• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel intelligent adaptive control of laser-based ground thermal test

    2016-11-24 00:48:48GanZhengtaoYuGangLiShaoxiaHeXiuliChenRuZhengCaiyunNingWeijian
    CHINESE JOURNAL OF AERONAUTICS 2016年4期

    Gan Zhengtao,Yu Gang,Li Shaoxia,He Xiuli,Chen Ru,Zheng Caiyun,Ning Weijian

    Key Laboratory of Mechanics in Advanced Manufacturing,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    A novel intelligent adaptive control of laser-based ground thermal test

    Gan Zhengtao,Yu Gang*,Li Shaoxia,He Xiuli,Chen Ru,Zheng Caiyun,Ning Weijian

    Key Laboratory of Mechanics in Advanced Manufacturing,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    Laser heating technology is a type of potential and attractive space heat flux simulation technology,which is characterized by high heating rate,controlled spatial intensity distribution and rapid response.However,the controlled plant is nonlinear,time-varying and uncertainty when implementing the laser-based heat flux simulation.In this paper,a novel intelligent adaptive controller based on proportion–integration–differentiation(PID)typefuzzy logic is proposed to improve the performance of laser-based ground thermal test.The temperature range of thermal cycles is more than 200 K in many instances.In order to improve the adaptability of controller,output scaling factors are real time adjusted while the thermal test is underway.The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization(H-PSO)algorithm.A validating system has been established in the laboratory.The performance of the proposed controller is evaluated through extensive experiments under different operating conditions(reference and load disturbance).The results show that the proposed adaptive controller per forms remarkably better compared to the conventional PID(PID)controller and the conventional PID typefuzzy(F-PID)controller considering performance indicators of overshoot,settling time and steady state error for laser-based ground thermal test.It is a reliable tool for effective temperature control of laser-based ground thermal test.

    1.Introduction

    Thermal test processes are implemented during the qualification process of space device development.Environmental conditions in space contain the transient thermal load and vacuum are simulated to guarantee that a given space device will operate efficiently when subjected to real environments much different from those on earth.1It has been proved that the ground based testing method plays a highly important role in the development of the space device.2–4The external thermal flux simulation system is essential for the effective working of the thermal tests.At present,the conventional external thermal flux simulation system includes solar simulator,infrared heater and contact electric heater.5,6It has been reported that there were plenty of successful thermal tests using these external thermal flux simulation systems.7–10However,as the requirements appear for complex structure,accurate temperature control and rapid heating-up in some applications of thermal tests such as parabolic antennas,solar panels and precision optical systems,11there is an urgent need for better external thermal flux simulation techniques capable of handling better steerability of space and time than the conventional thermal flux simulation techniques.

    Laser-based external thermal flux simulation technique is a promising candidate for ground thermal test for two major reasons.Firstly,laser beam has remarkable steerability of space.The spatial intensity distribution of laser beam can be shaped into the non-symmetry and non-uniform pattern by geometrical trans form method12–19to meet the pressing needs of thermal tests of complex structures.Instead of the complicated design process of the conventional thermal flux simulation system by combining the infrared heaters and contact electric heaters,the intensity distribution of laser beam can be directly and specially designed based on the orbital temperaturefield of space devices to have better alignment between the real space environment and ground test environment.Secondly,the time response of laser heat flux simulation system is much faster than the conventional external thermal flux simulation systems.It might be difficult to precede high-accuracy transient thermal test by combining the infrared heater and contact electric heater due to the limit of the time response of heat flux simulation system.11However,the time response of laser heat flux simulation system is less than 100 ms.Using the laser heat flux simulation system can improve greatly the accuracy of transient thermal test and simulate the change of the real on-orbit temperature of space devices.There fore,this paper presents a well-designed laser heat flux simulation system to improve the suitability and stability of the ground thermal test.

    Effective thermal controller for heat flux simulation system is crucial for reliable working of the ground thermal test.Some befitting approaches of temperature control for ground thermal tests have been reported.The conventional PID controllers were improved based on arranging the transient process for the ground thermal test.20A real-time process simulator used by PLC programming for the ground thermal test was reported.21In many instances of ground thermal test,such as solar panels,the temperature range of thermal cycles is more than 200 K.11In order to develop the adaptability of controller,in recent years,several self-tuning controllers that continuously update the parameters of controller were proposed.The advantage of these controllers is that the parameters can be adjusted on-line to improve their adaptability.A fuzzy-PID controller was put forward for the thermal tests of space devices.22A fuzzy reference gain-scheduling control approach(FRGS)was investigated to control thermal vacuum chambers automatically and satisfy testing requirements.23,24A approach based on particle swarm optimization(PSO)and Takagi–Sugeno(TS)fuzzy model for describing dynamical behavior was proposed for thermal vacuum test systems.25,26The main limitation of the most reported works is that these controllers are used to thefirst-order or second-order linear system with dead time while it is difficult to apply these controllers to the processes of higher order nonlinear systems.

    However,introducing the laser heat flux simulation system makes the controlled plant extremely nonlinear,time-varying and uncertainty.The performance of the above controllers for laser-based ground thermal test might be unsatisfactory in terms of large overshoot and excessive oscillation.There fore,the aim of this paper is to develop a new intelligent adaptive controller based on thefuzzy logic to improve the performance of the laser-based ground thermal test.An adaptive PID typefuzzy logic controller is proposed by continuously adjusting the scaling factors of controller using an updating factor.A stochastic hybrid particle swarm optimization(H-PSO)algorithm is introduced to tune the initial values of scaling factors.To verify the performance of the proposed controller,a validating thermal test system has been established in the laboratory and the performance of the proposed controller is compared with the conventional PID(PID)controller and the conventional PID typefuzzy(F-PID)controller considering performance indicators of overshoot and settling time.

    2.System description and dynamical modeling

    2.1.Apparatus of laser-based thermal tests

    The proposed laser-based thermal vacuum test system consists of a chamber,laser thermal flux simulation system,temperature measure system,intelligent adaptive thermal control system,center control,laserbeam shaping system18and cryogenic vacuum pump system(Fig.1).An Nd:YAG highpower continuous solid laser HLD1001.5 was used as the heat source of the laser-based ground thermal test.For simulating the orbit environmental conditions,firstly,vacuum was reached by using cryogenic vacuum pump system,and then the space device was heated for simulating orbit thermal cycles.For precisely emulating the temperature distribution of the space device in space,laser beam was shaped in a nonuniform spatial intensity distribution by the laser beam shaping system.In order to implement the transition thermal test,the surface temperatures of key points were measured by two infrared thermometers.The thermometers which were produced by Raytek Company were collected with the sampling interval 100 ms.The measurements of the thermometers were taken as the input of the intelligent adaptive controller.The output of the controller was the change of power of the laser beam.The main parameters of the laser-based thermal test are provided in Table 1.

    2.2.Dynamical modeling of laser-based thermal test

    As described in previous section,since the heating rate of laser is much faster than the rate of heat conduction inside the space device,temperature gradient of the space device should not be neglected.Thus heat conduction and radiation are the major heat sources of heat transfer for the space device.27The differential Eq.(1)of the laser-based thermal test process depends nonlinearly on local temperature T,as follows:

    Fig.1 Schematic of laser-based thermal vacuum test system.

    Table 1 Parameters of laser-based thermal test.

    where ?T/?t denotes the transition rate,T denotes the mean temperature on the measure point,Tabis the ambient temperature,?T/?x,?T/?y and ?T/?z denote the temperature gradient in the coordinate direction,k denotes the thermal conductivity,cpdenotes the heat capacity,ρ denotes the density of the space device,σ denotes the Stefan–Boltzmann constant,ε denotes the emission capacity,and A denotes the equivalent radiated area of measure point.

    From Eq.(1),the controlled plant is nonlinear.Because the the rmophysical property of space device depends on temperature,the controlled plant is time-varying.The controlled plant is also time-delaying because of the optical properties of the space devices under test as well as its physical properties such as specific heat capacity and equivalent thermal conductivity.Furthermore,it is extremely difficult to obtain all the thermophysical property depending on temperature as well as the optical parameters such as absorptivity and reflectivity of laser,so the controlled plant is uncertainty.Based on the above points,the conventional control method might be inappropriate for the laser-based ground thermal test.This paper advocates the use of an adaptive PID typefuzzy logic control approach for thermal control.Fuzzy logic control,as an intelligent control approach,can count human experience into control system.28Because the fuzzy logic control systems have ability to handle uncertain nonlinear system,this method is a beneficial choice for controlling laser-based thermal test.

    3.Intelligent adaptive control strategy

    An intelligent adaptive PID fuzzy logic control strategy is proposed and explained.The proposed control system is shown in Fig.2.It includes a PI and a PD fuzzy logic control.

    Fig.2 Intelligent adaptive control system structure diagram.

    The control system shown in Fig.2 consists of process and controller and there is a load disturbance affecting the control process.Due to the load disturbance,controlled plant tends to drive away from its desired temperature.The process variable Tobis the real temperature of measure point which is controlled.In this study,only one measure point is chosen.This measure point is located in the center of the laser irradiation where the local temperature is the highest than that in other locations.Using the measure point layout,the maximum temperature in the specimen can be controlled during the thermal test process.The controlled plant is affected by the control variable UPID_AF.In this paper,the output signals of controller can be equivalent to the laser output power,since the used laser machine HLD1001.5 is controlled by the digital control(i.e.,PROFIBUS).The controller has two inputs and one output.The inputs are the measured temperature T and the reference temperature Trefand the output is the control signal(i.e.,laser power)UPID_AF.θ and θ*are adaptive factors of the controller.

    The proposed controller can be divided into three parts:a PI typefuzzy logic controller(PI-FLC),a conventional PD controller and an adaptivefuzzy controller.The combination of the PI-FLC and PD controller can provide a concise and worthy control configuration.By tuning the parameters(scaling factors)of PI-FLC and PD controller,relative great control performance can be obtained for laser-based ground thermal test.However,the main limitation of the PI-FLC and PD controller is that the performance of the controller directly depends on the scaling factors which arefixed during the process.So an extra adaptive fuzzy part is introduced into the proposed controller to on-line adjust the scaling factors of PI-FLC and PD controller.The proposed controller contains seven tuning parameters(α1-α7)to adjustthe control response.As shown in Fig.2,α1and α2are the scaling factors of input,α3and α4are defined as the scaling factors of PI-FLC controller,and α5and α6represent the scaling factors of PD controller.A novel on-line approach is proposed to adaptively adjust the output scaling factors via the parameter of α7.There fore,the benefits of the proposed intelligent adaptive control over the conventional PID control(PID)or conventional PID typefuzzy logic control(F-PID) for laser-based thermal test system are as follows:

    (1)The output laser power(UPID_AF)is approximately proportional to the temperature error(input).The proposed controller has reason to be a great substitution of the PID control.

    (2)Each section of the proposed controller can be improved independently for the outstanding performance of controller.

    (3)The controller contains seven necessary parameters(α1-α7),and thus it has capacity to be optimized to have better performance.

    (4)Because the scaling factors are real time adjusted during the ground thermal test, the control performance like overshoot and settling time can be minimized.

    3.1.Membership functions

    The membership functions of fuzzy control 1 and fuzzy control 2 for the inputs on the normalized interval[-1,1](e*and ce*)and the outputs on the normalized interval[0,1](kP_Fand kI_F)are shown in Fig.3.The Gauss membership function is used.The inputs and outputs related to rule bases are presented in Table 2.The membership functions of thefuzzy control 2 for output on the normalized interval[0,1](θ)are presented in Fig.4.Thefuzzy sets and linguistic values are shown in Table 3.

    3.2.Stability analysis

    In order to obtain the stability condition of controlled system,firstly,by analyzing the structure of proposed controller(Fig.2),the fuzzy gains(K′P_F,K′I_F,K′D_F,TI_Fand TD_F)and transfer function can be obtained.In this section,the adaptive factor θ*is neglected to simplify the analysis.Then,the bounded-input/bounded-output(BIBO)stability of the proposed controlled system can be analyzed by using the‘small-gain theorem”.29

    From the block diagram(Fig.2),the proposed controller is designed to have its own fuzzy proportional factor(K′P_F),fuzzy integral factor(K′I_F)and fuzzy derivation factor(K′D_F),which can be formulized as follows(F{α}denotes the fuzzy transfer function):

    Fig.3 Membership functions.

    Table 2 Rule base for kP_Fand kI_F.

    Fig.4 Membership functions for θ.

    Table 3 Fuzzy sets and linguistic values.

    Theorem.A sufficient condition for the nonlinear fuzzy PID control system to be BIBO stable is that the given nonlinear process has a bounded norm(gain)as‖Φ‖<∞ and the parameters of the fuzzy PID controller,we,wΔe,wu,wΔu,(or K′P_F,TI_Fand TD_Fin Eqs.(3)–(8)),satisfy

    where ‖Φ‖ is the operator norm of the given Φ(·),or the gain of the given nonlinear system,usually defined as30

    If a nonlinear control system can be given,the stability condition of controlled system can be obtained by substituting Eq.(3)–(8)into the Eq.(9).

    3.3.Output scaling factors

    To adjust the output scaling factors on-line,an adaptive method using fuzzy rule base is presented to tune θ.The dynamic relationships between the parameters of the proposed controller and the scaling factors are listed below:

    3.4.Rule bases of fuzzy control 2

    For improving the adaptation of the proposed controller,the rule bases of fuzzy control 2 are presented to adjust θ(Table 4).The following fuzzy rule clauses have been taken into account:

    (1)For achieving the better performance in terms of overshoot and settling time,when e*is big,while e*and ce*are opposite signs,the gain θ is modified larger.This can be written in IF-THEN clauses:if e*is PB and ce*is NB,then θ is VB.

    (2)For decreasing the impacts caused by delays,a small value of θ is modified to ensure the controller work within the excepted range.When e*is positive and big,but e*and ce*have the same sign,the gain θ should be adjusted small to prevent performance of controller deterioration.This can be written in IF-THEN clauses:if e*is PB and ce*is PB,then θ is Z.

    (3)Based on the demand of thermal test,there should be a

    sharp variation of the gain θ around the reference temperature to avoid overlarge overshoots.For example,if e*is Z and ce*is NB,then θ is VS.This clause denotes that the controlled process is just near the reference temperature and rapidly away from it.In this case,a relative small θ should be modified to prevent the upward more excessively resulting in a relatively acceptable overshoot.

    3.5.Design method of scaling factors

    The proposed intelligent adaptive controller is engaged with both the PI-FLC and PD effects and the influence of adaptivefactor θ makes the gain design more complicated and timeconsuming.Thus,in this study,a H-PSO algorithm is applied to tune scaling factors(α1-α7).It has been proved that the HPSO algorithm can combine the benefits of the PSO and BFO algorithm as well as avoid their defects.31It is reported that the performance of PSO and BFO is limited because of premature convergence.The particles are easy to converge in the local optimal point;however,the global optimal point has been passed.32The H-PSO algorithm breaks through this shortcoming by using the method of elimination dispersal of bacteria,and hence the ability of converging to the global optimal point is improved.The details of H-PSO algorithm are presented in the literature.31,33,34

    Table 4 The proposed rule bases for θ.

    The performance of the proposed stochastic algorithm extremely depends on the objective function and incorporated performance indicators.Because the conventional indicators of integral absolute error (IAE)and integral-of -timemultiplied absolute error(ITAE)hardly accurately represent the performance of the controller,35this paper contains the objective function listed below:

    where e is the error of controlled system,UPID_Fis the controller output at the time t,β1-β4are the weight factors,tris the rising time of controlled plant and△T=T(t)-T(t-1).

    4.Experimental results

    To validate the effectiveness of the proposed intelligent adaptive controller,three different controllers including PID control,PID type fuzzy controland proposed intelligent adaptive control were considered in a verifying laser-based ground thermal test system,which is shown in Section 2.1.The Ziegler–Nichols method was used to design the PID and the stochastic genetic algorithm(GA)method34was used to tune the scaling factors of F-PID while the proposed H-PSO algorithm was used for the intelligent adaptive control.The tuned gains for each method are shown in Table 5.

    Figs.5(a)and(b)show the reference temperature and load disturbance for the verifying laser-based thermal test.The variation of the output fuzzy part 2 gains(θ)is shown in Fig.5(c).Fig.5(d)indicates the responses with the reference and load disturbance changes.The details of Fig.5(d)are shown in Figs.5(e)and(f).The performance indicators of settling time and overshoot are shown in Table 6.The error band of τ*is 0.05 K for temperatures and 2%final value for others,and units for σ*are ‘K” for temperatures and% for others in Table 6.

    As it can be seen in Fig.5 and Table 6,the proposed intelligent adaptive control remarkably improves the performance of the F-PID and PID controller.The F-PID decreases the settling time and overshoot partly compared with the PID controller;however it causes the fluctuation of controlled temperature.This shortcoming has been tackled by combining the self-adjusted scaling factors and θ(Fig.5(c)).The stability of the thermal test is improved.The overshoot of the proposed controller is smaller compared with the values in PID and F-PID controller,which are 0.9%,7.7%and 15.9%respectively.The settling time is also smaller than the values of PID and F-PID controller,which are 5.5 s,9.1 s and 11.6 srespectively.Furthermore,the recovery time of the proposed controller is smaller than PID and F-PID controller under the given load disturbance.Thesefacts illustrate that the proposed intelligent adaptive controller per forms more excellent and stable compared with the PID and F-PID controllers.

    Table 5 Design methods and tuned gains for each method.

    Fig.5 Transient responses with PID,F-PID and proposed method.

    Table 6 Settling time τ and overshoot σ of PID,F-PID and proposed method.

    To verify the adaptability of the temperature control system,the different reference temperature was set.The reference temperature was set as 50 °C,100 °C,150 °C and 200 °C,respectively.The results are shown in Fig.6.The overshoot,settling time and steady state error using the PID,F-PID and proposed adaptive controller are shown in Table 7.The error band of τ*is 0.05 K for temperatures and 2%final value for others,units for σ*and ε*are ‘K” for temperatures,and τ*is ‘s” for steady state time and% for others in Table 7.As can be seen,when reference temperature changed,PID had relatively large fluctuation for settling time and overshoot(from 6.2%to 15.4%).However, for the proposed adaptive controller,the overshoot was more stable and much lower(less than 3%),and besides,settling time was shorter(less than 10 s).This demonstrates that the adaptability of the proposed adaptive controller improves greatly compared with the PID and F-PID controller.

    Table 7 Settling time τ,overshoot σ and steady state error ε of PID,F-PID and proposed controller under different reference temperatures.

    Fig.6 Transient responses with PID,F-PID and proposed control under reference temperatures of 50 °C,100 °C,150 °C and 200°C.

    5.Conclusions

    In this paper,a novel intelligent adaptive controller based on PID typefuzzy logic is proposed to improve the performance of laser-based ground thermal test.The output scaling factors of proposed controller are real time adjusted by introducing a fuzzy coefficient θ.The stochastic method based on an advanced H-PSO algorithm is improved to calculate the initial scaling factors of the proposed controller.The transient performance of the proposed intelligent controller is compared with the PID and F-PID designed by the Ziegler–Nichols and GA methods.The performance indicators considered contain the overshoot,settling time and steady state error.Some important conclusions are listed as follows:

    (1)The overshoot of the proposed controller is smaller compared with the values in PID and F-PID controller,which are 0.9%,7.7%and 15.9%respectively.The settling time is also smaller than the values of PID and F-PID controller,which are 5.5 s,9.1 s and 11.6 s respectively.Furthermore,the recovery time of the proposed controller is smaller than PID and F-PID controller under the given load disturbance.

    (2)The proposed controller can enhance capacity of laser heat flux simulation system,and it is a reliable tool for effective temperature control of laser-based ground thermal test.The proposed controller per forms more excellent and stable compared to the above mentioned controllers for laser-based ground thermal test.The other advantage of the proposed controller is that the adaptability and robustness were improved greatly.

    (3)Since the proposed control method only uses the commercial equipment,implementation of it in industrial applications is straight forward.Furthermore,it is a promising approach which can be applied to other industrial processes where the temperature needs to be controlled accurately.

    1.Garner JT.Satellite control:a comprehensive approach.New York:John Wileyamp;Sons Inc.;1996.p.125–85.

    2.MILSTD-1540D.Department of Defense Standard Practice.Product verification requirements for launch,upper stage,and space vehicles;1999.

    3.GJB 1027A–2005.Test requirements for launch,upper-stage,and space vehicles;2005.

    4.Ning X,Wang Y,Zhang J,Liu DX.An equivalent ground thermal test method for single-phasefluid loop space radiator.Chinese J Aeronaut 2015;28(1):86–92.

    5.Gilmore DG.Spacecraft thermal control handbook.California:The Aerospace Press El Segundo;2002.p.405–68.

    6.Min GR,Guo S.Spacecraft thermal control.Beijing:Science Press;1998.p.216–21(Chinese).

    7.Ottenstein L,Ku J,Feenan D.Thermal vacuum testing of a novel loop heat pipe design for the swift BAT instrument.Symps Space Nucl Power Propul 2003;10(1):33–41.

    8.Stegman MD,Fedyk M,Kuehn S.Solar thermal vacuum testing of deployable mesh reflector for model correlation.Aerospace Conference;2010 March 6-13;Wisconsin,USA.2010.p.1–15.

    9.Daryabeigi K,Knutson JR,Sikora JG.Thermal vacuum facility for testing thermal protection systems.Washington,D.C.:National Aeronautics and Space Administration,Langley Research Center;2002.

    10.Parker K.Some experiences of thermal vacuum testing of spacecraft mechanisms.Vacuum 1987;37(3):303–7.

    11.Huang BC,Ma YL.Space environment test technology of spacecraft.Beijing:National Defense of Industry Press;2002,p.60–165(Chinese).

    12.Nie S,Yu J,Yu G,Zheng CY,Ning WJ.Generation of concentric multi-ring laser beam pattern with different intensity distribution.Chin Opt Lett 2013;11(s2):320–501.

    13.Li SX,Yu G,Zhang JC,Zheng CY,Ning WJ.Single-row laser beam with energy strengthened ends for continuous scanning laser surface hardening of large metal components.Sci China Phys Mech 2013;56(6):1074–8.

    14.Li SX,Yu G,Zhang JC,Zheng CY,Ning WJ.Quasi-Dammann grating with proportional intensity array spots.Opt Lett 2008;33(18):2023–5.

    15.Li SX,Tan QF,Yu G,Zheng CY,Ning WJ.Quasi-Dammann grating with proportional intensity of array spots for surface hardening of metal.Sci China Phys Mech 2011;54(1):79–83.

    16.Li SX,Yu G,Liu XB,Zheng CY,Ning WJ.High-power laser beam shaping by inseparable two-dimensional binary-phase gratings for surface modification of stamping dies.Opt Laser Eng 2008;46(7):509–13.

    17.Yu G,Nie SZ,Zheng CY,He XL.Beam trans formation technology of pixellated dammann grating in laser processing.Chinese J Lasers 2008;35(11):1841–6(Chinese).

    18.Nie S,Yu J,Yu G,He XL,Zheng CY,Ning WJ,Li SX.Verification of model parameters used in laser thermal fatigue test on cylinder.Acta Optica Sinica 2011;31(s1):s100518(Chinese).

    19.Zalevsky Z,Dorsch RG,Mendlovic D.Gerchberg–Saxton algorithm applied in thefractional Fourier or the Fresnel domain.Opt Lett 1996;21(12):842–4.

    20.Guo G,Zhu X.Design of PID controllers based on arranging the transient process.J Astronaut 2012;33:930–5(Chinese).

    21.Shin Y.Application of a real-time process simulator to PLC programming for a satellite thermal vacuum chamber.J IEST 2005;45(12):456–69.

    22.Zhang J,Zheng LD,Pei YF.Fuzzy PID controller and its application to thefield of thermal vacuum tests of aerospace products.Proceedings of the 11th WSEAS international conference on automaticcontrol,modelling and simulation;Wisconsin,USA.2009.p.11.

    23.Filho A,Sandri S,Macau EEN.A new class of adaptivefuzzy control systems applied in an industrial thermal vacuum process.Proceedings of 8th IEEE international conference:2001 Oct.15–18.Piscataway,NJ:IEEE Press;2001.p.425–30.

    24.Araujo E,Kienitz K,Sandri S.Fuzzy goal-driven intelligent control for satellite environmental qualification.Appl Sof t Comput 2011;11(5):227–38.

    25.Araujo E,Coelho L.Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermalvacuum system.Appl Sof t Comput 2008;8(8):1354–64.

    26.Marinke EA,Coelho LS.Particle swarm optimization(PSO)applied to fuzzy modeling in a thermal-vacuum system.Proceedings of the 5th international conference on hybrid intelligent systems;2005 Nov.6–9;Beijing,China.2005.p.1025–30.

    27.Gilmore DG.Satellite thermal control handbook.New York:The Aerospace Corporation Press;1994.

    28.Zhang Q.A generic fuzzy electrohydraulic steering controller for of f-road vehicles.Proc Inst Mech Eng D:J Aut 2003;217(9):791–9.

    29.Xu JX,Huang CC,Liu HC.Parallel structure and tuning of a fuzzy PID controller.Automatica 2000;36(1):673–84.

    30.Desoer CA,Vidyasagar M.Feedback system:input-output properties.New York:Academic Press;1975.

    31.Fereidouni A,Masoum MAS,Moghbel M.A new adaptive configuration of PID typefuzzy logiccontroller.ISA T 2015;56:222–40.

    32.Ying Z,Huajing F,Hua WO.Takagi-Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays.IEEE Trans Syst Man Cybern B 2006;36(4):924–9.

    33.Mansour S,Kember G,Dubay R,Robertson B.Online optimization of fuzzy-PID control of a thermal process.ISA T 2005;44(2):305–14.

    34.Hua GZ,Jun Y,Chun YS.T-S fuzzy-model-based robust H1 design for networked control systems with uncertainties.IEEE Trans Ind Inf 2007;3(4):289–301.

    35.Shen D,Sun W,Sun Z.Adaptive PID formation control of nonholonomic robots without leader’s velocity in formation.ISA T 2014;53(2):474–80.

    Gan Zhengtao is a Ph.D.candidate at Institute of Mechanics,Chinese Academy of Sciences.He received his B.S.degreefrom Chongqing University.His major research interest is mechanics in advanced manufacturing.

    Yu Gang went to UK to study high-resolution molecular spectroscopy in 1987.In 1992,prof essor Yu received the Ph.D.degree in physics from University of Strathclyde.From 1992 to 1995,he went on with postdoctoral research at Heriot-Watt University.He returned to China at the end of 1995 and has become a researcher in Institute of Mechanics,Chinese Academy of Sciences since then.

    13 October 2015;revised 26 April 2016;accepted 13 May 2016

    Available online 23 June 2016

    Adaptive control;

    Fuzzy logic;

    Ground thermal test;Laser heating;

    Thermal control

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.Thisisan open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 10 82544250.

    E-mail address:gyu@imech.ac.cn(G.Yu).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.06.015

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    中文字幕人妻丝袜一区二区| 在线观看免费午夜福利视频| 午夜成年电影在线免费观看| 亚洲午夜理论影院| 久久婷婷成人综合色麻豆| 国产精品香港三级国产av潘金莲| 少妇裸体淫交视频免费看高清 | 熟妇人妻久久中文字幕3abv| 久久久久久久久中文| av欧美777| 国产99白浆流出| 亚洲精品在线美女| www.自偷自拍.com| 亚洲国产精品999在线| 巨乳人妻的诱惑在线观看| 国产精品九九99| 中亚洲国语对白在线视频| 99久久国产精品久久久| 亚洲国产精品久久男人天堂| 亚洲午夜理论影院| 欧美乱色亚洲激情| 自线自在国产av| 欧美一区二区精品小视频在线| 日本 av在线| а√天堂www在线а√下载| 久久久精品国产亚洲av高清涩受| 精品欧美一区二区三区在线| 一级毛片高清免费大全| 精品不卡国产一区二区三区| 日韩免费av在线播放| 丁香欧美五月| 亚洲精品美女久久久久99蜜臀| 香蕉丝袜av| 高清黄色对白视频在线免费看| 精品欧美国产一区二区三| 久久精品国产99精品国产亚洲性色 | 69av精品久久久久久| 免费不卡黄色视频| 色尼玛亚洲综合影院| 亚洲专区字幕在线| 亚洲精品国产区一区二| 国产av一区二区精品久久| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女午夜一区二区三区| 国产国语露脸激情在线看| 男女之事视频高清在线观看| 久久香蕉激情| 久久精品aⅴ一区二区三区四区| 777久久人妻少妇嫩草av网站| 久久人妻av系列| 日韩视频一区二区在线观看| 好男人在线观看高清免费视频 | 国产亚洲精品久久久久5区| 久久人妻熟女aⅴ| 男人舔女人的私密视频| 好看av亚洲va欧美ⅴa在| 国产精品 国内视频| 日韩 欧美 亚洲 中文字幕| 亚洲午夜精品一区,二区,三区| 操美女的视频在线观看| 久久精品成人免费网站| 久久天堂一区二区三区四区| 日韩免费av在线播放| 国产乱人伦免费视频| 少妇熟女aⅴ在线视频| 国产精品亚洲美女久久久| 黑人操中国人逼视频| 丁香六月欧美| 成年女人毛片免费观看观看9| 成人国语在线视频| 久久久久久久午夜电影| 亚洲熟妇中文字幕五十中出| 在线观看一区二区三区| 国产成人系列免费观看| 自线自在国产av| 999久久久精品免费观看国产| 丝袜美足系列| 国产99久久九九免费精品| 欧美中文综合在线视频| 国产亚洲欧美精品永久| 桃红色精品国产亚洲av| 久久性视频一级片| 久久天躁狠狠躁夜夜2o2o| 亚洲av熟女| 国产欧美日韩精品亚洲av| 亚洲熟妇熟女久久| 亚洲熟妇熟女久久| 一个人免费在线观看的高清视频| 久久精品aⅴ一区二区三区四区| 精品国产一区二区三区四区第35| 亚洲成人精品中文字幕电影| 黄色 视频免费看| 久久国产精品影院| 国产亚洲av高清不卡| 久热爱精品视频在线9| 免费无遮挡裸体视频| 亚洲最大成人中文| 免费在线观看视频国产中文字幕亚洲| 精品国产国语对白av| 国产精品乱码一区二三区的特点 | 激情在线观看视频在线高清| 精品国产国语对白av| 看片在线看免费视频| 男男h啪啪无遮挡| 一本综合久久免费| 亚洲一区二区三区不卡视频| 精品卡一卡二卡四卡免费| 国产成人免费无遮挡视频| 看免费av毛片| 日韩欧美国产在线观看| 两个人看的免费小视频| 午夜免费鲁丝| 成人三级做爰电影| 国产精品秋霞免费鲁丝片| 国产成人精品在线电影| 日本欧美视频一区| 777久久人妻少妇嫩草av网站| 日本黄色视频三级网站网址| 少妇 在线观看| 999精品在线视频| 在线观看www视频免费| 国产精品香港三级国产av潘金莲| 老司机福利观看| 高清在线国产一区| 制服诱惑二区| 亚洲国产中文字幕在线视频| 极品人妻少妇av视频| 香蕉国产在线看| 久久久久国内视频| 天堂动漫精品| www.自偷自拍.com| 悠悠久久av| 精品国产超薄肉色丝袜足j| 757午夜福利合集在线观看| 久久热在线av| 国产av一区在线观看免费| 亚洲成a人片在线一区二区| 亚洲欧美激情综合另类| 欧美人与性动交α欧美精品济南到| 亚洲狠狠婷婷综合久久图片| 亚洲无线在线观看| 日韩视频一区二区在线观看| 天堂动漫精品| 国产亚洲精品久久久久5区| 最近最新中文字幕大全免费视频| 成人免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久大精品| 日韩欧美一区二区三区在线观看| av天堂在线播放| 亚洲伊人色综图| 亚洲精品在线观看二区| 欧美av亚洲av综合av国产av| 国产私拍福利视频在线观看| 亚洲成av片中文字幕在线观看| 老汉色av国产亚洲站长工具| 色综合站精品国产| 91精品三级在线观看| 欧美老熟妇乱子伦牲交| 国产精品久久久久久精品电影 | 免费在线观看视频国产中文字幕亚洲| 色播在线永久视频| 国产精品国产高清国产av| 精品一区二区三区视频在线观看免费| 亚洲一区二区三区色噜噜| 亚洲少妇的诱惑av| 国产精品久久久久久精品电影 | 韩国精品一区二区三区| 午夜a级毛片| 日韩欧美三级三区| 亚洲精品国产精品久久久不卡| 香蕉丝袜av| 久久亚洲真实| 国产欧美日韩综合在线一区二区| 日本三级黄在线观看| 国产在线精品亚洲第一网站| 国产精品 欧美亚洲| 国产高清videossex| 人人澡人人妻人| 麻豆一二三区av精品| 国产成+人综合+亚洲专区| 不卡av一区二区三区| 亚洲欧美日韩另类电影网站| 久久香蕉精品热| 男女午夜视频在线观看| 午夜福利欧美成人| 国产主播在线观看一区二区| 国产精品一区二区三区四区久久 | 欧美日韩福利视频一区二区| 三级毛片av免费| 日本vs欧美在线观看视频| 欧美大码av| 在线观看一区二区三区| 精品电影一区二区在线| 免费看a级黄色片| 在线视频色国产色| 一区福利在线观看| 老汉色av国产亚洲站长工具| 久久人妻福利社区极品人妻图片| 久久精品成人免费网站| 久久久久久亚洲精品国产蜜桃av| 在线播放国产精品三级| 午夜久久久在线观看| 在线播放国产精品三级| 欧美乱妇无乱码| 欧美成人一区二区免费高清观看 | 超碰成人久久| 欧美日韩精品网址| 九色亚洲精品在线播放| 国产97色在线日韩免费| 午夜免费鲁丝| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利,免费看| 国产精品自产拍在线观看55亚洲| 19禁男女啪啪无遮挡网站| 久久中文字幕人妻熟女| 久久久久国内视频| 叶爱在线成人免费视频播放| 国产精品爽爽va在线观看网站 | 久久久久九九精品影院| 性少妇av在线| svipshipincom国产片| 一卡2卡三卡四卡精品乱码亚洲| 麻豆一二三区av精品| 一级毛片高清免费大全| 日韩欧美国产在线观看| 欧美日本视频| av电影中文网址| 美女国产高潮福利片在线看| 老司机靠b影院| 一级a爱视频在线免费观看| 国产精品98久久久久久宅男小说| 好男人电影高清在线观看| 亚洲精品一区av在线观看| 丰满的人妻完整版| 变态另类丝袜制服| 满18在线观看网站| 久9热在线精品视频| 一卡2卡三卡四卡精品乱码亚洲| 黄色毛片三级朝国网站| 9热在线视频观看99| 女人高潮潮喷娇喘18禁视频| 欧美午夜高清在线| 欧美在线一区亚洲| 在线观看日韩欧美| 成人18禁在线播放| 久久久久国产精品人妻aⅴ院| 日韩中文字幕欧美一区二区| 男女午夜视频在线观看| 久久婷婷人人爽人人干人人爱 | 日本一区二区免费在线视频| 午夜久久久在线观看| 又黄又爽又免费观看的视频| 不卡一级毛片| 91成人精品电影| 国产三级黄色录像| 久久久久久久久久久久大奶| 老司机午夜十八禁免费视频| 淫妇啪啪啪对白视频| 777久久人妻少妇嫩草av网站| 国产精品久久久av美女十八| 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 高清在线国产一区| 无限看片的www在线观看| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三| 欧美在线一区亚洲| 色综合欧美亚洲国产小说| 一级毛片精品| 亚洲少妇的诱惑av| 制服丝袜大香蕉在线| 免费不卡黄色视频| 国产精品电影一区二区三区| 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| 免费看美女性在线毛片视频| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 一区二区三区激情视频| 两个人免费观看高清视频| 叶爱在线成人免费视频播放| 国产极品粉嫩免费观看在线| 亚洲avbb在线观看| 在线十欧美十亚洲十日本专区| 国产精品久久久av美女十八| av在线天堂中文字幕| 别揉我奶头~嗯~啊~动态视频| 久久午夜综合久久蜜桃| 一二三四在线观看免费中文在| av天堂在线播放| 国产精品九九99| 国产熟女午夜一区二区三区| 成人三级做爰电影| e午夜精品久久久久久久| 精品一区二区三区av网在线观看| 手机成人av网站| 美女午夜性视频免费| 99国产综合亚洲精品| 波多野结衣一区麻豆| 欧美久久黑人一区二区| 亚洲五月色婷婷综合| 午夜福利欧美成人| 免费看美女性在线毛片视频| 操美女的视频在线观看| 黄色毛片三级朝国网站| 亚洲精品中文字幕在线视频| 欧美黑人欧美精品刺激| 91国产中文字幕| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲av高清一级| 少妇的丰满在线观看| 国产熟女xx| 精品人妻1区二区| 国产黄a三级三级三级人| tocl精华| 中文字幕av电影在线播放| 老司机靠b影院| 日韩三级视频一区二区三区| 性少妇av在线| 激情在线观看视频在线高清| 涩涩av久久男人的天堂| 亚洲欧美精品综合一区二区三区| 久久天堂一区二区三区四区| 日日干狠狠操夜夜爽| 国产一卡二卡三卡精品| 电影成人av| 亚洲欧洲精品一区二区精品久久久| 国产精品1区2区在线观看.| 搡老岳熟女国产| 欧美在线一区亚洲| 国产片内射在线| 中文字幕精品免费在线观看视频| 99re在线观看精品视频| 亚洲精华国产精华精| www.精华液| 亚洲国产高清在线一区二区三 | 免费在线观看亚洲国产| 中文字幕av电影在线播放| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 国产麻豆成人av免费视频| 多毛熟女@视频| 国产一级毛片七仙女欲春2 | 两个人免费观看高清视频| 久久性视频一级片| 99久久99久久久精品蜜桃| av中文乱码字幕在线| 国产伦人伦偷精品视频| 91麻豆av在线| 精品不卡国产一区二区三区| 色综合亚洲欧美另类图片| 免费看十八禁软件| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 露出奶头的视频| 精品久久蜜臀av无| 香蕉久久夜色| 欧美日韩黄片免| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 韩国av一区二区三区四区| 97碰自拍视频| 日韩三级视频一区二区三区| 精品国产一区二区久久| netflix在线观看网站| 一级a爱片免费观看的视频| 搡老妇女老女人老熟妇| 欧美成人免费av一区二区三区| 少妇 在线观看| 男女床上黄色一级片免费看| 一级作爱视频免费观看| av电影中文网址| 精品国产美女av久久久久小说| 亚洲色图 男人天堂 中文字幕| 看黄色毛片网站| 精品国产一区二区三区四区第35| 免费看十八禁软件| 精品第一国产精品| 99国产极品粉嫩在线观看| 中亚洲国语对白在线视频| 91老司机精品| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全免费视频| 高清在线国产一区| 午夜福利高清视频| 满18在线观看网站| 日韩欧美国产在线观看| 成人国产一区最新在线观看| 国产精品自产拍在线观看55亚洲| 久久伊人香网站| 老汉色∧v一级毛片| 黄频高清免费视频| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯| 成人亚洲精品av一区二区| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 9色porny在线观看| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 亚洲avbb在线观看| 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 免费久久久久久久精品成人欧美视频| 亚洲成人免费电影在线观看| 免费高清视频大片| 国产亚洲欧美98| 一边摸一边做爽爽视频免费| 国产精品日韩av在线免费观看 | 老汉色∧v一级毛片| 少妇裸体淫交视频免费看高清 | 亚洲一区二区三区色噜噜| 成人亚洲精品一区在线观看| 免费久久久久久久精品成人欧美视频| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| 午夜免费成人在线视频| 高清毛片免费观看视频网站| 一区二区三区国产精品乱码| 国产亚洲精品第一综合不卡| 欧美日韩乱码在线| 电影成人av| 一区二区三区国产精品乱码| 在线永久观看黄色视频| 欧美乱妇无乱码| 看片在线看免费视频| 日本 av在线| 热99re8久久精品国产| 在线观看66精品国产| 成人免费观看视频高清| 亚洲欧美精品综合久久99| 精品国产超薄肉色丝袜足j| 国产亚洲欧美在线一区二区| 国产单亲对白刺激| 国产视频一区二区在线看| 亚洲九九香蕉| 亚洲精品国产色婷婷电影| 日本五十路高清| 欧美成人一区二区免费高清观看 | www.熟女人妻精品国产| 妹子高潮喷水视频| 黄频高清免费视频| 国产精品野战在线观看| 美女大奶头视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产高清国产av| 成人国产一区最新在线观看| 久久人妻av系列| 神马国产精品三级电影在线观看 | 亚洲午夜理论影院| 国产精品久久久久久精品电影 | 日韩一卡2卡3卡4卡2021年| 一级黄色大片毛片| 国产精品自产拍在线观看55亚洲| 亚洲天堂国产精品一区在线| 波多野结衣高清无吗| 18禁裸乳无遮挡免费网站照片 | 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕日韩| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 免费av毛片视频| 大码成人一级视频| 久久久久久人人人人人| 免费看十八禁软件| 中文字幕精品免费在线观看视频| 日韩三级视频一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 神马国产精品三级电影在线观看 | 天天躁夜夜躁狠狠躁躁| 久久久久国内视频| 少妇熟女aⅴ在线视频| 久久久久久大精品| 精品国产乱子伦一区二区三区| 天天躁夜夜躁狠狠躁躁| 嫁个100分男人电影在线观看| 在线国产一区二区在线| 美女高潮喷水抽搐中文字幕| 大码成人一级视频| 最好的美女福利视频网| 99riav亚洲国产免费| 757午夜福利合集在线观看| videosex国产| 国产99久久九九免费精品| 黄色女人牲交| 桃色一区二区三区在线观看| 国产午夜福利久久久久久| 搡老妇女老女人老熟妇| 国产成人精品久久二区二区免费| 国产一卡二卡三卡精品| 久久伊人香网站| 啦啦啦免费观看视频1| 国内精品久久久久久久电影| 老熟妇仑乱视频hdxx| 黄频高清免费视频| 丁香六月欧美| 亚洲熟妇中文字幕五十中出| 国内久久婷婷六月综合欲色啪| 大型黄色视频在线免费观看| 波多野结衣一区麻豆| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美一区二区综合| 韩国av一区二区三区四区| 国产三级黄色录像| 久久青草综合色| 亚洲成av片中文字幕在线观看| 高清在线国产一区| 在线观看免费视频网站a站| 老司机福利观看| 中文字幕人成人乱码亚洲影| 免费在线观看亚洲国产| 精品电影一区二区在线| 久久久国产成人免费| 动漫黄色视频在线观看| 在线观看午夜福利视频| 激情在线观看视频在线高清| 日韩欧美免费精品| 在线国产一区二区在线| 日韩三级视频一区二区三区| 亚洲精品国产色婷婷电影| 男女下面进入的视频免费午夜 | 香蕉丝袜av| 女人爽到高潮嗷嗷叫在线视频| 一个人免费在线观看的高清视频| 9191精品国产免费久久| 亚洲狠狠婷婷综合久久图片| 在线国产一区二区在线| 久久久久久国产a免费观看| 高潮久久久久久久久久久不卡| 欧美老熟妇乱子伦牲交| 欧美国产日韩亚洲一区| 日本 av在线| 亚洲第一欧美日韩一区二区三区| 国产三级在线视频| 桃色一区二区三区在线观看| 嫩草影视91久久| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美日韩在线播放| 久久午夜亚洲精品久久| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 丝袜美足系列| 天天添夜夜摸| 亚洲国产日韩欧美精品在线观看 | 成人永久免费在线观看视频| 欧美黄色片欧美黄色片| 久久人妻av系列| 欧美黄色片欧美黄色片| 最近最新中文字幕大全电影3 | 国产一级毛片七仙女欲春2 | 精品无人区乱码1区二区| 日本免费一区二区三区高清不卡 | 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 夜夜躁狠狠躁天天躁| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 人人澡人人妻人| 老汉色av国产亚洲站长工具| 亚洲 欧美一区二区三区| 国产欧美日韩精品亚洲av| 人妻丰满熟妇av一区二区三区| 日韩欧美一区视频在线观看| 亚洲av电影不卡..在线观看| 精品一品国产午夜福利视频| 成人亚洲精品av一区二区| 日韩精品免费视频一区二区三区| 日韩有码中文字幕| 国产精品影院久久| 亚洲免费av在线视频| 日本五十路高清| 久久草成人影院| 男女午夜视频在线观看| 成年女人毛片免费观看观看9| 成人三级黄色视频| 精品久久久久久成人av| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 99国产精品免费福利视频| 国产1区2区3区精品| 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 女性生殖器流出的白浆| 国产亚洲精品av在线| 免费观看人在逋| 9色porny在线观看| 国产午夜精品久久久久久| 色综合婷婷激情| 亚洲九九香蕉| 曰老女人黄片| 十八禁人妻一区二区| ponron亚洲| 夜夜夜夜夜久久久久| 国产蜜桃级精品一区二区三区| 黄色a级毛片大全视频| 国产91精品成人一区二区三区| 免费人成视频x8x8入口观看| 97人妻天天添夜夜摸| 一级,二级,三级黄色视频| 日本黄色视频三级网站网址| 精品一区二区三区四区五区乱码| 悠悠久久av| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看 | 精品国内亚洲2022精品成人| 琪琪午夜伦伦电影理论片6080| 色综合婷婷激情|