• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material

    2016-11-24 00:48:04ZhangYongcunLiXiaobinLiuShutian
    CHINESE JOURNAL OF AERONAUTICS 2016年4期

    Zhang Yongcun,Li Xiaobin,Liu Shutian

    State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China

    Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material

    Zhang Yongcun*,Li Xiaobin,Liu Shutian

    State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China

    Auxetic materials have previously been shown to enhance various performances due to its unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially compressed(i.e.,the materials exhibit a negative Poisson’s ratio).The current study focuses on assessing the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression.The in-plane translational restraint along the unloaded edges that was of ten neglected in open literature is taken into consideration in our buckling model proposed in this study.The closed- form expressions for the critical buckling coefficient of the rectangle are provided and the predicted results agree well with those determined by the finite element method.Furthermore,the results indicate that the buckling performance of a rectangular plate under uniaxial compression can be significantly improved by replacing the traditional material that has a positive Poisson’s ratio with an auxetic material when there is in-plane translation restraint along the unloaded edges.

    1.Introduction

    The Poisson’s ratio defines the ratio between the transverse and axial strain in a load material.1Moreover,it is considered as an important material parameter that directly affects the mechanical properties of a structure.Most materials have Poisson’s ratio values that range between 0 and 0.5;however,some materials,known as auxetic materials,display a negative Poisson’s ratio.Auxetic materials behave contrary to what is expected.For example,when subjected to an axial tensile load,their transverse dimension increases.Furthermore,the counter-intuitive properties of auxetic materials lead to structures that also exhibit enhanced mechanical and other physical performances.Lakes2,3was the first to manufacture a novel foam structure with a negative Poisson’s ratio of -0.7,and presently,the main focuses of this field are discovering new auxetic materials and novel applications for them.

    At the present,a large number of auxetic materials have been determined and manufactured.These materials encompass nearly all of the classes of materials,including polymers,composites,metals,and ceramics.For a detailed introduction,review literatures4–7can be examined.Furthermore,although natural auxetic materials exist,most auxetic materials are artificial.In addition,topology optimization can be employed to tailor special auxetic materials according to practical requirements,8,9and the results obtained by topology optimization can be directly manufactured by 3D printing technology(also called additive manufacturing).10,11Another popular topic in this field is the exploration of potential applications for autextic materials.The existing research results reveal that auxetic materials exhibit a higher resistance to indentation,shear resistance,12fracture resistance,13acoustic absorption,14damping,15energy absorption,16a wider band gap with lower frequency,17and so on.

    Buckling is a common failure mode in the aerospace structure.How to improve the stability of structure becomes an attractive problem.Recently,the stability of auxetic materials has also received significant attention.One such instance was an investigation by Spadoni et al.18of the buckling behavior of a chiral cellular structure with a negative Poisson’s ratio under flat-wise compression.Additionally,the global buckling behavior of auxetic cellular tubes based on inverted hexagonal honeycombs has been discussed.19,20The results clearly indicate that the use of auxetic structures can significantly improve(or can result in a significant improvement on)the buckling behavior as compared to similar non-auxetic arrangements.Moreover,Lim21–23discussed the potential applications of the auxetic plate and shell,and the buckling behavior of rectangular and circular thick auxetic plates were investigated.From this investigation,a highly accurate shear correction factor in terms of a Poisson’s ratio from-1 to 0.5 was obtained.However,the effect of the unusual deformation mechanism of auxetic materials on buckling behavior remains unexplored.

    The purpose of this paper is to enhance the buckling performance of a rectangular plate by replacing the traditional material with a positive Poisson’s ratio with an auxetic material.The structure of this paper is as follows:first,the mechanism of the enhanced buckling for the rectangular auxetic plate is provided in Section 2.Next,the critical buckling coefficient of the rectangular plate elastically restrained against in-plane translation under uniaxial compression is determined in Section 3.Section 4 introduces the results and discussion,and finally,Section 5 gives the conclusion.

    2.Mechanism of enhanced buckling performance for rectangular auxetic plate

    Fig.1 shows a simply supported rectangular thin plate of dimension a×b under biaxial compressive loads.The magnitude of the compressive load is N0at the edges x=0,a.Likewise,it is γN0at the edges y=0,b.For a rectangular isotropic plate,the buckling load under biaxial loading can be expressed as24

    Fig.1 Plate subjected to uniform compression along x and y directions.

    where β=a/b is the plate aspect ratio,E the elastic modulus of materials,ν the Poisson’s ratio,t the thickness of the plate,m the number of half waves along the x direction and y direction respectively.If the rotational constraint is full at the edges y=0,b,the buckling load under biaxial loading can be obtained through thefollowing expression

    A simply support square thin plate(β=1)is selected as an example to demonstrate the mechanics of enhanced buckling performance for the rectangular auxetic plate.The critical buckling load subjected to a uniform compressive load N0on edges x=0 and a(i.e.when γ=0)can be calculated using Eq.(1)

    If the same uniform compressive load(γ=1)is also applied along the y direction,the critical buckling load will decrease by 50%

    In contrast,the critical buckling load will increase by 75%when a half uniform tensile load(γ=-0.5)is applied along the y direction

    In other words,the tensile load along the x direction is beneficial for improving the critical buckling load for a square plate when the compressive load is applied in the y direction.

    Due to the Poisson’s ratio effect,the plate becomes fatter when a material with a positive Poisson’s ratio is used and thinner when a material with a negative Poisson’s ratio is used.If the unloaded edges were to be subjected to elastic restraint against in-plane translation,then the induced equivalent load along the unloaded direction will be compressive for the material with a positive Poisson’s ratio and will be tensile for the plate with a negative Poisson’s ratio.Combined with the previous analysis,it can be predicted that an auxetic plate under uniaxial compression has a higher critical buckling load than one using a positive Poisson’s ratio material when the unloaded edges are subjected to the elastic restraint against in-plane translation.

    It is well-known that in practice,the ideal free boundary conditions for simply-supported or clamped plate never occur,and there fore translational restraint exists.Furthermore,while the elastic stability of a rectangular plate with edges that are elastically restrained has been studied by many authors,25–28the influence of Poisson’s ratio on the buckling of elasticallyrestrained plates has not received attention yet.29

    3.Buckling of rectangular plate elastically restrained against inplane translation

    A simply supported rectangular thin plate elastically restrained against in-plane translation along the unloaded edges is subjected to uniaxial,uniform compressive load Nxas shown in Fig.2.The purpose of this section is to derive the analytical solution of the critical buckling load for the uniaxial compressive plate elastically restrained along the unloaded edges.

    In order to obtain the critical buckling load,the induced equivalent load along the unloaded edges caused by the inplane translational restraint should befirstly determined.This is a classic plane stress problem and the strain in the ydirection can be written as

    Moreover,the static equilibrium and deflection coordination condition at the elastic support should be satisfied:

    where k is the elastic coefficient of support and Δx the de formation of elastic support.The induced load can be solved by combining Eqs.(6)–(8)

    α is defined as the in-plane translational restraint coefficient.And the value range of it can be obtained by Eq.(10).When the elastic coefficient of support k is close to zero,the restraint coefficient α also approaches zero.On the other hand,when k tends towards infinity,α equals 1.Hence the restraint coefficient α varies from 0(free expansion condition)to 1(full restrained condition).

    Based on the derivation above,the simply supported rectangular plate elastically restrained against in-plane translation that is subjected to uniaxial compressive load can be equivalent to one that is uniform compression along x and uniform tension along y.There fore,its buckling load can be given by substituting Eq.(9)into Eq.(1):

    Fig.2 Uniaxial compressive plate elastically restrained along unloaded edges.

    The minimum buckling load occurs at n=1 and it is given by

    where K is the critical buckling coefficient,given in a generalized form as

    When the unloaded edges are clamped,the critical buckling coefficient has been obtained by substituting Eq.(9)into Eq.(2):

    4.Results and discussion

    Thefinite element method using the commercial program NASTRAN 12.0 is constructed to verify the accuracy of the derived expressions for the buckling coefficient K of 13–14.In the finite element modeling,the geometry of the chosen plate is 100 mm×100 mm and the thickness is 1 mm.The shell element with four nodes is used to discretize it.The element size is 2 mm×2 mm and the total element number is 2500.The elastic modulus of material remains constant 70 GPa when the Poisson’s ratio changes.The Lanczos approach is selected to solve them.The results are shown in Fig.3.

    The predicted results obtained by Eqs.(13)and(14)agree well with those obtained by the finite element analysis(FEA).Of particular importance,it can accurately capture the inflection point of the critical buckling coefficient K from one buckling mode to another.These results indicate that the analytical solutions are accurate and are an effective alternative to the computationally expensive FEA and there fore,the results are useful for later discussion.

    The rest of this section focuses on the parametric effect on the critical buckling coefficient K.From Eqs.(13)and(14),it can be seen that the critical buckling coefficient K is dependent on the aspect ratio β,the Poisson’s ratio υ,and the in-plane translational restraint coefficient α for both the simplysupported boundary and the clamped boundary conditions.Moreover,it is important to note that K is unrelated to Poisson’s ratio when the restraint coefficient α equals zero.This is completely consistent with the previous analysis in Section 2.Obviously,the buckling coefficient K also is unrelated to the restraint coefficient α if the Poisson’s ratio of the material is zero.As an example,Fig.4 reveals the variation of the critical buckling coefficient of the square plate with the Poisson ratios for different in-plane translational restraint coefficients.The buckling coefficient K remains unchanged when the restraint coefficient α equals zero,and when Poisson’s ratio is zero,the critical buckling coefficient is the same for each of the various restraint coefficients.As a whole,if the in-plane translational restraint exists(α> 0),the critical buckling coefficient K gradually decreases as Poisson’s ratio increases.These results imply that the critical buckling coefficient K is a decreasing function of the material’s Poisson’s ratio,and hence the buckling performance of a rectangular plate under uniaxial compression can be enhanced by replacing the traditional material that has a positive Poisson’s ratio with an auxetic material.The existence of in-plane translational restraint is the necessary condition of this conclusion.

    Fig.3 Comparison of predicted critical buckling coefficient for the case:β=1,α=1.

    Figs.5 and 6 show the variations of the critical buckling coefficient of the square plate under uniaxial compression with in-plane translational restraint coefficients for various Poisson’s ratios.For both the simply-supported boundary and clamped boundary condition,the results demonstrate that the buckling coefficient K with respect to the restraint coefficient α is an increasing function when the material’s Poisson’s ratio is negative,but it is a decreasing function when the material’s Poisson’s ratio of is positive.This finding indicates that an auxetic material is beneficial for the buckling of a rectangular plate under uniaxial compression,and the traditional material with a positive Poisson’s ratio is harmful for the buckling when the in-plane translational restraint is greater than zero.The ideal situation is an in-plane translational restraint of 1 with a Poisson’s ratio that is as close to-1 as possible.In contrast,the worst situation is an in-plane translational restraint of 1 with a Poisson’s ratio that is the maximum value of 0.5.Compared to the following case:ν=0 or α =0,the maximum improvement for the buckling coefficient of the square plate under uniaxial compression is more than double for the simply-supported boundary condition and is nearly 1.5 times for the clamped boundary conditions.At the same time,the maximum reduction is approximately one-third for both of the two boundary conditions.

    Fig.5 Variation of critical buckling coefficient with in-plane translational restraint coefficients for various negative Poisson’s ratios and β=1.

    Fig.6 Variation of critical buckling coefficient with in-plane translational restraint coefficients for various positive Poisson’s ratios and β=1.

    Fig.7 Variation of critical buckling coefficient with aspect ratios for various negative Poisson’s ratios and α =1.

    Fig.8 Variation of critical buckling coefficient with aspect ratios for various positive Poisson’s ratios and α=1.

    The aspect ratio of the rectangular plate influences the buckling coefficients and the buckling mode shape.Figs.7 and 8 display the variation of the critical buckling coefficient with the aspect ratios for various Poisson’s ratios and α =1.Thesefigures demonstrate that the critical buckling coefficient shows a relatively high variability when the aspect ratio is less than 1.5 and then tends to stability when the aspect ratio is greater than 1.5.Thus,the corresponding enhanced or weakened magnitude of the critical buckling coefficient K of the rectangular plate may be different for various aspect ratios compared to those utilizing a material with a Poisson’s ratio of zero.However,on the whole,the maximal improvement for the buckling coefficient of the rectangular plate under uniaxial compression is nearly double for the simply-support boundary condition and is nearly 1.5 times for the clamped boundary conditions.At the same time,the maximum reduction is approximately one-third for both of the two boundary conditions.This conclusion also implies that the aspect ratio of the rectangular plate has little effect on the enhanced buckling performance from utilizing the auxetic material.

    5.Conclusion

    The purpose of this paper is to assess the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression.In this study,the in-plane translational restraint along the unloaded edges that was of ten neglected in open literature is taken into consideration in our buckling model proposed in this study.The closed- form expression for the critical buckling coefficient of the rectangle is provided and its validity has been proven by thefinite element method.Some conclusions are drawn as follows:

    The buckling performance of a rectangular plate under uniaxial compression can be enhanced by replacing a traditional material with a positive Poisson’s ratio with an auxetic material.Furthermore,the existence of in-plane translational restraint is the necessary condition of this conclusion.The critical buckling coefficient of the rectangle with respect to the in-plane translational restraint coefficient is an increasing function when the Poisson’s ratio of the material is negative,but it is a decreasing function when the Poisson’s ratio of the material is positive.Compared to those utilizing a material with a Poisson’s ratio of zero,the maximal improvement for the buckling coefficient of the rectangular plate under uniaxial compression can is nearly double for the simply-supported boundary condition and is nearly 1.5 times for the clamped boundary condition.At the same time,the maximum reduction is approximately one-third for both of the two boundary conditions.This study provides a solution for enhancing the buckling performance of the rectangular plate under uniaxial compression.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos.11572071,11332004,),the National Basic Research Program of China (No.2011CB610304),and the Program of Introducing Talents of Discipline to Universities(No.B14013).The financial supports are greatly appreciated.We would also like to thank the China Scholarship Council(No.201308210038).

    1.Taylor M,Francesconi L,Gerenda′s M,Shanian A,Carson C,Bertoldi K.Low porosity metallic periodic structures with negative Oisson’s ratio.Adv Mater 2014;26(15):2365–70.

    2.Lakes RS.Foam structures with a negative Poisson’s ratio.Science 1987;235(4792):1038–40.

    3.Friis EA,Lakes RS,Park JB.Negative Poisson’s ratio polymeric and metallic foams.J Mater Sci 1988;23(12):4406–14.

    4.Critchley R,Corni I,Wharton JA,Walsh FC,Wood RJ,Stokes KR.A review of the manufacture,mechanical properties and potential applications of auxetic foams.Phys Status Solidi B 2013;250(10):1963–82.

    5.Greaves GN,Greer AL,Lakes RS,Rouxel T.Poisson’s ratio and modern materials.Nat Mater 2011;10:823–37.

    6.Carneiro VH,Meireles J,Puga H.Auxetic materials—A review.Mater Sci Poland 2013;31(4):561–7.

    7.Prawoto Y.Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson’s ratio.Comp Mater Sci 2012;58:140–53.

    8.Cao XF,Liu ST.Topology description function based method for material design.Acta Mech Solida Sin 2006;19(2):95–102.

    9.Larsen UD,Sigmund O,Bouwstra S.Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio.Micro electro mechanical systems.IEEE,the ninth annual international workshop on MEMS’96,proceedings.An investigation of micro structures,sensors,actuators,machines and systems.1996 Feb.11–15;San Diego(CA).Piscataway(NJ):IEEE;1996.p.365–71.

    10.Bu¨ckmann T,Stenger N,Kadic M,Kaschke J,Fro¨lich A,Kennerknecht T,et al.Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography.Adv Mater 2012;24(20):2710–4.

    11.Wang F,Sigmund O,Jensen JS.Design of materials with prescribed nonlinear properties. J Mech Phys Solids 2014;69:156–74.

    12.Xin CS,Lakes RS.Stability of elastic material with negative stiffness and negative Poisson’s ratio.Physica Status Solidi(B)2007;244(3):1008–26.

    13.Choi JB,Lakes RS.Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio:Experiment and analysis.Int J Fracture 1996;80(1):73–83.

    14.Haberman MR,Hook DT,Klatt TD,Hewage TA,Alderson A,Alderson KL,Scarpa FL.Ultrasonic characterization of polymeric composites containing auxetic inclusions.J Acoust Soc Am 2012;132(3):1961.

    15.Scarpa FL,Remillat C,Landi FP,Tomlinson GR.Damping modelization of auxetic foams.Proceedings SPIE of smart structures and materials 2000:Damping and isolation;April 24 2000;Orlando,FL.Bellingham(WA):International Society for Optics and Photonics;2000;3989;p.336-43.

    16.Scarpa F,Ciffo LG,Yates JR.Dynamic properties of high structural integrity auxetic open cell foam.Smart Mater Struct 2004;13(1):49.

    17.Yu H,Liu ST.Analysis and design of two dimensional lattice materials with band-gap characteristics.Chin J Theo Appl Mech 2011;43(2):316–29.

    18.Spadoni A,Ruzzene M,Scarpa F.Global and local linear buckling behavior of a chiral cellular structure.Physica Status Solidi(B)2005;242(3):695–709.

    19.Karnessis N,Burriesci G.Uniaxial and buckling mechanical response of auxetic cellular tubes.Smart Mater Struct 2013;22(8):84008.

    20.Scarpa F,Smith CW,Ruzzene M,Wadee MK.Mechanical properties of auxetic tubular truss-like structures.Physica Status Solidi(B)2008;245(3):584–90.

    21.Lim TC.Elastic stability of thick auxetic plates.Smart Mater Struct 2014;23(4):45004.

    22.Lim TC.Buckling and vibration of circular auxetic plates.J Eng Mater Technol 2014;136(2):21007.

    23.Lim TC.Thermal stresses in auxetic plates and shells.Mech Adv Mater Struc 2015;22(3):205–12.

    24.Wang CM,Wang CY.Exact solutions for buckling of structural members.CRC series in computational mechanics and applied analysis.Boca Raton(FL):CRC Press;2004.p.123–129.

    25.Eftekhari SA,Jafari AA.Accurate variational approach for free vibration of variable thickness thin and thick plates with edges elastically restrained against translation and rotation.Int J Mech Sci 2013;68:35–46.

    26.Qiao P,Huo X.Explicit local buckling analysis of rotationallyrestrained orthotropic plates under uniform shear.Compos Struct 2011;93(11):2785–94.

    27.Bedair OK,Sherbourne AN.The elastic stability of partiallyrestrained plates under compression and in-plane bending.J Constr Steel Res 1995;35(3):339–60.

    28.Bedair OK,Sherbourne AN.Plate-stiffener assemblies in uniform compression.Part I:Buckling.J Eng Mech 1993;119(10):1937–55.

    29.Lim TC.Auxetic materials and structures.Berlin Heidelberg:Springer-Verlag;2015.p.324-27.

    Zhang Yongcun is an associate prof essor and M.S.supervisor at Dalian University of Technology,China.He received the PH.D.degree from the same university in 2008.He current research interests are the multifunctional design of materials and structures oriented for thermal protection systems.

    Liu Shutian is a prof essor and Ph.D.supervisor at Dalian University of Technology,China.He current research interests are material design,multi-scale analysis and design of composite materials,optimization,topology,sensors,machine design and band-gap materials.

    23 June 2015;revised 14 March 2016;accepted 18 April 2016

    Available online 22 June 2016

    Auxetic material;

    Buckling;

    Elastically restraint;

    Negative Poisson’s ratio;

    Optimization

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.Thisisan open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+411 84706585.

    E-mail addresses:yczhang@dlut.edu.cn(Y.Zhang),stliu@dlut.edu.cn(S.Liu).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.06.010

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    怎么达到女性高潮| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 这个男人来自地球电影免费观看| 丰满人妻熟妇乱又伦精品不卡| 午夜福利视频精品| 国产亚洲一区二区精品| 亚洲成人国产一区在线观看| 夜夜爽天天搞| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 在线观看www视频免费| 精品视频人人做人人爽| 99国产精品一区二区蜜桃av | 久久久精品94久久精品| 一二三四在线观看免费中文在| 精品人妻1区二区| 亚洲精品国产精品久久久不卡| 国产精品成人在线| 高潮久久久久久久久久久不卡| av免费在线观看网站| 脱女人内裤的视频| 黑人欧美特级aaaaaa片| 女人爽到高潮嗷嗷叫在线视频| 色老头精品视频在线观看| 757午夜福利合集在线观看| 精品一区二区三区av网在线观看 | 亚洲中文字幕日韩| 老司机靠b影院| 涩涩av久久男人的天堂| 考比视频在线观看| 桃红色精品国产亚洲av| 搡老乐熟女国产| 国产精品久久久久久精品电影小说| 国产亚洲精品第一综合不卡| 中文字幕另类日韩欧美亚洲嫩草| 成人国产av品久久久| 国产91精品成人一区二区三区 | 在线观看www视频免费| 欧美老熟妇乱子伦牲交| 69精品国产乱码久久久| 成人精品一区二区免费| 国产野战对白在线观看| 肉色欧美久久久久久久蜜桃| 成人国产av品久久久| 男女午夜视频在线观看| 十八禁网站免费在线| 90打野战视频偷拍视频| 国产成人av教育| 午夜福利视频精品| 欧美精品高潮呻吟av久久| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 色老头精品视频在线观看| 久久国产精品男人的天堂亚洲| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 国产精品二区激情视频| 99热国产这里只有精品6| 日日摸夜夜添夜夜添小说| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全免费视频| 亚洲精品久久成人aⅴ小说| 欧美国产精品va在线观看不卡| 不卡av一区二区三区| 建设人人有责人人尽责人人享有的| 999久久久精品免费观看国产| 伊人久久大香线蕉亚洲五| 国产高清激情床上av| 亚洲精品美女久久av网站| 成人亚洲精品一区在线观看| 国产精品久久久久久人妻精品电影 | 欧美日韩中文字幕国产精品一区二区三区 | 捣出白浆h1v1| 精品国产乱码久久久久久男人| 超色免费av| 国产成人免费观看mmmm| 亚洲中文日韩欧美视频| 亚洲精品在线美女| 国产在线观看jvid| 女人久久www免费人成看片| 久久久久久久精品吃奶| 亚洲国产av影院在线观看| 国产精品免费大片| 色播在线永久视频| 美女国产高潮福利片在线看| 国产深夜福利视频在线观看| 91精品三级在线观看| 十八禁人妻一区二区| 可以免费在线观看a视频的电影网站| 亚洲精品久久午夜乱码| 日本黄色视频三级网站网址 | 久久精品aⅴ一区二区三区四区| 18禁国产床啪视频网站| 51午夜福利影视在线观看| 日本av免费视频播放| 日韩大片免费观看网站| 久久影院123| 一级黄色大片毛片| 波多野结衣av一区二区av| 亚洲成人国产一区在线观看| 免费看十八禁软件| 777米奇影视久久| 久久久久视频综合| 性少妇av在线| 法律面前人人平等表现在哪些方面| 国精品久久久久久国模美| 午夜两性在线视频| 在线观看人妻少妇| 日韩大码丰满熟妇| 精品高清国产在线一区| 日本欧美视频一区| 久久天躁狠狠躁夜夜2o2o| 久久人妻av系列| 999精品在线视频| 女性生殖器流出的白浆| 中文字幕色久视频| 欧美日韩黄片免| 黄色视频不卡| 中文字幕色久视频| 欧美成人午夜精品| 老司机影院毛片| e午夜精品久久久久久久| 免费日韩欧美在线观看| 亚洲,欧美精品.| 一区在线观看完整版| 色综合婷婷激情| 丝袜喷水一区| 麻豆av在线久日| 黄色a级毛片大全视频| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影 | 自线自在国产av| 亚洲国产av影院在线观看| www.熟女人妻精品国产| 久久婷婷成人综合色麻豆| 日韩熟女老妇一区二区性免费视频| 在线av久久热| 一级a爱视频在线免费观看| 一区二区日韩欧美中文字幕| 黄片小视频在线播放| 可以免费在线观看a视频的电影网站| 久久久久视频综合| 伦理电影免费视频| 老司机深夜福利视频在线观看| 丰满少妇做爰视频| 亚洲熟女毛片儿| 中文字幕制服av| 国产又爽黄色视频| 色94色欧美一区二区| 丝袜人妻中文字幕| 少妇的丰满在线观看| 午夜91福利影院| 好男人电影高清在线观看| 国产亚洲精品久久久久5区| 老司机午夜福利在线观看视频 | 国产精品免费一区二区三区在线 | cao死你这个sao货| 青青草视频在线视频观看| 999久久久国产精品视频| 露出奶头的视频| 一本—道久久a久久精品蜜桃钙片| 老司机亚洲免费影院| 精品一品国产午夜福利视频| 欧美日韩成人在线一区二区| 日日摸夜夜添夜夜添小说| 丁香六月天网| 日韩大码丰满熟妇| 99九九在线精品视频| 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 中文字幕av电影在线播放| 丁香欧美五月| 嫁个100分男人电影在线观看| 少妇猛男粗大的猛烈进出视频| 波多野结衣av一区二区av| 中国美女看黄片| 啦啦啦中文免费视频观看日本| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 国精品久久久久久国模美| 国产在线观看jvid| 成人手机av| 9191精品国产免费久久| 亚洲男人天堂网一区| 免费不卡黄色视频| 欧美日韩黄片免| 免费观看人在逋| 久久ye,这里只有精品| 好男人电影高清在线观看| 纵有疾风起免费观看全集完整版| 国产成人免费无遮挡视频| 搡老岳熟女国产| 国产色视频综合| 91九色精品人成在线观看| 国产精品国产av在线观看| 日本一区二区免费在线视频| 久久国产精品影院| 日韩视频一区二区在线观看| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩av久久| 久久久久精品人妻al黑| 免费av中文字幕在线| 久久久久久久大尺度免费视频| 在线观看免费视频日本深夜| 中文字幕人妻丝袜一区二区| 久久久国产一区二区| 超碰成人久久| 宅男免费午夜| 免费不卡黄色视频| 少妇粗大呻吟视频| a在线观看视频网站| 99久久99久久久精品蜜桃| 他把我摸到了高潮在线观看 | 欧美亚洲日本最大视频资源| 亚洲av欧美aⅴ国产| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三| 日本撒尿小便嘘嘘汇集6| 亚洲精品成人av观看孕妇| 成人亚洲精品一区在线观看| 亚洲情色 制服丝袜| 成人国产一区最新在线观看| 青草久久国产| 亚洲欧美精品综合一区二区三区| 精品国产乱码久久久久久男人| 91老司机精品| 日韩欧美一区二区三区在线观看 | 777米奇影视久久| 飞空精品影院首页| 桃红色精品国产亚洲av| 国产精品1区2区在线观看. | 欧美亚洲 丝袜 人妻 在线| 欧美乱码精品一区二区三区| 国产在线免费精品| 天堂8中文在线网| 日本欧美视频一区| 国产成人免费观看mmmm| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 建设人人有责人人尽责人人享有的| 天堂中文最新版在线下载| 窝窝影院91人妻| 久久亚洲精品不卡| 婷婷丁香在线五月| 黑人巨大精品欧美一区二区蜜桃| 欧美精品一区二区免费开放| 国产精品一区二区精品视频观看| 久久人妻熟女aⅴ| 日日夜夜操网爽| av视频免费观看在线观看| 国产麻豆69| 欧美成人午夜精品| av超薄肉色丝袜交足视频| 精品久久久精品久久久| 国产三级黄色录像| 黄色怎么调成土黄色| 一区二区日韩欧美中文字幕| aaaaa片日本免费| 丰满饥渴人妻一区二区三| 男女免费视频国产| 一本综合久久免费| 亚洲人成77777在线视频| 天堂8中文在线网| 一区福利在线观看| 精品欧美一区二区三区在线| 丝袜喷水一区| 国产区一区二久久| 少妇粗大呻吟视频| 男人操女人黄网站| 精品国产亚洲在线| 中国美女看黄片| 99国产精品一区二区三区| 性高湖久久久久久久久免费观看| 黄色a级毛片大全视频| 天天添夜夜摸| 久久ye,这里只有精品| 搡老岳熟女国产| 国产成人av教育| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 免费在线观看视频国产中文字幕亚洲| 国产精品av久久久久免费| 国产av国产精品国产| 考比视频在线观看| 多毛熟女@视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本vs欧美在线观看视频| 午夜两性在线视频| 久久精品成人免费网站| 精品福利观看| 国产成人精品久久二区二区91| 黄色毛片三级朝国网站| 久久国产精品男人的天堂亚洲| 极品教师在线免费播放| 色婷婷av一区二区三区视频| 我要看黄色一级片免费的| 他把我摸到了高潮在线观看 | 手机成人av网站| 欧美黑人精品巨大| 麻豆av在线久日| 精品一区二区三区av网在线观看 | 精品人妻熟女毛片av久久网站| 国产激情久久老熟女| tube8黄色片| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 精品国产乱码久久久久久小说| 麻豆乱淫一区二区| 视频在线观看一区二区三区| 少妇 在线观看| 人成视频在线观看免费观看| 不卡av一区二区三区| 后天国语完整版免费观看| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 香蕉久久夜色| 国产成人精品在线电影| 精品卡一卡二卡四卡免费| 日韩三级视频一区二区三区| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频| 91老司机精品| 精品少妇黑人巨大在线播放| 亚洲欧洲精品一区二区精品久久久| 午夜福利欧美成人| 精品午夜福利视频在线观看一区 | av福利片在线| 丝袜在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜视频精品福利| 99精品久久久久人妻精品| 国产无遮挡羞羞视频在线观看| 在线看a的网站| 国产高清国产精品国产三级| 高清毛片免费观看视频网站 | 啦啦啦中文免费视频观看日本| 日韩免费av在线播放| 国产有黄有色有爽视频| 久久久久精品国产欧美久久久| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 50天的宝宝边吃奶边哭怎么回事| 久久久国产欧美日韩av| 亚洲国产欧美一区二区综合| 一级毛片女人18水好多| 天天影视国产精品| 男人操女人黄网站| 美国免费a级毛片| 1024香蕉在线观看| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费 | 精品国产乱码久久久久久小说| 国产成人欧美| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 国产区一区二久久| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看| tube8黄色片| 狂野欧美激情性xxxx| 波多野结衣av一区二区av| 国产区一区二久久| 美女午夜性视频免费| 99热网站在线观看| 亚洲第一av免费看| 亚洲欧洲日产国产| 欧美老熟妇乱子伦牲交| 怎么达到女性高潮| 久久久国产精品麻豆| 日日摸夜夜添夜夜添小说| 亚洲中文av在线| 日日爽夜夜爽网站| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 免费观看人在逋| 超碰成人久久| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 后天国语完整版免费观看| 黄色 视频免费看| 99精品久久久久人妻精品| 久久久久久久国产电影| 亚洲国产av影院在线观看| 97在线人人人人妻| 欧美成人免费av一区二区三区 | 欧美变态另类bdsm刘玥| 中文字幕最新亚洲高清| 精品人妻熟女毛片av久久网站| 国产精品电影一区二区三区 | 午夜老司机福利片| tube8黄色片| 自拍欧美九色日韩亚洲蝌蚪91| av在线播放免费不卡| 免费久久久久久久精品成人欧美视频| 亚洲精品一二三| 黄色a级毛片大全视频| 黄色视频不卡| 女人爽到高潮嗷嗷叫在线视频| 欧美激情高清一区二区三区| 9热在线视频观看99| 中国美女看黄片| 丰满饥渴人妻一区二区三| 久久香蕉激情| 老熟女久久久| 18禁裸乳无遮挡动漫免费视频| 少妇精品久久久久久久| 国产激情久久老熟女| 久久天堂一区二区三区四区| 怎么达到女性高潮| 天天添夜夜摸| 一边摸一边抽搐一进一出视频| 国产精品 国内视频| 亚洲专区国产一区二区| 亚洲天堂av无毛| 亚洲专区中文字幕在线| 亚洲成国产人片在线观看| 天天影视国产精品| 国产人伦9x9x在线观看| 99在线人妻在线中文字幕 | 99国产极品粉嫩在线观看| 国产成人免费观看mmmm| 午夜福利乱码中文字幕| 91老司机精品| 露出奶头的视频| 国产精品久久久久成人av| 亚洲黑人精品在线| 一区二区三区激情视频| 女警被强在线播放| 在线观看一区二区三区激情| 亚洲欧洲精品一区二区精品久久久| 一本一本久久a久久精品综合妖精| 啦啦啦在线免费观看视频4| 亚洲av电影在线进入| 国产精品久久久久成人av| 母亲3免费完整高清在线观看| 亚洲中文字幕日韩| 国产成人av教育| 欧美av亚洲av综合av国产av| 国产片内射在线| 一二三四社区在线视频社区8| 中文字幕av电影在线播放| 叶爱在线成人免费视频播放| 国产精品99久久99久久久不卡| 免费人妻精品一区二区三区视频| 天天躁夜夜躁狠狠躁躁| 欧美一级毛片孕妇| 精品乱码久久久久久99久播| 亚洲av片天天在线观看| 久久久久久久精品吃奶| 色播在线永久视频| 午夜福利在线免费观看网站| 色老头精品视频在线观看| 丝袜人妻中文字幕| 大型黄色视频在线免费观看| 91麻豆av在线| 91成人精品电影| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦视频在线资源免费观看| 悠悠久久av| 这个男人来自地球电影免费观看| 香蕉久久夜色| 视频区欧美日本亚洲| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 国产精品亚洲av一区麻豆| 大型黄色视频在线免费观看| 国产熟女午夜一区二区三区| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说 | 女人爽到高潮嗷嗷叫在线视频| 91成年电影在线观看| 窝窝影院91人妻| 捣出白浆h1v1| 国产成人av激情在线播放| 亚洲,欧美精品.| 制服人妻中文乱码| 欧美午夜高清在线| 国产激情久久老熟女| 精品国产一区二区三区四区第35| 欧美黄色淫秽网站| 亚洲成人免费av在线播放| 国产麻豆69| 午夜免费成人在线视频| 色婷婷av一区二区三区视频| 国产日韩欧美亚洲二区| 精品国产一区二区久久| 亚洲 国产 在线| 国产一区二区三区综合在线观看| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 婷婷丁香在线五月| 久久精品国产亚洲av香蕉五月 | 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 精品国产乱码久久久久久男人| netflix在线观看网站| 亚洲av电影在线进入| 香蕉久久夜色| 亚洲欧美一区二区三区黑人| 在线 av 中文字幕| 亚洲七黄色美女视频| 夜夜骑夜夜射夜夜干| 欧美激情高清一区二区三区| 天天躁日日躁夜夜躁夜夜| 99国产综合亚洲精品| 91精品国产国语对白视频| 啦啦啦 在线观看视频| 色视频在线一区二区三区| 精品少妇黑人巨大在线播放| 99精品在免费线老司机午夜| 日韩三级视频一区二区三区| 免费在线观看日本一区| 在线天堂中文资源库| av国产精品久久久久影院| 亚洲精品美女久久av网站| 精品少妇久久久久久888优播| 国产欧美日韩精品亚洲av| 制服人妻中文乱码| 男女床上黄色一级片免费看| 人人澡人人妻人| 一二三四社区在线视频社区8| 黄色怎么调成土黄色| 日韩三级视频一区二区三区| 啦啦啦在线免费观看视频4| 亚洲九九香蕉| 动漫黄色视频在线观看| 久久精品国产99精品国产亚洲性色 | 国产成人精品久久二区二区91| 国产精品久久久久久精品古装| 欧美黄色淫秽网站| 中文字幕人妻丝袜一区二区| 免费日韩欧美在线观看| 69精品国产乱码久久久| 成年动漫av网址| 啦啦啦视频在线资源免费观看| 亚洲黑人精品在线| 自线自在国产av| 在线播放国产精品三级| videosex国产| 女同久久另类99精品国产91| 久久久久久亚洲精品国产蜜桃av| 深夜精品福利| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| 精品人妻在线不人妻| 免费一级毛片在线播放高清视频 | 热re99久久精品国产66热6| 少妇的丰满在线观看| 十八禁网站网址无遮挡| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 久久精品aⅴ一区二区三区四区| 中文字幕高清在线视频| 汤姆久久久久久久影院中文字幕| 免费黄频网站在线观看国产| xxxhd国产人妻xxx| 免费高清在线观看日韩| 不卡av一区二区三区| 韩国精品一区二区三区| 十八禁人妻一区二区| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 成人av一区二区三区在线看| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区| 老司机福利观看| 欧美午夜高清在线| 成人精品一区二区免费| 国产成人精品久久二区二区91| 激情视频va一区二区三区| 国产精品美女特级片免费视频播放器 | 后天国语完整版免费观看| 韩国精品一区二区三区| 日韩中文字幕视频在线看片| 精品人妻在线不人妻| 91老司机精品| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 视频在线观看一区二区三区| 蜜桃国产av成人99| 日本vs欧美在线观看视频| 精品一区二区三卡| 最近最新中文字幕大全电影3 | 91九色精品人成在线观看| 久久久久久久精品吃奶| 在线观看www视频免费| 人妻久久中文字幕网| 国产成人精品在线电影| 精品一区二区三区视频在线观看免费 | 国产av一区二区精品久久| 王馨瑶露胸无遮挡在线观看| 成年人黄色毛片网站| av欧美777| 91九色精品人成在线观看| 欧美日韩视频精品一区| 久久精品熟女亚洲av麻豆精品| 丝袜美足系列| 久久午夜亚洲精品久久| 国产高清激情床上av| 一本综合久久免费| 精品熟女少妇八av免费久了| 91麻豆精品激情在线观看国产 | 亚洲av片天天在线观看| 久久九九热精品免费| 午夜福利欧美成人| 欧美日韩国产mv在线观看视频| 一区在线观看完整版| 国产精品国产av在线观看|