• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust fault-tolerant control for wing flutter under actuator failure

    2016-11-24 00:48:40GaoMingzhouCaiGuoping
    CHINESE JOURNAL OF AERONAUTICS 2016年4期

    Gao Mingzhou,Cai Guoping

    Department of Engineering Mechanics,State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China

    Robust fault-tolerant control for wing flutter under actuator failure

    Gao Mingzhou,Cai Guoping*

    Department of Engineering Mechanics,State Key Laboratory of Ocean Engineering,Shanghai Jiaotong University,Shanghai 200240,China

    Many control laws,such as optimal controller and classical controller,have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system.However,those control laws may not work effectively if the aeroelastic system involves actuator faults.In the current study for wing flutter of reentry vehicle,the effect of actuator faults on wing flutter system is rarely considered and few of the fault-tolerant control problems are taken into account.In this paper,we use the radial basis function neural network and the finite-time H∞adaptive fault-tolerant control technique to deal with the flutter problem of wings,which is affected by actuator faults,actuator saturation,parameter uncertainties and external disturbances.The theory of this article includes the modeling of wing flutter and fault-tolerant controller design.The stability of the finite-time adaptive fault-tolerant controller is theoretically proved.Simulation results indicate that the designed fault-tolerant flutter controller can effectively deal with the faults in the flutter system and can promptly suppress the wing flutter as well.

    1.Introduction

    With the rapid development of aerospace technology,modern aircraft per form their characteristics such as high velocity,lightweight structures,flexible and low damping,which makes the aeroelasticity phenomenon more and more prominent.Flutter is one of such problems.Flutter instability may decrease aircraft performance or even lead to the catastrophic failure of the structure.1The traditional passive techniques are usually inefficient(because they add weight to the structure),and they do not always succeed.In order to overcome the inadequacy of passive techniques,the activeflutter suppression techniques were developed in early 1970s.In activeflutter suppression,we carry it out by utilizing multiple steerable control surfaces laid out on the surface of the wing.

    The technique of activeflutter suppression has drawn much attention over the past decade.2–6For example,Yu et al.2designed a μ controller to suppress airfoil flutter,and wind tunnel experiments were carried out to verify the effectiveness of the designed controllers.Prime et al.3synthesized a statefeedback controller using linear matrix inequalities(LMIs)to control the vibration of an improved three-degree-of -freedom aeroelastic model and this controller could effectively suppress limit-cycle oscillations over a range of airspeeds.Wang et al.4,5considered a class of aeroelastic systems with an unmodeled nonlinearity and external disturbance and proposed a fullstate feed forward/feedback controller with a high-gain observer;they also designed a continuous robust controller to suppress the aeroelastic vibrations of a nonlinear wingsection model.Zhang et al.6designed a partial statefeedback continuous adaptive controller in order to suppress the aeroelastic vibrations of the wing section model.

    Although a number of flutter controller design approaches,2–6most of the researches assume that there exists no actuator fault or failure during the entireflutter suppression.This assumption is rarely satisfied in practice because some catastrophic faults may occur due to the malfunction of actuators.As a result,if the flutter controller is designed without any fault tolerance capability,an abrupt occurrence of an actuator fault could ultimately fail the flutter control.There fore,we must give priority to considering the faults of actuators and sensors in the design of the flutter controller.There fore,the fault-tolerant control(FTC)7should be taken into consideration for the flutter control.In general,FTC methods are classified into two types:passivefault-tolerant control(PFTC)and activefault-tolerant control(AFTC)schemes.7The PFTC designed by limited faults and fixed controller will not be able to guarantee the performance of the system.8–10Correspondingly,active method11–13may provide more powerful fault-tolerant capability for compensating for faults of the systems in terms of reconfiguring control strategies online or switching to a more suitable control law based on the fault in formation.There fore,in this paper,the investigation of an activefault-tolerant controller for a flutter control system with the occurrence of unexpected faults or failures.It is worth mentioning that the above results2–6are derived from the assumption that the actuators are able to provide any requested outputs.However,in almost every physical application,the actuator has bounds on its input.There fore,the phenomenon of actuator saturation has to be considered when the controller is designed in practical industrial process control field.In addition,the flutter will destroy the vehicle in a short time,we must control the flutter within a certain range in a finite time.However,to the best of our knowledge,the studies on finite-time adaptive fault-tolerant control of wing flutter are very limited in the published literature.

    In order to reveal the negative effect of the conventional control on the stability of aeroelastic system and considering the in fluence of faults,time-varying parameter uncertainties and external disturbances,this paper focuses on the design of finite-time H∞adaptive fault-tolerant controller for flutter of wing.A 2D cubic structure nonlinearity wing system is adopted as structure model.The actuator fault is considered in the controller design.This paper is organized as follows.The dynamic equation of wing flutter and the control problem of flutter system with faults are established in Section 2.Section 3 presents a finite-time adaptive fault-tolerant flutter controller based on observer.Numerical simulations are given in Section 4.Section 5 briefs the conclusions of the research.

    2.Flutter model of 2D wing and fault-tolerant control problem

    In this section,we briefly recall the mathematical model for the flutter of a reentry vehicle with actuators fault-free.Based on this nominal flutter system,the state equation with actuator faults and saturation,parameter uncertainties and external disturbances are established.

    2.1.Wing flutter model under actuators fault-free

    In this section,flutter problem for a 2D wing including cubic hard spring nonlinearity is analyzed.As shown in Fig.1,a two degree-of -freedom(2-DOF)wing system model is considered herein.The plunge deflection is denoted by h,positive in the downward direction;θ is the pitch angle about the elastic axis,positive nose up;V denotes the air speed;the chord length is c;Q,p and C are the aerodynamic center,elastic axis and center of mass,respectively;the distance from the leading edge to the elastic axis is xp,and that from the leading edge to the mass center is xC; δLEoutand δLEin(or δREoutand δREin)are the control surface angles.

    From Fig.1,the velocity of mass center of wing can be expressed as

    The kinetic energy,potential energy and dissipation of the system can be given by

    where IC,mW,me,Kh,Kθ,Chand Cθare the moment of inertia about center of mass,wing mass,wing extra-mass,stiffness coefficient in plunge,torsion stiffness coefficient,damping coefficient in plunge and torsion damping coefficient,respectively.

    For supersonic and hypersonic flow,the piston theory is widely used to calculate the aerodynamics acting on a lifting surface.14Applying the piston theory,the aerodynamic force and moment acting on the wing can be obtained as

    Fig.1 2D wing model with control surface.

    The aerodynamic lift and moment caused by control surface can be expressed as

    where aCis the coefficients of lift force,bCthe ratio of the pitching moment to the deflection angle,and sβthe span of control surface.

    The moment caused by the cubic hard spring nonlinearity of the wing can be written as15

    where en1is the nonlinear stiffness coefficient.

    Without considering structural damping,the aeroelastic equation of the two-dimensional wing system can be deduced using the Lagrangian method and written into matrix form,we have

    where q(t)=[h(t),θ(t)]Tis the generalized displacement vector;~A,~B,~C and~D are the inertia,aerodynamic damping,aerodynamic stiffness and structural stiffness matrices respectively;u(t)=[δLEout,δLEin]Tis the control input.The expressions of parameters in Eq.(6)are

    Eq.(6)can befurther changed to be

    The parameters in the matrices A and B are determined based on the computing results for the most serious moment of reentry flight of the vehicle given in Ref.16.In Ref.16,the reentry will reach its maximum velocity of 1406 m/s at the moment 699.19 s;the altitude,longitude,latitude and atmospheric density of the reentry vehicle at this serious moment can be determined to be 21.87 km,3907.11 km,-66.05 km and 0.0644 kg/m3,respectively.

    2.2.Wing flutter model under actuator failures

    Note that the dynamic equation of flutter in Eq.(7)assumes that all of the actuators arefault-free,and it is called the nominal system.For an active flutter control system,it is difficult to ensure the actuator in the ideal working condition.They are likely to have some problems,such as loss of effectiveness,float or saturation.For the hypersonic reentry vehicle,the aircraft will face hostile aerodynamic environment in the reentry process,such as high temperature,high pressure.The actuator may havefaults,such as loss of effectiveness and float,which are likely to cause catastrophic accidents of the reentry vehicle.There fore,fault tolerance capability should be considered in lf utter controller design.

    Fig.2 Time responses of wing states and observer errors in case of fault.

    In this section,we consider two types of actuator fault simultaneously,namely the float fault(actuators generate additional torque under zero control command caused by voltage or current intermittent fault)and the loss of effectiveness of the actuators as well as actuator saturation,parameter uncertainties and external disturbances.Hence,the flutter dynamic model given by Eq.(7)can be rewritten as

    where ΔA represents the parameter uncertainties of wing flutter system, v(t) the actual actuator control vector,ρ =diag(ρ1,ρ2)the effectiveness factor matrix for the reentry vehicle actuators with 0 < ρi≤ 1(i=1,2);the case when ρi=1 means that the ith actuator works normally,and 0< ρi< 1 denotes the case in which the ith actuator partially loses its effectiveness.us(t)= [us1,us2]T∈ R2×1corresponds to the ith actuator float fault of reentry vehicle;f(t,x)is a nonlinear term;w(t)represents the external disturbances;and y(t)is the measured output.The parameters B1and c1are known matrices with appropriate dimensions.ΔA is assumed to satisfy thefollowing matching condition of Eq.(9).

    Fig.3 Commanded control in case of fault.

    where ‖·‖represents Euclidean norm of vectors or matrices;N(t)is an unknown matrix with‖N‖≤ l*and l*is an unknown constant.

    Remark 1.The assumption ΔA=BN(t)in this paper is made for the convenience of design is the controller(Eq.(20)).Through the assumption ΔA=BN(t),we altered the uncertainties of ΔA into the uncertainties of N(t).In our paper,we made compensation for N(t)by the adaptive law^k5(Eq.(23)).v is the actual actuator control vector defined as

    where vmaxand δu(x)are the actuator saturation level and auxiliary variable;u(t)is the control signal to be designed.

    In nonlinear control problem,the radial basis function(RBF)network is usually used as a tool for modeling nonlinear system because of its good capabilities in function approximation.In this paper,the unknown δu(x)is approximated by the RBF network17

    Fig.4 Output of neural networks.

    Herein,x is the input of neural networks and δu(x)the output of neural networks;the subscript N means the Nth input of neural networks;hN(x)is the Gaussian function;h(x)is the output of Gaussian function;cNand bNare the centre vector and width;W*is the idealweight matrix.Definedenotes the estimate of δu(x), andthe estimate of W*,εu(x)the approximation error,and Dx∈R4×1a sufficiently large compact set.

    3.Observer-based finite-time H∞adaptive fault-tolerant flutter controller design

    In this section,an active fault-tolerant flutter controller design for reentry vehicle is presented,including the design of the observer and the design of the fault-tolerant flutter controller.The observer design is first presented to achieve precise estimated flutter states without states measurement.A faulttolerant flutter controller is then designed using the flutter states in formation from the observer to per form the flutter stabilization control.

    Fig.5 Adaptive parameters of ^K11(t)and^K12(t).

    3.1.Design of observer

    In this section,an observer is designed,which can provide the in formation of flutter states.These in formation is sent to the controller to obtain the control law,which is sent back to the actuator.

    Considering the form of the model Eq.(8),the following observer is designed:

    Table 1 Structural parameters of 2D wing.

    Fig.6 Adaptive parameters of

    By using the definition e(t)=x(t)-the dynamics of the error e(t),between the actual state x(t)and its estimate values^x(t),can be obtained from Eqs.(8)and(12)as

    Theorem 1.If there exists a positive-definite matrixand considering the estimation error Eq.(13),we suppose that the observer gains are chosen as

    Then the estimation error dynamics system e(t)is stable.Proof .Select the following Lyapunov functionDifferentiating the above Lyapunov function yields

    Let NT(t)N(t)≤ I,if there exist scalars εf≥ 0 and εA≥ 0,f(t,x)-f(t,^x) satisfies the Lipschitz condition> 0,note thefact that for any positive constantˉc>0,

    According to Theorem 1,Eq.(18)can be written as

    then the error dynamics system Eq.(13)is stable.Thereby the proof is completed.□

    3.2.Finite-timefault-tolerant flutter controller design

    In this section,a novel finite-timefault-tolerant flutter control algorithm is investigated to suppress the wing flutter based on the observer Eq.(12).

    Considering Eqs.(8)and(11),the adaptiveflutter control law is designed as

    Below we give the expressions ofand then utilize the Lyapunov method to prove that the flutter controller given by Eq.(20)can guarantee the stability of the system.The adaptive gain^K1i(t)is chosen as

    where α1, β1and η are given positive constants;^k4and^k5are updated by thefollowing adaptive equations of Eq.(23).

    where r1and r2are given positive constants.^W is given as

    where r3is a given positive constant.

    where k4and k5are positive constants for eliminating the effects of float, external disturbances and parameter uncertainties.

    Substituting Eqs.(10)and(20)into Eq.(8),the closed-loop flutter system can be written as)

    Assumption 1.For any given positive number ds,dw,dδand the actual working time Tf,the float fault us(t),nonlinear vector f(t,x),external disturbances w(t)and ˉδu(x)are time-varying and satisfy

    Remark 2.The actual output torque generated is bounded due to practical physical limitations of the actuators,and thus,the float fault us(t)and the auxiliary variable(δu(x)=v(t)-u(t))are also bounded.In addition,the external disturbances w(t),in Eq.(8)include center of mass migration,moment of inertia error,gravitational perturbation,atmospheric density deviation,and are also bounded.Assumption 1 is,there fore,reasonable for flutter system.

    Definition 118.For given positive constants c1,ds,df,dw,Tfand a symmetric matrix R>0,the resulting closed-loop flutter system Eq.(26)is said to be robustly finite-time bounded(FTB)with respect to(c1,c2,Tf,R,ds,df,dw),if there exists a constant c2(c2>c1),such that

    Definition 219.If there exists feedback controller in form Eq.(20),such that the resulting closed-loop flutter system Eq.(26)is FTB with respect to(c1,c2,Tf,R,ds,dw,dδ)under the assumed zero initial condition,the flutter system output satisfies the following inequality for Tf>0 and for all admissible w(t)which satisfy Assumption 1.

    where γ is a constant.Then the flutter control law Eq.(20)is called the robust finite-time H∞flutter controller of the nonlinear flutter systems Eq.(26).

    Theorem 2.For given positive constants α0,c1,Tf,ds,dw,dδand a symmetric matrix R>0,the closed-loop flutter control system Eq.(26)is FTB with respect to(c1,c2,Tf,R,ds,dw,dδ),if there exist positive constant c2and symmetric positive-definite matrix~P,such that

    Proof .For the closed-loop flutter system Eq.(26),wefirst define a Lyapunov functional candidate as

    Using Eq.(17),Eq.(33)can be written as

    Define the following function

    The condition inequality(31)implies J1<0.Multiplying the above inequality by e-α0t,we derive

    On the other hand,the following condition holds:

    Condition Eq.(32)implies that for ?t∈ [0,Tf],xT(t)Rx(t)<c2.According to Definition 1,this completes the proof .□

    Theorem 3.For given positive constants α0,c1,Tf,ds,dw,dδ,μ,α1,β1,k4,k5and a symmetric matrix R > 0,the closed-loop flutter control system Eq.(26)is FTB with respect to(c1,c2,Tf,R,ds,dw,dδ)and satis fies the Eq.(29) for all admissible w(t),if there exist positive constants c2,γf> γn,η,εf,symmetric positive-definite matrixP~-jfor any ρ and any appropriately dimensioned matrices Z,Jjand L,which satisfy

    Proof .Select the same Lyapunov function candidate as Theorem 2 and define the following function.

    Then,according to Eqs.(9),(11),(26),(22)and(25),J3can be written as

    Note the fact that for any positive constant γ0> 0,

    By Eqs.(42)and(43),we can obtain

    Using Eqs.(16)and(17),we have

    Using Eqs.(25)and(44),Eq.(51)becomes

    Using Eq.(30),Eq.(53)can be written as

    Pre-and post-multiplying the inequality(54)by blockdiagonal matrix diag(~P-j,I,...,I),Eq.(54)can befurther changed to be

    where Ω2=.

    For any positive constant Χ > 0,Eq.(55)is equivalent to

    where Λ = [I, 0, Χ-1cT1, 0].Then,applying Eq.(30),Eq.(56)can be written as

    Pre-and post-multiplying both sides of Eq.(57)by diag(ZT,I,...,I),Eq.(57)can befurther changed to be

    Due to ZT~PjZ≥Z+ZT-~P-j,Eq.(58)can be written as

    where Ω3= Χ-1(~P-j-Z-ZT).Let K1=LZ-1,from Eq.(59)we have

    Then,applying Eq.(30),Eq.(60)can be written as

    where Ω4=A~P-j+~P-jAT-(Χ + α0)~P-j+ ε-1fI+Jj+BρL+(BρL)T

    From Eq.(62),Eq.(59)can be written as

    From Eq.(63),Eq.(52)can be written as

    From Eqs.(21),(23)and(24),Eq.(64)can be written as

    which implies that the flutter system is ultimately uniformly bounded,and the flutter state x(t)converges to zero.□

    Remark 3.Assume that LMIs(40)and Eqs.(41)–(44)are satisfied,control gain K2(t),K3(t),adaptive update laws^K1i(t),^k4(t),^k5(t)and^W are given by Eqs.(22),(21),(23)and(24)then the closed-loop flutter system Eq.(26)is stable,then γnand γfare minimized if the following optimization problem is solvable

    where αnand αfare weighting coefficients.

    4.Numerical simulations

    In this section,numerical example is provided to illustrate the validity of our proposed approaches.The flutter of twodimensional nonlinear wing is used as numerical example.Table 1 shows the structural parameters of 2D wing.The matrices A and B in Eq.(7)are given by

    In the simulations,the parameters bN,η,Γi,r1,r2and r3in Eqs.(11),(22),(21),(23)and(24)are chosen as

    bN=5, η=100,Γi=0.45, r1=0.25, r2=0.25, r3=4.5

    The parameters N(t),cNand the initial values of the state x(t)in Eqs.(9),(11)and(7)are

    The reentry vehicle is assumed to experience the following faulty case during its operation:be fore 4 s,the system operates in normal case,that is,all of the two actuators are normal.Between the 4th and the 10th second,thefirst actuator is float at us(t)=30+30 sin(0.1t)+20 cos(0.5t)and the second actuator is loss of effectiveness,that is,ρ2=1-0.05t until loss effectiveness of 50%.After the 10th second,the second actuator has float fault and other actuator is loss of effectiveness,that is,ρ1=1-0.01t until loss effectiveness of 70%.The perturbations w(t)= [-10sin(0.1t),15]Tenter the systems at the beginning(t≥0 s).

    Using algorithm with αn=5,αf=1,we obtain H∞performances of the closed-loop flutter system as 0.3923(normal)and 1.3553(fault).Fig.2 shows that the state variable x(t)of wing flutter and observer error e in case of fault.Fig.3 illustrates the control signals’variations under different faults,which is,the parameter u(t)in Eq.(7).In the simulation of this paper,we assume that vehicles’two actuators from the 4th second to the 10th second have some faults,while external disturbances exist all the time.From Fig.2 we can see that in the fault situations mentioned above,by using the controller(as shown in Fig.3)which we have put forward in this article,the flutter can be controlled within 1 s,which verifies the reliability and the robustness of the control method proposed in this article.Fig.4 displays the output of neural networks(x).From Fig.4,we can see that the neural networks(x)will change parameters to adjust the controller when the actuator is under saturation situation.

    Fig.5 shows the variation of control gain(t)in different situations,which(t)ensures the stable of the flutter system.We also know that)varies with the flutter state in Eq.(21).The faults in the actuator might cause changes in the flutter state(as shown in Fig.2).From Fig.5,control gain(t)will change parameters to adjust the controller when faults occur,so that the actuator of the vehicle would receive effective compensation and return to stable state.From Fig.5,when wing flutter is back to stable,the control law(t)will not change any more.

    In order to effectively compensate the actuator float fault and uncertainties of flutter dynamic model mentioned above and ensure the stability of the flutter system,we design the control lawandin this article.From Eq.(23),we can find thatandchange with the flutter state variation.Under the circumstances of the faults of actuator and parameters uncertainty,the state of flutter system may have corresponding changes.From Fig.6,we can see that the parameters of control gain^k4and^k5may justify with the flutter system state when the state of flutter changes.Then the control law of controller(Fig.3)will be changed and will effectively suppress the uncertainty of actuator fault and flutter dynamic model.After the reentry vehicle flutter being stable,we can see from Fig.6 that parameters of controlgainandwillkeep immutability.

    The finite-time closed-loop flutter FTC system with actuator saturation,external disturbances and parameter uncertainties can be ensured to be asymptotically stable in the presence of actuator faults.The results show that the proposed controller per forms very well and accomplishes the flutter suppression despite these undesired effects in the closed-loop flutter system.

    5.Conclusions

    (1)In this paper,a novel finite-time H∞adaptive faulttolerant flutter control design scheme is proposed for wing flutter subject to actuator saturation,external disturbances and parameter uncertainties.

    (2)The actuator saturation is approximated by a radial basis function.Actuator faults are considered,including loss of effectiveness and float.

    (3)The proposed finite-time H∞adaptive fault-tolerant flutter controller is proved to adaptively adjust controller parameters to compensate the faults,actuator saturation,disturbances and parameter uncertainties within the flutter system.

    (4)Numerical simulation results further illustrate the effectiveness of the presented approach.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos.11132001,11272202 and 11472171),the Key Scientific Project of Shanghai Municipal Education Commission(No.14ZZ021)and the Natural Science Foundation of Shanghai(No.14ZR1421000).

    1.Zhao YH.Flutter suppression of a high aspect-ratio wing with multiple control surfaces.J Sound Vib 2009;324(3–5):490–513.

    2.Yu ML,Wen H,Hu HY,Zhao YH.Activeflutter suppression of a two dimensional airfoil section using μ synthesis.Acta Aeronaut Astronaut Sin 2007;28(2):340–3[Chinese].

    3.Prime Z,Cazzolato B,Doolan C,Strganac T.Linear-parametervarying control of an improved three-degree-of -freedom aeroelastic model.J Guid Control Dyn 2010;33(2):615–9.

    4.Wang Z,Behal A,Marzocca P.Model-free control design for multi-input multi-output aeroelastic system subject to external disturbance.J Guid Control Dyn 2011;34(2):446–58.

    5.Wang Z,Behal A,Marzocca P.Continuous robust control for two-dimensional airfoils with leading-and trailing-edgeflaps.J Guid Control Dyn 2012;35(2):510–9.

    6.Zhang K,Wang Z,Behal A,Marzocca P.Novel nonlinear control design for a two-dimensional airfoil under unsteady flow.J Guid Control Dyn 2013;36(6):1681–94.

    7.Castaldi P,Mimmo N,Simani S.Differential geometry based activefault-tolerant control for aircraft.Control Eng Practice 2014;32:227–35.

    8.Mahmoud M.Sufficient conditions for the stabilization of feedback delayed discrete timefault-tolerant control systems.Int J Innovative Comput 2009;5(5):1137–46.

    9.Yang GH,Ye D.Adaptivefault-tolerant H∞control against sensor failures.IET Control Theory Appl 2008;2(2):95–107.

    10.Alwi H,Edwards C,Stroosma O,Mulder JA.Fault-tolerant sliding mode control design with piloted simulator evaluation.J Guid Control Dyn 2008;31(5):1186–201.

    11.Jin XZ,Yang GH.Robust fault-tolerant controller design for linear time-invariant systems with actuator failures:An indirect adaptive method.IET Control Theory Appl 2010;8(4):471–8.

    12.Gao ZF,Jiang B,Shi P,Qian MS,Lin JX.Activefault-tolerant control design for reusable launch vehicle using adaptive sliding mode technique.J Franklin Inst 2012;349(4):1543–60.

    13.Xu DZ,Jiang B,Liu HT,Shi P.Decentralized asymptotic faulttolerant control of near space vehicle with high order actuator dynamics.J Franklin Inst 2013;350(9):2519–34.

    14.Zhou LQ,Chen YS,Chen FQ.Chaotic motions of a twodimensional airfoil with cubic nonlinearity in supersonic flow.Aerosp Sci Technol 2013;25(1):138–44.

    15.Chen YM,Liu JK,Meng G.Equivalent damping of aeroelastic system of an wing with cubic stiffness.J Fluids Struct 2011;27(8):1447–54.

    16.Gao MZ,Cai GP,Nan Y.Adaptivefault-tolerant control of reentry vehicle considering actuator and sensor faults based on trajectory optimization.J Aerosp Eng 2016;230(4):726–46.

    17.Lu JN,Hu HP,Bai YP.Generalized radial basis function neural network based on an improved dynamic particle swarm optimization and AdaBoost algorithm.Neurocomputing 2015;152:305–15.

    18.Amato F,Ariola M.Finite-time control of linear systems subject to parametric uncertainties and disturbances.Automatica 2001;37(9):1459–63.

    19.Meng QY,Shen YJ.Finite-time H∞control for linear continuous system with norm-bounded disturbance.Commun Nonlinear Sci Numer Simul 2009;14(4):1043–9.

    20.Zhang W,Su H,Wang H,Han Z.Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations.Commun Nonlinear SciNumer Simul2012;17(12):4968–77.

    Gao Mingzhou is a Ph.D.candidate of Shanghai Jiaotong University,China.His major is engineering mechanics.His current research interests focus on structural dynamics and control.

    Cai Guoping is a prof essor in the Department of Engineering Mechanics,Shanghai Jiaotong University,China.He received the Ph.D.degree in Engineering Mechanics from Xi’an Jiaotong University in 2000.His current research interests focus on structural dynamics and control,delayed system dynamics and control,and coupled system dynamics and control.

    24 September 2015;revised 5 January 2016;accepted 7 March 2016

    Available online 23 June 2016

    Actuator fault;

    Actuator saturation;Aeroservoelasticity;

    Fault-tolerant control;

    Flutter;

    Observer

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 21 34204798.

    E-mail addresses:jsycgaomingzhou@163.com(M.Gao),caigp@sjtu.edu.cn(G.Cai).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.06.014

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    一个人看的www免费观看视频| 搡女人真爽免费视频火全软件| 国产极品天堂在线| 亚洲欧美日韩卡通动漫| 少妇丰满av| 免费高清在线观看视频在线观看| 色网站视频免费| 黄色欧美视频在线观看| 麻豆乱淫一区二区| 禁无遮挡网站| videossex国产| 亚洲av成人av| av免费在线看不卡| 日产精品乱码卡一卡2卡三| 亚洲精品一二三| 观看免费一级毛片| 日本黄色片子视频| 国产老妇伦熟女老妇高清| 丝袜美腿在线中文| 国产免费视频播放在线视频 | 久久精品久久精品一区二区三区| 天堂√8在线中文| 看非洲黑人一级黄片| 久久热精品热| 国产有黄有色有爽视频| 国产伦一二天堂av在线观看| 成人一区二区视频在线观看| 成人亚洲精品av一区二区| 2021少妇久久久久久久久久久| 精品久久久久久电影网| eeuss影院久久| 91午夜精品亚洲一区二区三区| 精品不卡国产一区二区三区| 亚洲成色77777| 国产精品不卡视频一区二区| 成人美女网站在线观看视频| 久久久久久久久久久丰满| 特大巨黑吊av在线直播| 97热精品久久久久久| 一区二区三区乱码不卡18| 91久久精品国产一区二区三区| 亚洲美女视频黄频| 亚洲精品成人久久久久久| 人人妻人人澡欧美一区二区| 黄片无遮挡物在线观看| 国产一级毛片七仙女欲春2| 美女脱内裤让男人舔精品视频| 99久久九九国产精品国产免费| 日本熟妇午夜| 亚洲丝袜综合中文字幕| 成人亚洲精品av一区二区| 最近的中文字幕免费完整| 亚洲国产精品成人久久小说| 男女视频在线观看网站免费| 日日干狠狠操夜夜爽| 嫩草影院新地址| 搡老乐熟女国产| 五月玫瑰六月丁香| 最近最新中文字幕免费大全7| 久久这里只有精品中国| 亚洲精品日韩av片在线观看| 神马国产精品三级电影在线观看| 亚洲欧美一区二区三区黑人 | 深夜a级毛片| 亚洲在久久综合| 干丝袜人妻中文字幕| 亚洲精品成人av观看孕妇| 在现免费观看毛片| 一级毛片 在线播放| 久久99蜜桃精品久久| 亚洲性久久影院| 国产午夜精品论理片| 精品一区二区三卡| 乱码一卡2卡4卡精品| 色尼玛亚洲综合影院| 亚洲不卡免费看| 亚洲人成网站在线播| 免费黄色在线免费观看| 简卡轻食公司| 老司机影院成人| 毛片一级片免费看久久久久| 超碰av人人做人人爽久久| 久久久久久国产a免费观看| 成人特级av手机在线观看| 中国国产av一级| 搡老妇女老女人老熟妇| 久久精品久久精品一区二区三区| 两个人视频免费观看高清| 卡戴珊不雅视频在线播放| 亚洲国产最新在线播放| 2021少妇久久久久久久久久久| 国产精品1区2区在线观看.| 少妇猛男粗大的猛烈进出视频 | www.色视频.com| 亚洲一级一片aⅴ在线观看| 精品午夜福利在线看| 日韩av免费高清视频| 国产亚洲91精品色在线| 色哟哟·www| 久久精品综合一区二区三区| 日韩强制内射视频| 观看美女的网站| 丝袜美腿在线中文| 最后的刺客免费高清国语| 午夜老司机福利剧场| 婷婷色综合www| 五月天丁香电影| 亚洲精品第二区| 三级国产精品片| 亚洲人成网站在线播| 久久久a久久爽久久v久久| 丝袜喷水一区| 精品一区二区三卡| 久久久久免费精品人妻一区二区| 国产成人午夜福利电影在线观看| 麻豆成人av视频| 免费大片黄手机在线观看| 少妇的逼水好多| 少妇的逼水好多| 成人午夜精彩视频在线观看| 国产亚洲91精品色在线| 久99久视频精品免费| 人妻少妇偷人精品九色| 亚洲精品成人av观看孕妇| 国产91av在线免费观看| 国产在视频线在精品| 精品久久久久久久人妻蜜臀av| av在线亚洲专区| 少妇高潮的动态图| 你懂的网址亚洲精品在线观看| 人妻夜夜爽99麻豆av| 少妇丰满av| 国国产精品蜜臀av免费| 观看美女的网站| 免费观看的影片在线观看| 免费看av在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 欧美日本视频| 亚洲色图av天堂| 日产精品乱码卡一卡2卡三| 国内揄拍国产精品人妻在线| 又粗又硬又长又爽又黄的视频| 中国国产av一级| 丰满少妇做爰视频| 国产精品美女特级片免费视频播放器| 亚洲一区高清亚洲精品| 亚洲在线自拍视频| 亚洲无线观看免费| 大陆偷拍与自拍| 亚洲精品日韩在线中文字幕| 亚洲国产精品sss在线观看| 日本wwww免费看| 日韩欧美三级三区| 床上黄色一级片| 免费观看性生交大片5| 午夜老司机福利剧场| 天堂俺去俺来也www色官网 | 少妇熟女欧美另类| 女的被弄到高潮叫床怎么办| 老师上课跳d突然被开到最大视频| 内地一区二区视频在线| 老女人水多毛片| 亚洲性久久影院| 最近中文字幕2019免费版| 久久久久久九九精品二区国产| 日韩中字成人| 国产精品人妻久久久影院| 色综合站精品国产| 校园人妻丝袜中文字幕| 最后的刺客免费高清国语| 麻豆乱淫一区二区| 亚洲不卡免费看| 看黄色毛片网站| 欧美最新免费一区二区三区| 边亲边吃奶的免费视频| 哪个播放器可以免费观看大片| 免费不卡的大黄色大毛片视频在线观看 | 天天躁夜夜躁狠狠久久av| 国产不卡一卡二| 欧美另类一区| 一个人观看的视频www高清免费观看| 亚洲四区av| 色视频www国产| 国产综合懂色| 亚洲自拍偷在线| av免费观看日本| 免费不卡的大黄色大毛片视频在线观看 | 亚洲aⅴ乱码一区二区在线播放| 99久久精品国产国产毛片| a级毛色黄片| 日日干狠狠操夜夜爽| 男女边吃奶边做爰视频| 麻豆国产97在线/欧美| 日日撸夜夜添| 亚洲成人中文字幕在线播放| 亚洲国产欧美在线一区| 天美传媒精品一区二区| 熟女人妻精品中文字幕| 直男gayav资源| 国产探花极品一区二区| 亚洲欧美精品自产自拍| 在线观看一区二区三区| 最近视频中文字幕2019在线8| 成年人午夜在线观看视频 | 九九爱精品视频在线观看| 18+在线观看网站| 欧美日韩综合久久久久久| 欧美三级亚洲精品| eeuss影院久久| 国产精品精品国产色婷婷| 久久国内精品自在自线图片| 婷婷色av中文字幕| 久久精品熟女亚洲av麻豆精品 | 亚洲熟女精品中文字幕| 国产国拍精品亚洲av在线观看| 国产高清有码在线观看视频| 欧美xxxx性猛交bbbb| 极品少妇高潮喷水抽搐| 尾随美女入室| 国产精品一区二区三区四区免费观看| .国产精品久久| 久久国产乱子免费精品| 国产av不卡久久| 淫秽高清视频在线观看| 国产精品日韩av在线免费观看| 噜噜噜噜噜久久久久久91| 国产一区二区亚洲精品在线观看| 91久久精品国产一区二区成人| 禁无遮挡网站| 建设人人有责人人尽责人人享有的 | 国产美女午夜福利| 尤物成人国产欧美一区二区三区| 久久久久久久久中文| 夫妻性生交免费视频一级片| 亚洲精品成人久久久久久| 日本av手机在线免费观看| 国产亚洲一区二区精品| 日韩电影二区| 日本免费在线观看一区| 久久这里只有精品中国| 嫩草影院新地址| 午夜爱爱视频在线播放| 中文在线观看免费www的网站| h日本视频在线播放| 婷婷色综合大香蕉| 国产亚洲最大av| 久久久色成人| 99热这里只有是精品50| 老司机影院毛片| 国内揄拍国产精品人妻在线| 国产综合精华液| 99久国产av精品| 在线播放无遮挡| 亚洲av国产av综合av卡| 国产一区二区亚洲精品在线观看| 国产精品嫩草影院av在线观看| 深爱激情五月婷婷| 国产精品久久久久久精品电影小说 | 亚洲av中文字字幕乱码综合| 日本免费在线观看一区| 亚洲欧美成人综合另类久久久| 欧美一区二区亚洲| 久久精品国产亚洲网站| 国产欧美日韩精品一区二区| 你懂的网址亚洲精品在线观看| 草草在线视频免费看| 日本爱情动作片www.在线观看| 少妇人妻精品综合一区二区| 精品国内亚洲2022精品成人| 插逼视频在线观看| av播播在线观看一区| 深爱激情五月婷婷| 国产美女午夜福利| 成年女人在线观看亚洲视频 | www.av在线官网国产| 亚洲乱码一区二区免费版| 少妇的逼好多水| 美女cb高潮喷水在线观看| 日本一本二区三区精品| av福利片在线观看| 国产成人91sexporn| 一区二区三区四区激情视频| 免费在线观看成人毛片| 少妇的逼水好多| 一区二区三区高清视频在线| 爱豆传媒免费全集在线观看| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 精品不卡国产一区二区三区| 岛国毛片在线播放| 国产日韩欧美在线精品| 久久久久国产网址| 日韩欧美精品v在线| 美女国产视频在线观看| 一级片'在线观看视频| 乱人视频在线观看| 久久韩国三级中文字幕| 国产av国产精品国产| av国产久精品久网站免费入址| 久久午夜福利片| 久久久久网色| 亚洲成人一二三区av| 99久久人妻综合| 80岁老熟妇乱子伦牲交| 亚洲最大成人中文| 91久久精品电影网| 国产 一区精品| 国产精品国产三级国产av玫瑰| 欧美一区二区亚洲| 一区二区三区免费毛片| 成人性生交大片免费视频hd| 亚洲精品一区蜜桃| 天堂中文最新版在线下载 | 午夜精品国产一区二区电影 | 成人二区视频| 亚洲精品一二三| 国产三级在线视频| 免费大片18禁| 亚洲一区高清亚洲精品| 亚洲精华国产精华液的使用体验| 国产精品无大码| 亚洲国产精品成人综合色| 国产久久久一区二区三区| 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 国产成人aa在线观看| 亚洲精品一二三| av免费观看日本| 97热精品久久久久久| 日韩欧美国产在线观看| 日本免费在线观看一区| 国产一区亚洲一区在线观看| 免费观看的影片在线观看| 可以在线观看毛片的网站| 中文字幕av成人在线电影| 久久综合国产亚洲精品| 美女高潮的动态| 亚洲最大成人中文| 久久国产乱子免费精品| 日日摸夜夜添夜夜爱| 又爽又黄a免费视频| av天堂中文字幕网| 日韩三级伦理在线观看| 男人爽女人下面视频在线观看| 久久久久久久亚洲中文字幕| 91午夜精品亚洲一区二区三区| 亚洲av电影在线观看一区二区三区 | 成年女人看的毛片在线观看| 有码 亚洲区| a级毛色黄片| av天堂中文字幕网| 亚洲一级一片aⅴ在线观看| 18禁在线无遮挡免费观看视频| 成年av动漫网址| 九九在线视频观看精品| 国产黄色免费在线视频| 国产视频首页在线观看| 欧美丝袜亚洲另类| 搞女人的毛片| 精品久久久久久电影网| 亚洲va在线va天堂va国产| 免费观看精品视频网站| 自拍偷自拍亚洲精品老妇| 亚洲精品久久午夜乱码| 99久国产av精品| 免费av不卡在线播放| 精品久久久久久电影网| 国产片特级美女逼逼视频| 少妇的逼水好多| 26uuu在线亚洲综合色| 亚洲精品日本国产第一区| 久久精品熟女亚洲av麻豆精品 | 在线观看一区二区三区| 亚洲最大成人手机在线| 国产探花在线观看一区二区| 人人妻人人澡欧美一区二区| 在线观看美女被高潮喷水网站| 99久国产av精品| 肉色欧美久久久久久久蜜桃 | 99久久中文字幕三级久久日本| 在现免费观看毛片| 欧美潮喷喷水| 日本与韩国留学比较| 大片免费播放器 马上看| 国产高清三级在线| 久久99蜜桃精品久久| 一本久久精品| 午夜视频国产福利| 97人妻精品一区二区三区麻豆| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 深夜a级毛片| 禁无遮挡网站| 亚洲,欧美,日韩| 亚洲av免费在线观看| 建设人人有责人人尽责人人享有的 | 久久99蜜桃精品久久| 在线免费观看的www视频| 国产乱来视频区| 国产黄片美女视频| 少妇的逼好多水| 国产精品久久久久久久久免| 亚洲电影在线观看av| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 亚洲欧美一区二区三区黑人 | 人体艺术视频欧美日本| 国产男人的电影天堂91| 国产视频内射| 人人妻人人澡人人爽人人夜夜 | 毛片女人毛片| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 国产美女午夜福利| 三级经典国产精品| 久久久精品94久久精品| 国产91av在线免费观看| 一级毛片黄色毛片免费观看视频| 色哟哟·www| av线在线观看网站| 大话2 男鬼变身卡| 视频中文字幕在线观看| 久久久久久久久久久丰满| 国内少妇人妻偷人精品xxx网站| 久久韩国三级中文字幕| 国产欧美日韩精品一区二区| 久久这里只有精品中国| 少妇人妻精品综合一区二区| 亚洲av在线观看美女高潮| ponron亚洲| 女人十人毛片免费观看3o分钟| 国产色婷婷99| 日本午夜av视频| 国产精品一区www在线观看| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄| 亚洲成人久久爱视频| 国产精品.久久久| 嫩草影院精品99| 日韩电影二区| 最新中文字幕久久久久| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 我要看日韩黄色一级片| 国产69精品久久久久777片| 中文资源天堂在线| 美女主播在线视频| 秋霞在线观看毛片| 亚洲经典国产精华液单| 欧美另类一区| 国产色爽女视频免费观看| 3wmmmm亚洲av在线观看| 午夜激情欧美在线| 亚洲国产高清在线一区二区三| 免费大片18禁| 别揉我奶头 嗯啊视频| 国产三级在线视频| 国产老妇伦熟女老妇高清| 久久久久国产网址| 欧美另类一区| 成人美女网站在线观看视频| 国产黄频视频在线观看| 人妻少妇偷人精品九色| 在线a可以看的网站| 一级二级三级毛片免费看| 欧美高清成人免费视频www| 五月天丁香电影| 免费av不卡在线播放| 成人漫画全彩无遮挡| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 免费在线观看成人毛片| 国产免费福利视频在线观看| 色播亚洲综合网| 小蜜桃在线观看免费完整版高清| 亚洲国产欧美在线一区| 直男gayav资源| 黄片无遮挡物在线观看| 亚洲精品第二区| 身体一侧抽搐| 免费观看的影片在线观看| 国产黄片美女视频| 国产黄片视频在线免费观看| 久久久欧美国产精品| www.色视频.com| 成年免费大片在线观看| 国产免费一级a男人的天堂| 国产精品久久视频播放| 国产午夜精品论理片| 成人特级av手机在线观看| 日韩电影二区| 777米奇影视久久| 男女那种视频在线观看| 亚洲av男天堂| 亚洲图色成人| 男人舔女人下体高潮全视频| 建设人人有责人人尽责人人享有的 | 岛国毛片在线播放| 天美传媒精品一区二区| 99久久精品一区二区三区| 亚洲熟妇中文字幕五十中出| 极品少妇高潮喷水抽搐| 国产精品一及| 久久久久久久久久久丰满| 搡女人真爽免费视频火全软件| 如何舔出高潮| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 日韩av不卡免费在线播放| 精品欧美国产一区二区三| 天堂中文最新版在线下载 | 日本猛色少妇xxxxx猛交久久| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 成年av动漫网址| 日本色播在线视频| 韩国av在线不卡| 亚洲精品自拍成人| 好男人在线观看高清免费视频| 成人亚洲欧美一区二区av| 久久韩国三级中文字幕| 九草在线视频观看| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 国产精品女同一区二区软件| 欧美高清成人免费视频www| 激情 狠狠 欧美| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美| 午夜久久久久精精品| 九九久久精品国产亚洲av麻豆| 精品久久久久久成人av| av网站免费在线观看视频 | 大又大粗又爽又黄少妇毛片口| 亚洲精品成人久久久久久| 在现免费观看毛片| 亚洲av日韩在线播放| 午夜福利视频1000在线观看| 高清午夜精品一区二区三区| 69av精品久久久久久| 国产淫语在线视频| 国产成人91sexporn| 丝瓜视频免费看黄片| 男女啪啪激烈高潮av片| 国模一区二区三区四区视频| 三级经典国产精品| 美女内射精品一级片tv| 三级经典国产精品| 国产精品久久视频播放| 国产高清不卡午夜福利| 久久韩国三级中文字幕| h日本视频在线播放| 六月丁香七月| av天堂中文字幕网| 一区二区三区乱码不卡18| av.在线天堂| 国内精品宾馆在线| 国产高潮美女av| 简卡轻食公司| 2022亚洲国产成人精品| 97精品久久久久久久久久精品| 国内少妇人妻偷人精品xxx网站| 亚洲欧美一区二区三区国产| 成人毛片a级毛片在线播放| 最近的中文字幕免费完整| 神马国产精品三级电影在线观看| 成年免费大片在线观看| 91av网一区二区| 九九爱精品视频在线观看| 99热网站在线观看| 老师上课跳d突然被开到最大视频| av免费在线看不卡| av在线老鸭窝| 777米奇影视久久| 成人午夜精彩视频在线观看| 久久久久久久午夜电影| 欧美高清成人免费视频www| 嫩草影院精品99| 国产探花极品一区二区| 综合色丁香网| 亚洲最大成人中文| 色播亚洲综合网| 久久久久久久久久人人人人人人| 禁无遮挡网站| av网站免费在线观看视频 | 免费看不卡的av| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 天天躁日日操中文字幕| 国产有黄有色有爽视频| 国产淫片久久久久久久久| 天天躁夜夜躁狠狠久久av| 韩国av在线不卡| 美女主播在线视频| 高清在线视频一区二区三区| 美女黄网站色视频| 天堂网av新在线| 麻豆国产97在线/欧美| 亚洲精品一二三| 69人妻影院| 亚洲成人av在线免费| 禁无遮挡网站| 亚洲精品aⅴ在线观看| 一级黄片播放器| 久久国产乱子免费精品| 直男gayav资源| av又黄又爽大尺度在线免费看| 日韩电影二区| 深爱激情五月婷婷| h日本视频在线播放| 禁无遮挡网站| 熟女电影av网| 日韩一区二区视频免费看| 亚洲av国产av综合av卡| 成年人午夜在线观看视频 |