c/d;m2({θ1,θ2})=c/d.

    Using Dempster’s rule,m(·)=m1(·)⊕ m2(·)is obtained.Suppose the conflict between m1(·)and m2(·)is K.Then,m({θ1})=((a/b)·(1-c/d))/K, m({θ2})=((c/d)·(1-a/b))/K.Their additive difference is So,as far as a/b > c/d,m({θ1})> m({θ2}).That is,the decision result is determined by the ratio of alternatives’membership degree when using the traditional α-cut approach.This is caused by the normalization.

    In the above examples,all the counter-intuitive results or drawbacks are caused by the normalization in the traditional α-cut approach.This approach should be modified,if we want to get rid of these drawbacks.

    5.A novel improved α-cut approach

    We propose an improved α-cut approach(denoted by α′-cut)without the normalization.To sum up to unity,the remaining mass values are assigned to the total set Θ.The implementation of the α′-cut is as follows.

    Suppose that the FOD is Θ ={θ1,θ2,...,θn}and the FMF is μ(θi), i=1,2,...,n. First, use M α-cuts(0= α0< α1< α2< ···< αM≤ 1),where M ≤ |Θ|=n:

    where Bj,j=1,2,...,M,represents the focal element.Then,the summation of m(Bj)is

    Since αM≤ 1,the remaining mass value is 1- αM.Add the remaining mass values 1- αMto m(Θ).

    Then,m(·)is the BBA obtained using the α′-cut approach.Obviously,when αM=1,there is no difference between the α′-cut and the traditional α-cut.

    5.1.Example 1 revisited

    First,according to Eq.(11),we can obtain m({θ4})=0.2,m({θ2,θ4})=0.2,m({θ2,θ3,θ4})=0.2,m(Θ)=0.2.

    Then according to Eq.(13),m(Θ)is modified as m(Θ):=m(Θ)+1- αM=0.2+1-0.8=0.4.TheBBA obtained using the α′-cut approach is given in Table 4.

    When α1=0.3,α2=0.5,the BBA obtained from the FMF using the α′-cut approach is given in Table 5.

    Note that in Table 2,the BBA obtained using traditional α-cut approach has no focal element of Θ ={θ1,θ2,θ3,θ4},while the BBA obtained using α′-cut approach has thefocal element of Θ ={θ1,θ2,θ3,θ4},since the remaining mass value is assigned to Θ.

    When α1=0.1, α2=0.3, α3=0.5, α4=0.8,the BBA obtained using the α′-cut approach is given in Table 6.Given different α’s,the BBAs obtained using the α′-cut approach from a given FMF might be different.

    5.2.Example 2 revisited

    Using the α′-cut approach,the BBAs obtained in Example 2 are m1(θ3)=0.01,m1(θ2,θ3)=0.02,m1(Θ)=0.97,m2(θ3)=0.10,m2(θ2,θ3)=0.20,m2(Θ)=0.70,and m3(θ3)=0.25,m3(θ2,θ3)=0.50,m3(Θ)=0.50.

    Table 4 BBA obtained in Example 1 using α′-cut approach.

    Table 5 BBA obtained in Example 1 using α′-cut approach(α1=0.3,α2=0.5).

    Table 6 BBA obtained in Example 1 using α′-cut approach(α1=0.1,α2=0.3,α3=0.5,α4=0.8).

    Three different FMFs correspond to three different BBAs,respectively,although the ratio between different μ(θi)is fixed.In BBAs obtained,the mass of Θ are large due to the reassignment of 1- αM.Θ is always non-in formative in evidence combination,so,the large mass of Θ does not matter for the later combination.

    5.3.Example 3 revisited

    For an FMF μ(θi)=0, ?i=1,2,...,n,the BBA obtained using the α′-cut approach is m(Θ)=1,which represents a totally unknown state.Note that the traditional α-cut approach cannot be applied to this case.

    5.4.Example 4 revisited

    For an FMF μ(·)defined on Θ ={θ1,θ2,...,θn},μ(θi)=a ∈[0,1],and μ(θj)=0,?j≠ i,where i,j∈ {1,2,...,n}.By using the proposed α′-cut approach,the BBA obtained is m({θi})=a,m(Θ)=1-a.For example, for the two FMFs defined on Θ ={θ1,θ2}: μ1(θ1)=0.01, μ1(θ2)=0; μ2(θ1)=0.99,μ2(θ2)=0.Their corresponding BBAs are m1({θ1})=0.01,m1(Θ)=0.99;m2({θ1})=0.99,m2(Θ)=0.01.

    μ1(·)and μ2(·)are very different,and m1({θ1})and m2({θ1})are also very different.This is more intuitive than the results obtained using the traditional α-cut approach.

    5.5.Example 5 revisited

    Two FMFs are μ1(·):μ1(θ1)=0.010, μ1(θ2)=0.012; μ2(·):μ2(θ1)=0.450,μ2(θ2)=0.400.

    Using the α′-cut approach,their corresponding BBAs are m1(·):m1({θ2})=0.0020,m1(Θ)=0.9980;m2(·):m2({θ1})=0.0500,m2(Θ)=0.9500.

    As we can see,since the normalization is removed,the magnitude of the FMF is in formative by using the α′-cut approach.After using Dempster’s rule of combination,the combined BBA is

    m({θ1})=0.0499,m({θ2})=0.0019,m(Θ)=0.9482.

    Using PPT,BetP(θ1)=0.5240 is the maximum one.There fore,the decision results is θ1,which is intuitive and consistent with the result obtained using the averaging rule of FMFs.For a more general case,suppose that FOD={θ1,θ2}.Two FMFs are μ1(θ1)=a, μ1(θ2)=b; μ2(θ1)=d, μ2(θ2)=c,where b>a,d>c.

    Using the α′-cut approach,the two corresponding BBAs are

    Using Dempster’s rule of combination,m(˙s)=m1(˙s)⊕m2(˙s),then

    where K denotes the conflict between m1(˙s)and m2(˙s).The difference between θ1and θ2is

    So,when(d-c)> (b-a),m({θ1})> m({θ2}).That is,the decision result is determined by the absolute difference of alternatives’membership degree when using the α′-cut approach,which appears more intuitive.

    6.Experiments on pattern classification

    To verify the advantages of the proposed α′-cut approach compared with the traditional α-cut approach,experimental results on pattern classification are provided below.

    Here we use one of the commonly used iris dataset from UCI database.21Iris dataset has three classes,where each class has 50 samples.Suppose that θ1,θ2,θ3represent Class 1,Class 2 and Class 3,respectively.Each sample has four feature dimensions.On each experimental run,samples of each class are separated into two parts with an equal probability:training samples and test samples.So,on each run,totally 75 samples are for training and 75 samples are for testing.On each run,the 75 training samples are used to generate each class’s triangular fuzzy number[lbj(θi),mej(θi),ubj(θi)],where lbj(θi)is the minimum value,mej(θi)is the mean value,and ubj(θi)is the maximum value of j th dimension of the training samples in the class θi.Using[lbj(θi),mej(θi),ubj(θi)],each class’FMF can be obtained using Eq.(14)as illustrated in Fig.2.

    where x(j)is the j th feature value of sample x.

    Given a query sample xq,we use each dimension xq(i)to generate an FMF μi(·)(i=1,2,3,4,four FMFs in total)based on Eq.(14).Then,using the traditional α-cut approach,we can generate four BBAs(denoted by(·),i=1,2,3,4 corresponding to four dimensions)of xq,and using the proposed α′-cut approach,four other BBAs can be obtained(denoted by(·),i=1,2,3,4).Four(·)are combined using Dempster’s rule,RCR,PCR6,and the mean rule,respectively,to obtain four combined BBAs.Then,use the PPT to make a classification decision.The same operation is executed for(·).Calculate the classification accuracies based on the α-cut and α′-cut approaches,respectively, for all the training samples on the current run.Repeat the run 100 times and then calculate the average classification accuracy.The experimental results are listed in Table 7.

    As shown in Table 7,using the proposed α′-cut approach,classification accuracies are higher than those using the traditional α-cut approach judging from all four combination rules.We make a detailed analysis below.Some query samples are picked out,whose classification are correct using the α′-cut and incorrect using the α-cut approach.

    (1)Case 1

    The test sample is xq=[6.1000,2.6000,5.6000,1.4000]belonging to Class 3.The triangular fuzzy number of each dimension obtained based on the training samples are listed in Table 8.

    Based on Eq.(14),we can use these triangular fuzzy numbers to generate each class’s FMF for each dimension of xqbelow,also as shown in Fig.3.

    Fig.2 Triangular fuzzy member-based FMF.

    Then,by using the traditional α-cut approach,we can generate four BBAs(denoted by(·),i=1,2,3,,4 corresponding to four dimensions)of xq:

    Due to the total conflict between mα3and mα4,Dempster’s rule cannot be executed.Using RCR,PCR6,and the mean rule,the combination could be executed;however,the classifications are incorrect based on the pignistic probability trans formation,where the classification results are class 2 as shown below:

    where θ2always has the maximum pignistic probability.

    Table 7 Classification accuracy comparison.

    Table 8 Triangular fuzzy number model.

    Fig.3 FMF generation using triangular fuzzy member for Case 1.

    Using the proposed α′-cut approach,four other BBAs can be obtained(denoted by(·),i=1,2,3,4).

    Dempster’s rule of combination,RCR,PCR6 and Mean rule could all be executed when using the α′-cut approach.After the PPT,their corresponding pignistic probabilities are

    where Dempster’s rule,PCR6 has correct classification results(their pignistic probability of θ3is the maximum).

    (2)Case 2

    The test sample is xq=[5.7000,4.4000,1.5000,0.4000]belonging to Class 3.According to the triangular fuzzy number in Table 8 and Eq.(10),the FMFs for xq(j),j=1,2,3,4 are given below,as shown in Fig.4.

    By using the traditional α-cut approach,we can generate four BBAs(denoted by(·),i=1,2,3,4 corresponding to four dimensions)of xq.

    Using the proposed α′-cut approach,four other BBAs can be obtained(denoted by=1,2,3,4).

    Fig.4 FMF generation using triangular fuzzy member for Case 2.

    Using the Dempster’s rule,RCR,PCR6,and mean rulefollowed by the PPT,their pignistic probabilities are

    The pignistic probability of θ1is always the maximum using any rule here,so xq=[5.7000,4.4000,1.5000,0.4000]can all be correctly classified.

    7.Property of order perseverance for uncertainty degree

    Suppose that there are s FMFs μ1(·),μ2(·),...,μs(·).s BBAs m1(·),m2(·)...,ms(·)can be obtained using some trans formation Tr.We can calculate the uncertainty degree of the s FMFs denoted byand the uncertainty degree of the s BBAs denoted by.By sorting,,the ranking ΛFcan be obtained,and then by sorting,the ranking ΛBcan also be obtained.If the ranking ΛFis close to ΛB,the trans formation Tr loses less in formation.Such a desired property is called the order perseverance for the uncertainty degree.The new proposed α′-cut approach has better order perseverance for the uncertainty degree,which is verified by the simulation below.On each run,

    Step 1.Suppose that the size of FOD is n.Randomly generate an integer s∈[3,20].Then,randomly generate s FMFs and calculate their fuzzy entropy22according to

    where C is a normalization constant.

    Sort allthe fuzzy entropy values to generate a ranking ΛF=[r(F1),r(F2),...,r(Fi),...,r(Fs)]where r(Fi),i=1,2,...,s denotes the ranking position of Fi.

    Step 2.Generate s BBAs with the traditional α-cut approach denoted by).Calculate their corresponding ambiguity measures(AM)4according to

    where BetP(·)is the pignistic probability defined in Eq.(9).

    AM has been criticized for the reason that it cannot satisfy the sub-additivity23;however,in our work,there is no problem for the joint BBA(Cartesian space).There fore,there is no subadditivity problem and AM can be used as an uncertainty measure for BBA here.Besides AM,aggregated uncertainty(AU)measure24is also a total uncertainty measure for belief functions;however,it has some limitations.First,AU is optimization-based.It will cause large computational cost.Second,it is insensitive to the change of BBA,4which is negative for the definition of the order perseverance for uncertainty.The non-specificity25is also an uncertainty measure in the DST,which means two or more alternatives are left unspecified and represents an imprecision degree.However,it is not a total uncertainty measure,which only describes the non-specificity part of uncertainty in a BBA.In summary,here we choose AM to calculate the uncertainty measure.

    Clearly,ρ∈[0,2].ρ=0 means a total positive correlation between rankings and ρ=2 means a total negative one.To be more comprehensive,we can also use another ranking distance,i.e.,Kendall distance(Kd)27defined in Eq.(18)to calculate the distanceand=Ken):

    where

    Ii,Ijare two different items in a ranking and=s(s-1)/2 is a normalization factor.

    The steps above are repeated for multiple times.Average values ofare obtained.A smaller distance value is preferred within a given ranking distance.It means that the corresponding trans formation has better order perseverance for uncertainty degree.

    Here,we provide an example to illustrate the procedure over a single run.Suppose that the size of FOD n=4.Three generated FMFs are

    Their corresponding fuzzy entropy areUnF(μ1(·))=0.6129,UnF(μ2(·))=0.5242,UnF(μ3(·))=0.7248.

    The ranking ΛF=[2,1,3](in ascending order,the same holds in the sequel).

    Then using the α-cut approach,three corresponding BBAs are

    Theircorresponding AM measuresareAMα(m1(·))=1.4792,AMα(m2(·))=1.4578,AMα(m3(·))=1.3759.

    Their corresponding AM measures are AMα′(m1(·))=1.4849,AMα′(m2(·))=1.4605,AMα′(m3(·))=1.6402.

    In our simulation,the cardinality of the FOD is set to be 5.The averaging results of the 10000 times run are=0.5598=0.5026and=0.5598,=0.5026.It means that the α′-cut approach is more preferred in terms of the order perseverance for the uncertainty degree when using two different ranking distances.

    8.Conclusions

    In this paper,an improved α-cut approach is proposed,which is free from some drawbacks of the traditional one.Furthermore,the robustness and accuracy for pattern classification can be improved using the new proposed approach.It also has better order perseverance for the uncertainty degree,which means the relation between the BBAs obtained is closer to the relation between the original FMFs.These have been verified by the numerical examples and simulation results provided in this paper.

    In our work,the criterion forevaluating different approaches is the intuition or the rationality,which are qualitative.Quantitative evaluation criteria are needed for a more objective evaluation or design of better approaches.The order perseverance for the uncertainty degree used in this paper is our attempt on the quantitative evaluation.In our future work,we will try to design more solid performance evaluation approaches or criterion.

    Acknowledgements

    This work was supported by the Grant for State Key Program for Basic Research of China(No.2013CB329405),National Natural Science Foundation of China(No.61573275),Foun-dation for Innovative Research Groups of the National Natural Science Foundation of China(No.61221063),Science and Technology Project of Shaanxi Province(No.2013KJXX-46),Postdoctoral Science Foundation of China (No.2016M592790),and Fundamental Research Funds for the Central Universities of China(No.xjj2014122).

    1.Pawlak Z.Rough sets.Int J Comput In form Sci 1982;11(5):341–56.

    2.Zadeh LA.Fuzzy sets.Inf Control 1965;8(3):338–53.

    3.Shafer G.A mathematical theory of evidence.Princeton,NJ,USA:Princeton University Press;1976.p.35–60.

    4.Jousselme AL,Liu CS,Grenier D,Bosse′E′.Measuring ambiguity in the evidence theory.IEEE Trans Syst Man Cybern Part A Syst Hum 2006;36(5):890–903.

    5.Yang Y,Han DQ.A new distance-based total uncertainty measure in the theory of belief functions. Knowl-Based Syst 2016;94:114–23.

    6.Bi YX,Bell D,Wang H,Guo GD,Greer K.Combining multiple classifiers using Dempster’s rule of combination for text categorization.2004 1st international conference on modelling decisions for artificial intelligence(MDAI);2004 August 2–4;Barcelona,Spain.Piscataway,NJ:IEEE Press;2004.p.127–38.

    7.Liu ZG,Pan Q,Dezert J,Martin A.Adaptive imputation of missing values for incomplete pattern classification.Pattern Recogn 2015;52:85–95.

    8.Smets P.Data fusion in the transferable belief model.2000 3rd international conference on in formation fusion(FUSION);2000 July 10–13 Paris,France.Piscataway,NJ:IEEE Press;2000.p.PS21–33.

    9.Tacnet J-M,Cautious DJ.OWA and evidential reasoning for decision making under uncertainty2011 14th international conference on in formation fusion(FUSION),2011 July 5–8;Chicago,IL,USA.Piscataway,NJ:IEEE Press;2011.p.1–8.

    10.Han DQ,Dezert J,Tacnet J-M,Han CZ.A fuzzy-cautious OWA approach with evidential reasoning.2012 15th international conference on in formation fusion(FUSION);2012 July 9–12;Singapore.Piscataway,NJ:IEEE Press;2012.p.278–85.

    11.Liu JP,Liao XW,Yang JB.A group decision-making approach based on evidential reasoning for multiple criteria sorting problem with uncertainty.Eur J Oper Res 2015;246(3):858–73.

    12.Han DQ,Han CZ,Deng Y.Novel approaches for the trans formation of fuzzy membership function into basic probability assignment based on uncertainty optimization.Int J Uncertainty Fuzziness Knowledge Based Syst 2013;21(2):289–322.

    13.Florea MC,Jousselme A-L,Grenier D,Bosse′E′.Approximation techniques for the trans formation of fuzzy sets into random sets.Fuzzy Sets Syst 2008;159(3):270–88.

    14.Orlov AI.Fuzzy and random sets.Prikladnoi Mnogomiernii Statisticheskii Analyz 1978;6:262–80.

    15.Dubois D,Prade H.On several representations of an uncertain body of evidence.In:Gupta M,Sanchez E,editors.Fuzzy in formation and decision processes.Amsterdam:North-Holland Publishing Company;1982.p.167–82.

    16.Boudraa A-O,Bentabet A,Salzenstein F,Guillon L.Dempster–Shafer’s basic probability assignment based on fuzzy membership functions.Electron Lett Comput Vision Image Anal 2004;4(1):1–9.

    17.Florea MC,Jousselme A-L,Bosse′E′,Grenier D.Robust combination rules for evidence theory.Inf Fusion 2009;10(2):183–97.

    18.Martin A,Osswald C.A new generalization of the proportional conflict redistribution rule stable in terms of decision.Advances and Applications of DSmT for In formation Fusion(Collected works),second volume:Collected Works.Rehoboth:American Research Press;2006.p.69.

    19.Murphy CK.Combining belieffunctions when evidence conflicts.Decis Support Syst 2000;29(1):1–9.

    20.Smets P,Kennes R.The transferable belief model.Artif Intell 1994;66(2):191–234.

    21.Blake C,Merz CJ.UCI repository of machine learning databases[Internet].[cited 2015 Sep 26].Availablefrom:<http://www.ics.uci.edu/~mlearn/MLRepository.html>.

    22.De Luca A,Termini S.A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory.Inf Control 1972;20(4):301–12.

    23.Klir GJ,Lewis HWI.Remarks on ‘measuring ambiguity in the evidence theory”.IEEE Trans Syst Man Cybern Part A Syst Hum 2008;38(4):995–9.

    24.Harmanec D,Klir GJ.Measuring total uncertainty in Dempster–Shafer theory:a novel approach.Int J Gen Syst 1994;22(4):405–19.

    25.Yager RR.Entropy and specificity in a mathematical theory of evidence.Int J Gen Syst 1983;9(4):249–60.

    26.Myers JL,Well A,Lorch RF.Research design and statistical analysis.3rd ed.Hove,UK:Routledge;2010.p.483–7.

    27.Fagin R,Kumar R,Sivakumar D.Comparing top k lists2003 14th annual ACM-SIAM symposium on discrete algorithms,2003 January 12–14;Baltimore,MD,USA.2003.p.28–36.

    Yang Yi received the M.S.and Ph.D.degrees in control science and engineering from Xi’an Jiaotong University in 2005 and 2010 respectively,and then became a teacher at the School of Aerospace,Xi’an Jiaotong University.Her main research interests are evidence theory,image processing and in formation fusion.

    X.Rong Li received the B.S.and M.S.degrees from Zhejiang University,Hangzhou,Zhejiang,PRC,in 1982 and 1984,respectively,and the M.S.and Ph.D.degrees from the University of Connecticut,Storrs,USA,in 1990 and 1992,respectively.He joined the Department of Electrical Engineering,University of New Orleans,LA,USA,in 1994,where he is now Chancellor’s University Research Prof essor.He has authored or coauthored 4 books,10 book chapters,and more than 300 journal and conference proceedings papers.His current research interests include estimation and decision,signal and data processing,in formation fusion,target in formation processing,performance evaluation,statistical inference,and stochastic systems.Dr.Li was elected President of the International Society of In formation Fusion in 2003 and a member of Board of Directors(1998–2009);served as General Chair for several international conferences;served as Editor(1996–2003)of the IEEE Transactions on Aerospace and Electronic Systems;received a CAREER award and an RIA award from the U.S.National Science Foundation.He has given more than 150 invited seminars and taught short courses in North America,Europe,Asia,and Australia.He won several outstanding paper awards and consulted for several companies.

    Han Deqiang is an associate prof essor and Ph.D.supervisor at the School of Electronic and In formation Engineering,Xi’an Jiaotong University,China.He received the Ph.D.degree from the same university in 2008.His current research interests are evidence theory,pattern classification and in formation fusion.

    26 September 2015;revised 4 November 2015;accepted 7 January 2016

    Available online 23 June 2016

    Belieffunctions;

    Evidence theory;

    Fuzzy sets;

    Membership functions;Uncertainty

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.Thisisan open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 29 82667971.

    E-mail address:deqhan@mail.xjtu.edu.cn(D.Han).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.03.007

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    日本熟妇午夜| 一边亲一边摸免费视频| 欧美成人a在线观看| 国产亚洲av嫩草精品影院| 插阴视频在线观看视频| 最近视频中文字幕2019在线8| 国产高清视频在线观看网站| av免费在线看不卡| 国产蜜桃级精品一区二区三区| 久久国产乱子免费精品| 欧美色视频一区免费| 99久久无色码亚洲精品果冻| 国产成人a∨麻豆精品| 亚洲va在线va天堂va国产| 欧美成人一区二区免费高清观看| 毛片女人毛片| 乱系列少妇在线播放| 中文字幕精品亚洲无线码一区| 嘟嘟电影网在线观看| 蜜桃亚洲精品一区二区三区| 在线播放国产精品三级| 欧美最黄视频在线播放免费| 欧美变态另类bdsm刘玥| 欧美+日韩+精品| .国产精品久久| 欧美日韩综合久久久久久| 久久热精品热| 婷婷色综合大香蕉| 国产男人的电影天堂91| or卡值多少钱| 日韩高清综合在线| 99久久成人亚洲精品观看| 成年版毛片免费区| 日本色播在线视频| 国产精品久久久久久av不卡| 国产亚洲5aaaaa淫片| 国产成人精品婷婷| 国产精华一区二区三区| 国产精品电影一区二区三区| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 中文字幕制服av| 国产探花极品一区二区| 久久亚洲精品不卡| 国产精华一区二区三区| 波多野结衣巨乳人妻| 一进一出抽搐gif免费好疼| 少妇的逼好多水| 国产老妇伦熟女老妇高清| 国产成人a区在线观看| 插逼视频在线观看| 深夜精品福利| 国产黄色视频一区二区在线观看 | 国产亚洲精品av在线| 亚洲精品日韩在线中文字幕 | 天天一区二区日本电影三级| 久久精品久久久久久噜噜老黄 | 亚洲久久久久久中文字幕| 亚洲在久久综合| 亚洲av二区三区四区| 韩国av在线不卡| 亚洲国产精品久久男人天堂| 国产精品不卡视频一区二区| 国产精品.久久久| 亚洲av中文av极速乱| 深夜精品福利| 久久午夜福利片| 在线免费观看不下载黄p国产| 国产高清三级在线| 不卡视频在线观看欧美| 一级黄色大片毛片| 成人毛片a级毛片在线播放| 日产精品乱码卡一卡2卡三| 日日撸夜夜添| 国国产精品蜜臀av免费| 国产精品久久久久久av不卡| 热99re8久久精品国产| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又刺激的免费视频.| 欧美潮喷喷水| 亚洲在久久综合| av在线蜜桃| 日韩制服骚丝袜av| 激情 狠狠 欧美| 久久国内精品自在自线图片| 日韩大尺度精品在线看网址| 国产三级中文精品| 丝袜美腿在线中文| 亚洲第一电影网av| 不卡一级毛片| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人久久小说 | 亚洲18禁久久av| 麻豆国产av国片精品| 国产欧美日韩精品一区二区| 男人舔奶头视频| av在线天堂中文字幕| 欧美3d第一页| 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 国产亚洲精品久久久com| 日韩大尺度精品在线看网址| 国产精品无大码| 两个人视频免费观看高清| 内地一区二区视频在线| 亚洲成人久久性| 淫秽高清视频在线观看| 国产久久久一区二区三区| 高清午夜精品一区二区三区 | 欧美日韩国产亚洲二区| 午夜a级毛片| 一级毛片我不卡| 亚洲欧美日韩高清在线视频| 中文欧美无线码| 国产高清有码在线观看视频| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久久电影| 深爱激情五月婷婷| 亚洲久久久久久中文字幕| 国产熟女欧美一区二区| 久久久精品欧美日韩精品| 久久精品国产99精品国产亚洲性色| 国产免费男女视频| 丰满的人妻完整版| 搡老妇女老女人老熟妇| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 最新中文字幕久久久久| 久99久视频精品免费| 午夜视频国产福利| 国产成人精品久久久久久| 少妇的逼好多水| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 看非洲黑人一级黄片| 观看美女的网站| 日本免费a在线| 91久久精品电影网| 男人舔奶头视频| 男女做爰动态图高潮gif福利片| 嫩草影院新地址| 一本久久精品| 日本黄色片子视频| 天堂网av新在线| 国产精品.久久久| 午夜福利在线在线| 精品午夜福利在线看| 免费人成视频x8x8入口观看| 非洲黑人性xxxx精品又粗又长| 国产亚洲av片在线观看秒播厂 | 在线免费观看的www视频| 免费观看人在逋| 亚洲国产精品成人久久小说 | 波多野结衣高清作品| 欧美xxxx黑人xx丫x性爽| 蜜桃久久精品国产亚洲av| 变态另类成人亚洲欧美熟女| 国产麻豆成人av免费视频| 伦精品一区二区三区| 精品国产三级普通话版| 非洲黑人性xxxx精品又粗又长| 久久鲁丝午夜福利片| 久久久久久久久久黄片| 如何舔出高潮| 精品人妻偷拍中文字幕| 午夜福利在线观看吧| av专区在线播放| 久久国产乱子免费精品| 久99久视频精品免费| 天天一区二区日本电影三级| 国产男人的电影天堂91| 麻豆av噜噜一区二区三区| h日本视频在线播放| 中文精品一卡2卡3卡4更新| 国产日本99.免费观看| 国产精品.久久久| 久久精品影院6| 国产视频内射| 99视频精品全部免费 在线| 精品久久国产蜜桃| 久久草成人影院| 亚洲国产高清在线一区二区三| 综合色av麻豆| 高清在线视频一区二区三区 | 色噜噜av男人的天堂激情| 亚洲四区av| 尾随美女入室| 又粗又硬又长又爽又黄的视频 | 欧美高清成人免费视频www| 26uuu在线亚洲综合色| 久久久色成人| 亚洲国产精品合色在线| 有码 亚洲区| 午夜福利成人在线免费观看| 国产三级中文精品| 国内精品宾馆在线| 看免费成人av毛片| 亚洲无线在线观看| 日本一本二区三区精品| 五月伊人婷婷丁香| 久久精品夜色国产| 亚洲电影在线观看av| 深爱激情五月婷婷| 国产激情偷乱视频一区二区| 亚洲综合色惰| 国产一级毛片在线| 国产三级中文精品| 一本一本综合久久| 网址你懂的国产日韩在线| 日韩三级伦理在线观看| 毛片女人毛片| 人人妻人人澡人人爽人人夜夜 | av天堂在线播放| 在线观看午夜福利视频| 熟妇人妻久久中文字幕3abv| 色哟哟·www| 99热这里只有精品一区| 只有这里有精品99| 简卡轻食公司| 人体艺术视频欧美日本| 国产黄片视频在线免费观看| 亚洲欧美成人精品一区二区| 少妇的逼好多水| 精品久久久久久成人av| 亚洲精品自拍成人| 日韩亚洲欧美综合| 国产精品乱码一区二三区的特点| 成人特级av手机在线观看| 国产乱人偷精品视频| 久久久午夜欧美精品| 欧美成人一区二区免费高清观看| 国内精品一区二区在线观看| 国产一区二区三区在线臀色熟女| 天堂网av新在线| 色噜噜av男人的天堂激情| 一进一出抽搐动态| 身体一侧抽搐| 午夜免费激情av| 一个人看视频在线观看www免费| 国产成人精品婷婷| 丝袜喷水一区| 久久精品国产自在天天线| 国产麻豆成人av免费视频| 一级黄色大片毛片| 夜夜爽天天搞| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 国产成人a区在线观看| 久久精品国产自在天天线| 少妇人妻精品综合一区二区 | 亚洲欧美日韩卡通动漫| 91狼人影院| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 村上凉子中文字幕在线| 韩国av在线不卡| 日本-黄色视频高清免费观看| 天美传媒精品一区二区| 日日摸夜夜添夜夜添av毛片| 变态另类丝袜制服| 国产高清三级在线| 我的女老师完整版在线观看| 亚洲不卡免费看| 国产精品福利在线免费观看| 少妇人妻精品综合一区二区 | 亚洲高清免费不卡视频| 免费一级毛片在线播放高清视频| 日产精品乱码卡一卡2卡三| 丝袜美腿在线中文| 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 久久久久久大精品| 国产综合懂色| 99热网站在线观看| 国产精品久久电影中文字幕| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 国产高潮美女av| 欧美成人一区二区免费高清观看| 国语自产精品视频在线第100页| 欧美一区二区亚洲| 日韩欧美国产在线观看| 日韩av不卡免费在线播放| 女人十人毛片免费观看3o分钟| 精品久久久久久久久久免费视频| 日韩一本色道免费dvd| 天天躁日日操中文字幕| 看免费成人av毛片| 亚洲18禁久久av| 国产v大片淫在线免费观看| 悠悠久久av| 偷拍熟女少妇极品色| 老师上课跳d突然被开到最大视频| 国产 一区精品| 免费在线观看成人毛片| 大型黄色视频在线免费观看| 能在线免费观看的黄片| 99久久久亚洲精品蜜臀av| 插阴视频在线观看视频| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| av在线亚洲专区| 床上黄色一级片| 国产综合懂色| 免费电影在线观看免费观看| 精品人妻一区二区三区麻豆| www.色视频.com| 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 国产伦一二天堂av在线观看| 国产av在哪里看| 能在线免费看毛片的网站| 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美中文字幕日韩二区| 人妻制服诱惑在线中文字幕| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 我的老师免费观看完整版| 91在线精品国自产拍蜜月| 亚洲欧美日韩高清在线视频| 五月伊人婷婷丁香| 国产美女午夜福利| 黄色日韩在线| 狂野欧美激情性xxxx在线观看| 99久久成人亚洲精品观看| 一进一出抽搐gif免费好疼| 美女xxoo啪啪120秒动态图| 精品久久久久久久久久久久久| ponron亚洲| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 国产成人午夜福利电影在线观看| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| 亚洲中文字幕一区二区三区有码在线看| АⅤ资源中文在线天堂| 亚洲一区高清亚洲精品| 国产老妇女一区| a级毛片免费高清观看在线播放| 欧美色欧美亚洲另类二区| 少妇熟女aⅴ在线视频| 国产精品一区二区三区四区久久| 精品无人区乱码1区二区| www.av在线官网国产| 国产一区亚洲一区在线观看| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 91麻豆精品激情在线观看国产| 最近的中文字幕免费完整| 小说图片视频综合网站| 亚洲欧美清纯卡通| 身体一侧抽搐| 国产精品美女特级片免费视频播放器| 亚洲精品日韩在线中文字幕 | 97人妻精品一区二区三区麻豆| 日本撒尿小便嘘嘘汇集6| 不卡一级毛片| 69人妻影院| 成人一区二区视频在线观看| 欧美bdsm另类| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| a级毛色黄片| 自拍偷自拍亚洲精品老妇| 国产精品一二三区在线看| 亚洲精品久久久久久婷婷小说 | 简卡轻食公司| 12—13女人毛片做爰片一| 国产精品久久视频播放| av专区在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲四区av| 国产一级毛片七仙女欲春2| 99久国产av精品国产电影| 不卡一级毛片| 51国产日韩欧美| 91午夜精品亚洲一区二区三区| 狂野欧美白嫩少妇大欣赏| 男人舔奶头视频| 美女 人体艺术 gogo| 2022亚洲国产成人精品| 免费看av在线观看网站| 26uuu在线亚洲综合色| 国产精品久久电影中文字幕| 高清日韩中文字幕在线| 国产色婷婷99| 丰满乱子伦码专区| 国产成人一区二区在线| 日韩av在线大香蕉| 全区人妻精品视频| 午夜爱爱视频在线播放| 此物有八面人人有两片| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂 | 91久久精品电影网| 久久久久性生活片| www日本黄色视频网| 蜜桃久久精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 尤物成人国产欧美一区二区三区| 亚洲国产欧美在线一区| 小蜜桃在线观看免费完整版高清| av在线天堂中文字幕| 一个人看视频在线观看www免费| 一区二区三区四区激情视频 | 久久久色成人| 全区人妻精品视频| av在线播放精品| 国产高清三级在线| 尤物成人国产欧美一区二区三区| 波野结衣二区三区在线| www.色视频.com| 能在线免费观看的黄片| 久久鲁丝午夜福利片| 97在线视频观看| 久久久久久久亚洲中文字幕| 亚洲精品成人久久久久久| 国产麻豆成人av免费视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品成人综合色| 亚洲成av人片在线播放无| 天堂√8在线中文| 级片在线观看| 久久精品国产自在天天线| 久久久久性生活片| 日本免费一区二区三区高清不卡| 最后的刺客免费高清国语| 九草在线视频观看| 欧美性猛交╳xxx乱大交人| 成人午夜精彩视频在线观看| 国产成年人精品一区二区| 亚洲精品乱码久久久v下载方式| 91aial.com中文字幕在线观看| 人妻少妇偷人精品九色| 精品熟女少妇av免费看| 好男人视频免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看| a级毛片免费高清观看在线播放| 午夜精品一区二区三区免费看| 色综合亚洲欧美另类图片| 人妻久久中文字幕网| 国产成人91sexporn| 日韩视频在线欧美| 嫩草影院精品99| 日韩,欧美,国产一区二区三区 | 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 又粗又硬又长又爽又黄的视频 | 久久人人爽人人爽人人片va| 亚洲无线观看免费| 天天躁日日操中文字幕| 12—13女人毛片做爰片一| 99热这里只有是精品在线观看| 黄片wwwwww| 又爽又黄a免费视频| 99在线人妻在线中文字幕| 日韩成人伦理影院| 男女视频在线观看网站免费| 国产高清激情床上av| 美女大奶头视频| 国产精品美女特级片免费视频播放器| 亚洲电影在线观看av| 欧美在线一区亚洲| a级一级毛片免费在线观看| 麻豆国产97在线/欧美| 欧美区成人在线视频| 国产精品久久久久久av不卡| 天天一区二区日本电影三级| 国产黄片视频在线免费观看| 国产午夜精品论理片| 狂野欧美激情性xxxx在线观看| 国产伦精品一区二区三区四那| 久久精品影院6| 精品久久久噜噜| 国产成年人精品一区二区| 老女人水多毛片| 我的女老师完整版在线观看| av黄色大香蕉| 精品一区二区免费观看| 亚洲第一电影网av| 国产蜜桃级精品一区二区三区| 亚洲精品乱码久久久v下载方式| 最新中文字幕久久久久| 欧美极品一区二区三区四区| 免费观看a级毛片全部| 日本黄色片子视频| 久久99蜜桃精品久久| 久久精品久久久久久久性| 2021天堂中文幕一二区在线观| 99热全是精品| 日本五十路高清| 色视频www国产| 国产精品无大码| 免费看日本二区| 美女大奶头视频| 如何舔出高潮| 少妇丰满av| 精品久久久久久成人av| 午夜a级毛片| 99久久人妻综合| 国产伦精品一区二区三区视频9| 蜜桃久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 高清在线视频一区二区三区 | 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 中文资源天堂在线| 乱人视频在线观看| 国产午夜精品论理片| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 狠狠狠狠99中文字幕| 黄色一级大片看看| 夜夜爽天天搞| 亚洲成人av在线免费| 午夜免费激情av| 三级国产精品欧美在线观看| 国产淫片久久久久久久久| 国产高潮美女av| 午夜激情欧美在线| 久久久午夜欧美精品| 国产精品一二三区在线看| 亚洲国产精品sss在线观看| 国产一级毛片在线| 最新中文字幕久久久久| 国产av一区在线观看免费| 色吧在线观看| 天堂网av新在线| 国产一区二区激情短视频| 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清| 免费看光身美女| 亚洲国产精品成人综合色| av福利片在线观看| 日本一二三区视频观看| 悠悠久久av| 少妇熟女欧美另类| 日本色播在线视频| 国产久久久一区二区三区| 美女黄网站色视频| 成人一区二区视频在线观看| 综合色av麻豆| 日韩国内少妇激情av| 欧美成人a在线观看| 亚洲电影在线观看av| 成人性生交大片免费视频hd| 此物有八面人人有两片| 啦啦啦啦在线视频资源| 欧美bdsm另类| 国产大屁股一区二区在线视频| 波多野结衣高清作品| 中文字幕av在线有码专区| 亚洲av一区综合| 亚洲经典国产精华液单| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站 | 男女视频在线观看网站免费| 精品不卡国产一区二区三区| 毛片女人毛片| 男女啪啪激烈高潮av片| 干丝袜人妻中文字幕| 国产不卡一卡二| 天堂影院成人在线观看| 哪里可以看免费的av片| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| 网址你懂的国产日韩在线| 午夜福利视频1000在线观看| 欧美精品一区二区大全| 国产亚洲欧美98| 久久这里只有精品中国| 精品久久久久久久久久免费视频| 久久久久久久午夜电影| 久久精品国产亚洲av涩爱 | 国产亚洲精品久久久久久毛片| 麻豆成人午夜福利视频| 最好的美女福利视频网| 成年av动漫网址| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久久久毛片| 国产人妻一区二区三区在| 国产极品天堂在线| 校园春色视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 九九在线视频观看精品| 在线免费十八禁| 久久99精品国语久久久| 在线免费观看不下载黄p国产| 久久久久久九九精品二区国产| 日本黄色片子视频| 久久99热这里只有精品18| 99热精品在线国产| 一级毛片久久久久久久久女| 老熟妇乱子伦视频在线观看| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 欧美高清性xxxxhd video| 亚洲熟妇中文字幕五十中出| 国产精品人妻久久久久久| 亚洲欧美日韩卡通动漫| 国产午夜福利久久久久久| a级毛色黄片| 久久久成人免费电影| 久久这里有精品视频免费| 天美传媒精品一区二区| 九九在线视频观看精品| 少妇人妻精品综合一区二区 | 美女cb高潮喷水在线观看| 波多野结衣高清无吗|