• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material

    2016-11-24 00:48:04ZhangYongcunLiXiaobinLiuShutian
    CHINESE JOURNAL OF AERONAUTICS 2016年4期

    Zhang Yongcun,Li Xiaobin,Liu Shutian

    State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China

    Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material

    Zhang Yongcun*,Li Xiaobin,Liu Shutian

    State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China

    Auxetic materials have previously been shown to enhance various performances due to its unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially compressed(i.e.,the materials exhibit a negative Poisson’s ratio).The current study focuses on assessing the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression.The in-plane translational restraint along the unloaded edges that was of ten neglected in open literature is taken into consideration in our buckling model proposed in this study.The closed- form expressions for the critical buckling coefficient of the rectangle are provided and the predicted results agree well with those determined by the finite element method.Furthermore,the results indicate that the buckling performance of a rectangular plate under uniaxial compression can be significantly improved by replacing the traditional material that has a positive Poisson’s ratio with an auxetic material when there is in-plane translation restraint along the unloaded edges.

    1.Introduction

    The Poisson’s ratio defines the ratio between the transverse and axial strain in a load material.1Moreover,it is considered as an important material parameter that directly affects the mechanical properties of a structure.Most materials have Poisson’s ratio values that range between 0 and 0.5;however,some materials,known as auxetic materials,display a negative Poisson’s ratio.Auxetic materials behave contrary to what is expected.For example,when subjected to an axial tensile load,their transverse dimension increases.Furthermore,the counter-intuitive properties of auxetic materials lead to structures that also exhibit enhanced mechanical and other physical performances.Lakes2,3was the first to manufacture a novel foam structure with a negative Poisson’s ratio of -0.7,and presently,the main focuses of this field are discovering new auxetic materials and novel applications for them.

    At the present,a large number of auxetic materials have been determined and manufactured.These materials encompass nearly all of the classes of materials,including polymers,composites,metals,and ceramics.For a detailed introduction,review literatures4–7can be examined.Furthermore,although natural auxetic materials exist,most auxetic materials are artificial.In addition,topology optimization can be employed to tailor special auxetic materials according to practical requirements,8,9and the results obtained by topology optimization can be directly manufactured by 3D printing technology(also called additive manufacturing).10,11Another popular topic in this field is the exploration of potential applications for autextic materials.The existing research results reveal that auxetic materials exhibit a higher resistance to indentation,shear resistance,12fracture resistance,13acoustic absorption,14damping,15energy absorption,16a wider band gap with lower frequency,17and so on.

    Buckling is a common failure mode in the aerospace structure.How to improve the stability of structure becomes an attractive problem.Recently,the stability of auxetic materials has also received significant attention.One such instance was an investigation by Spadoni et al.18of the buckling behavior of a chiral cellular structure with a negative Poisson’s ratio under flat-wise compression.Additionally,the global buckling behavior of auxetic cellular tubes based on inverted hexagonal honeycombs has been discussed.19,20The results clearly indicate that the use of auxetic structures can significantly improve(or can result in a significant improvement on)the buckling behavior as compared to similar non-auxetic arrangements.Moreover,Lim21–23discussed the potential applications of the auxetic plate and shell,and the buckling behavior of rectangular and circular thick auxetic plates were investigated.From this investigation,a highly accurate shear correction factor in terms of a Poisson’s ratio from-1 to 0.5 was obtained.However,the effect of the unusual deformation mechanism of auxetic materials on buckling behavior remains unexplored.

    The purpose of this paper is to enhance the buckling performance of a rectangular plate by replacing the traditional material with a positive Poisson’s ratio with an auxetic material.The structure of this paper is as follows:first,the mechanism of the enhanced buckling for the rectangular auxetic plate is provided in Section 2.Next,the critical buckling coefficient of the rectangular plate elastically restrained against in-plane translation under uniaxial compression is determined in Section 3.Section 4 introduces the results and discussion,and finally,Section 5 gives the conclusion.

    2.Mechanism of enhanced buckling performance for rectangular auxetic plate

    Fig.1 shows a simply supported rectangular thin plate of dimension a×b under biaxial compressive loads.The magnitude of the compressive load is N0at the edges x=0,a.Likewise,it is γN0at the edges y=0,b.For a rectangular isotropic plate,the buckling load under biaxial loading can be expressed as24

    Fig.1 Plate subjected to uniform compression along x and y directions.

    where β=a/b is the plate aspect ratio,E the elastic modulus of materials,ν the Poisson’s ratio,t the thickness of the plate,m the number of half waves along the x direction and y direction respectively.If the rotational constraint is full at the edges y=0,b,the buckling load under biaxial loading can be obtained through thefollowing expression

    A simply support square thin plate(β=1)is selected as an example to demonstrate the mechanics of enhanced buckling performance for the rectangular auxetic plate.The critical buckling load subjected to a uniform compressive load N0on edges x=0 and a(i.e.when γ=0)can be calculated using Eq.(1)

    If the same uniform compressive load(γ=1)is also applied along the y direction,the critical buckling load will decrease by 50%

    In contrast,the critical buckling load will increase by 75%when a half uniform tensile load(γ=-0.5)is applied along the y direction

    In other words,the tensile load along the x direction is beneficial for improving the critical buckling load for a square plate when the compressive load is applied in the y direction.

    Due to the Poisson’s ratio effect,the plate becomes fatter when a material with a positive Poisson’s ratio is used and thinner when a material with a negative Poisson’s ratio is used.If the unloaded edges were to be subjected to elastic restraint against in-plane translation,then the induced equivalent load along the unloaded direction will be compressive for the material with a positive Poisson’s ratio and will be tensile for the plate with a negative Poisson’s ratio.Combined with the previous analysis,it can be predicted that an auxetic plate under uniaxial compression has a higher critical buckling load than one using a positive Poisson’s ratio material when the unloaded edges are subjected to the elastic restraint against in-plane translation.

    It is well-known that in practice,the ideal free boundary conditions for simply-supported or clamped plate never occur,and there fore translational restraint exists.Furthermore,while the elastic stability of a rectangular plate with edges that are elastically restrained has been studied by many authors,25–28the influence of Poisson’s ratio on the buckling of elasticallyrestrained plates has not received attention yet.29

    3.Buckling of rectangular plate elastically restrained against inplane translation

    A simply supported rectangular thin plate elastically restrained against in-plane translation along the unloaded edges is subjected to uniaxial,uniform compressive load Nxas shown in Fig.2.The purpose of this section is to derive the analytical solution of the critical buckling load for the uniaxial compressive plate elastically restrained along the unloaded edges.

    In order to obtain the critical buckling load,the induced equivalent load along the unloaded edges caused by the inplane translational restraint should befirstly determined.This is a classic plane stress problem and the strain in the ydirection can be written as

    Moreover,the static equilibrium and deflection coordination condition at the elastic support should be satisfied:

    where k is the elastic coefficient of support and Δx the de formation of elastic support.The induced load can be solved by combining Eqs.(6)–(8)

    α is defined as the in-plane translational restraint coefficient.And the value range of it can be obtained by Eq.(10).When the elastic coefficient of support k is close to zero,the restraint coefficient α also approaches zero.On the other hand,when k tends towards infinity,α equals 1.Hence the restraint coefficient α varies from 0(free expansion condition)to 1(full restrained condition).

    Based on the derivation above,the simply supported rectangular plate elastically restrained against in-plane translation that is subjected to uniaxial compressive load can be equivalent to one that is uniform compression along x and uniform tension along y.There fore,its buckling load can be given by substituting Eq.(9)into Eq.(1):

    Fig.2 Uniaxial compressive plate elastically restrained along unloaded edges.

    The minimum buckling load occurs at n=1 and it is given by

    where K is the critical buckling coefficient,given in a generalized form as

    When the unloaded edges are clamped,the critical buckling coefficient has been obtained by substituting Eq.(9)into Eq.(2):

    4.Results and discussion

    Thefinite element method using the commercial program NASTRAN 12.0 is constructed to verify the accuracy of the derived expressions for the buckling coefficient K of 13–14.In the finite element modeling,the geometry of the chosen plate is 100 mm×100 mm and the thickness is 1 mm.The shell element with four nodes is used to discretize it.The element size is 2 mm×2 mm and the total element number is 2500.The elastic modulus of material remains constant 70 GPa when the Poisson’s ratio changes.The Lanczos approach is selected to solve them.The results are shown in Fig.3.

    The predicted results obtained by Eqs.(13)and(14)agree well with those obtained by the finite element analysis(FEA).Of particular importance,it can accurately capture the inflection point of the critical buckling coefficient K from one buckling mode to another.These results indicate that the analytical solutions are accurate and are an effective alternative to the computationally expensive FEA and there fore,the results are useful for later discussion.

    The rest of this section focuses on the parametric effect on the critical buckling coefficient K.From Eqs.(13)and(14),it can be seen that the critical buckling coefficient K is dependent on the aspect ratio β,the Poisson’s ratio υ,and the in-plane translational restraint coefficient α for both the simplysupported boundary and the clamped boundary conditions.Moreover,it is important to note that K is unrelated to Poisson’s ratio when the restraint coefficient α equals zero.This is completely consistent with the previous analysis in Section 2.Obviously,the buckling coefficient K also is unrelated to the restraint coefficient α if the Poisson’s ratio of the material is zero.As an example,Fig.4 reveals the variation of the critical buckling coefficient of the square plate with the Poisson ratios for different in-plane translational restraint coefficients.The buckling coefficient K remains unchanged when the restraint coefficient α equals zero,and when Poisson’s ratio is zero,the critical buckling coefficient is the same for each of the various restraint coefficients.As a whole,if the in-plane translational restraint exists(α> 0),the critical buckling coefficient K gradually decreases as Poisson’s ratio increases.These results imply that the critical buckling coefficient K is a decreasing function of the material’s Poisson’s ratio,and hence the buckling performance of a rectangular plate under uniaxial compression can be enhanced by replacing the traditional material that has a positive Poisson’s ratio with an auxetic material.The existence of in-plane translational restraint is the necessary condition of this conclusion.

    Fig.3 Comparison of predicted critical buckling coefficient for the case:β=1,α=1.

    Figs.5 and 6 show the variations of the critical buckling coefficient of the square plate under uniaxial compression with in-plane translational restraint coefficients for various Poisson’s ratios.For both the simply-supported boundary and clamped boundary condition,the results demonstrate that the buckling coefficient K with respect to the restraint coefficient α is an increasing function when the material’s Poisson’s ratio is negative,but it is a decreasing function when the material’s Poisson’s ratio of is positive.This finding indicates that an auxetic material is beneficial for the buckling of a rectangular plate under uniaxial compression,and the traditional material with a positive Poisson’s ratio is harmful for the buckling when the in-plane translational restraint is greater than zero.The ideal situation is an in-plane translational restraint of 1 with a Poisson’s ratio that is as close to-1 as possible.In contrast,the worst situation is an in-plane translational restraint of 1 with a Poisson’s ratio that is the maximum value of 0.5.Compared to the following case:ν=0 or α =0,the maximum improvement for the buckling coefficient of the square plate under uniaxial compression is more than double for the simply-supported boundary condition and is nearly 1.5 times for the clamped boundary conditions.At the same time,the maximum reduction is approximately one-third for both of the two boundary conditions.

    Fig.5 Variation of critical buckling coefficient with in-plane translational restraint coefficients for various negative Poisson’s ratios and β=1.

    Fig.6 Variation of critical buckling coefficient with in-plane translational restraint coefficients for various positive Poisson’s ratios and β=1.

    Fig.7 Variation of critical buckling coefficient with aspect ratios for various negative Poisson’s ratios and α =1.

    Fig.8 Variation of critical buckling coefficient with aspect ratios for various positive Poisson’s ratios and α=1.

    The aspect ratio of the rectangular plate influences the buckling coefficients and the buckling mode shape.Figs.7 and 8 display the variation of the critical buckling coefficient with the aspect ratios for various Poisson’s ratios and α =1.Thesefigures demonstrate that the critical buckling coefficient shows a relatively high variability when the aspect ratio is less than 1.5 and then tends to stability when the aspect ratio is greater than 1.5.Thus,the corresponding enhanced or weakened magnitude of the critical buckling coefficient K of the rectangular plate may be different for various aspect ratios compared to those utilizing a material with a Poisson’s ratio of zero.However,on the whole,the maximal improvement for the buckling coefficient of the rectangular plate under uniaxial compression is nearly double for the simply-support boundary condition and is nearly 1.5 times for the clamped boundary conditions.At the same time,the maximum reduction is approximately one-third for both of the two boundary conditions.This conclusion also implies that the aspect ratio of the rectangular plate has little effect on the enhanced buckling performance from utilizing the auxetic material.

    5.Conclusion

    The purpose of this paper is to assess the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression.In this study,the in-plane translational restraint along the unloaded edges that was of ten neglected in open literature is taken into consideration in our buckling model proposed in this study.The closed- form expression for the critical buckling coefficient of the rectangle is provided and its validity has been proven by thefinite element method.Some conclusions are drawn as follows:

    The buckling performance of a rectangular plate under uniaxial compression can be enhanced by replacing a traditional material with a positive Poisson’s ratio with an auxetic material.Furthermore,the existence of in-plane translational restraint is the necessary condition of this conclusion.The critical buckling coefficient of the rectangle with respect to the in-plane translational restraint coefficient is an increasing function when the Poisson’s ratio of the material is negative,but it is a decreasing function when the Poisson’s ratio of the material is positive.Compared to those utilizing a material with a Poisson’s ratio of zero,the maximal improvement for the buckling coefficient of the rectangular plate under uniaxial compression can is nearly double for the simply-supported boundary condition and is nearly 1.5 times for the clamped boundary condition.At the same time,the maximum reduction is approximately one-third for both of the two boundary conditions.This study provides a solution for enhancing the buckling performance of the rectangular plate under uniaxial compression.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos.11572071,11332004,),the National Basic Research Program of China (No.2011CB610304),and the Program of Introducing Talents of Discipline to Universities(No.B14013).The financial supports are greatly appreciated.We would also like to thank the China Scholarship Council(No.201308210038).

    1.Taylor M,Francesconi L,Gerenda′s M,Shanian A,Carson C,Bertoldi K.Low porosity metallic periodic structures with negative Oisson’s ratio.Adv Mater 2014;26(15):2365–70.

    2.Lakes RS.Foam structures with a negative Poisson’s ratio.Science 1987;235(4792):1038–40.

    3.Friis EA,Lakes RS,Park JB.Negative Poisson’s ratio polymeric and metallic foams.J Mater Sci 1988;23(12):4406–14.

    4.Critchley R,Corni I,Wharton JA,Walsh FC,Wood RJ,Stokes KR.A review of the manufacture,mechanical properties and potential applications of auxetic foams.Phys Status Solidi B 2013;250(10):1963–82.

    5.Greaves GN,Greer AL,Lakes RS,Rouxel T.Poisson’s ratio and modern materials.Nat Mater 2011;10:823–37.

    6.Carneiro VH,Meireles J,Puga H.Auxetic materials—A review.Mater Sci Poland 2013;31(4):561–7.

    7.Prawoto Y.Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson’s ratio.Comp Mater Sci 2012;58:140–53.

    8.Cao XF,Liu ST.Topology description function based method for material design.Acta Mech Solida Sin 2006;19(2):95–102.

    9.Larsen UD,Sigmund O,Bouwstra S.Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio.Micro electro mechanical systems.IEEE,the ninth annual international workshop on MEMS’96,proceedings.An investigation of micro structures,sensors,actuators,machines and systems.1996 Feb.11–15;San Diego(CA).Piscataway(NJ):IEEE;1996.p.365–71.

    10.Bu¨ckmann T,Stenger N,Kadic M,Kaschke J,Fro¨lich A,Kennerknecht T,et al.Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography.Adv Mater 2012;24(20):2710–4.

    11.Wang F,Sigmund O,Jensen JS.Design of materials with prescribed nonlinear properties. J Mech Phys Solids 2014;69:156–74.

    12.Xin CS,Lakes RS.Stability of elastic material with negative stiffness and negative Poisson’s ratio.Physica Status Solidi(B)2007;244(3):1008–26.

    13.Choi JB,Lakes RS.Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio:Experiment and analysis.Int J Fracture 1996;80(1):73–83.

    14.Haberman MR,Hook DT,Klatt TD,Hewage TA,Alderson A,Alderson KL,Scarpa FL.Ultrasonic characterization of polymeric composites containing auxetic inclusions.J Acoust Soc Am 2012;132(3):1961.

    15.Scarpa FL,Remillat C,Landi FP,Tomlinson GR.Damping modelization of auxetic foams.Proceedings SPIE of smart structures and materials 2000:Damping and isolation;April 24 2000;Orlando,FL.Bellingham(WA):International Society for Optics and Photonics;2000;3989;p.336-43.

    16.Scarpa F,Ciffo LG,Yates JR.Dynamic properties of high structural integrity auxetic open cell foam.Smart Mater Struct 2004;13(1):49.

    17.Yu H,Liu ST.Analysis and design of two dimensional lattice materials with band-gap characteristics.Chin J Theo Appl Mech 2011;43(2):316–29.

    18.Spadoni A,Ruzzene M,Scarpa F.Global and local linear buckling behavior of a chiral cellular structure.Physica Status Solidi(B)2005;242(3):695–709.

    19.Karnessis N,Burriesci G.Uniaxial and buckling mechanical response of auxetic cellular tubes.Smart Mater Struct 2013;22(8):84008.

    20.Scarpa F,Smith CW,Ruzzene M,Wadee MK.Mechanical properties of auxetic tubular truss-like structures.Physica Status Solidi(B)2008;245(3):584–90.

    21.Lim TC.Elastic stability of thick auxetic plates.Smart Mater Struct 2014;23(4):45004.

    22.Lim TC.Buckling and vibration of circular auxetic plates.J Eng Mater Technol 2014;136(2):21007.

    23.Lim TC.Thermal stresses in auxetic plates and shells.Mech Adv Mater Struc 2015;22(3):205–12.

    24.Wang CM,Wang CY.Exact solutions for buckling of structural members.CRC series in computational mechanics and applied analysis.Boca Raton(FL):CRC Press;2004.p.123–129.

    25.Eftekhari SA,Jafari AA.Accurate variational approach for free vibration of variable thickness thin and thick plates with edges elastically restrained against translation and rotation.Int J Mech Sci 2013;68:35–46.

    26.Qiao P,Huo X.Explicit local buckling analysis of rotationallyrestrained orthotropic plates under uniform shear.Compos Struct 2011;93(11):2785–94.

    27.Bedair OK,Sherbourne AN.The elastic stability of partiallyrestrained plates under compression and in-plane bending.J Constr Steel Res 1995;35(3):339–60.

    28.Bedair OK,Sherbourne AN.Plate-stiffener assemblies in uniform compression.Part I:Buckling.J Eng Mech 1993;119(10):1937–55.

    29.Lim TC.Auxetic materials and structures.Berlin Heidelberg:Springer-Verlag;2015.p.324-27.

    Zhang Yongcun is an associate prof essor and M.S.supervisor at Dalian University of Technology,China.He received the PH.D.degree from the same university in 2008.He current research interests are the multifunctional design of materials and structures oriented for thermal protection systems.

    Liu Shutian is a prof essor and Ph.D.supervisor at Dalian University of Technology,China.He current research interests are material design,multi-scale analysis and design of composite materials,optimization,topology,sensors,machine design and band-gap materials.

    23 June 2015;revised 14 March 2016;accepted 18 April 2016

    Available online 22 June 2016

    Auxetic material;

    Buckling;

    Elastically restraint;

    Negative Poisson’s ratio;

    Optimization

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.Thisisan open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+411 84706585.

    E-mail addresses:yczhang@dlut.edu.cn(Y.Zhang),stliu@dlut.edu.cn(S.Liu).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.06.010

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    99九九线精品视频在线观看视频| 国模一区二区三区四区视频| 亚洲色图av天堂| 最近的中文字幕免费完整| 欧美zozozo另类| 日韩强制内射视频| 一本—道久久a久久精品蜜桃钙片| 赤兔流量卡办理| 亚洲一级一片aⅴ在线观看| 久久人妻熟女aⅴ| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 亚洲欧美一区二区三区黑人 | 美女国产视频在线观看| 日本黄色日本黄色录像| 夜夜爽夜夜爽视频| av国产久精品久网站免费入址| 街头女战士在线观看网站| 免费大片黄手机在线观看| 中文字幕亚洲精品专区| 最后的刺客免费高清国语| 黑人猛操日本美女一级片| 哪个播放器可以免费观看大片| 欧美激情国产日韩精品一区| 高清毛片免费看| 毛片女人毛片| 亚洲av电影在线观看一区二区三区| 免费观看a级毛片全部| 国产av精品麻豆| 久久久精品免费免费高清| 91精品国产九色| 18禁在线无遮挡免费观看视频| 国产一区二区在线观看日韩| 国产大屁股一区二区在线视频| 亚洲av福利一区| 婷婷色综合大香蕉| 中文字幕人妻熟人妻熟丝袜美| 日本一二三区视频观看| 国产精品免费大片| 日韩大片免费观看网站| 国产黄色免费在线视频| 99久久精品一区二区三区| 最近最新中文字幕大全电影3| 国产久久久一区二区三区| 久久久久精品性色| 男男h啪啪无遮挡| 精品国产三级普通话版| 又黄又爽又刺激的免费视频.| 国产综合精华液| 欧美bdsm另类| 观看av在线不卡| 欧美bdsm另类| 欧美日韩一区二区视频在线观看视频在线| 在线观看免费视频网站a站| 国产一级毛片在线| 少妇裸体淫交视频免费看高清| 久久久久视频综合| 亚洲伊人久久精品综合| 永久免费av网站大全| 中文字幕制服av| 亚洲成人手机| 色视频在线一区二区三区| av播播在线观看一区| 国产在线视频一区二区| 久久这里有精品视频免费| 国产在线一区二区三区精| 亚洲精品中文字幕在线视频 | 三级国产精品欧美在线观看| 99国产精品免费福利视频| 亚洲图色成人| 91精品伊人久久大香线蕉| 亚洲精品国产色婷婷电影| 日本黄色片子视频| 亚洲欧美日韩卡通动漫| 国产亚洲午夜精品一区二区久久| 九九久久精品国产亚洲av麻豆| 男女边摸边吃奶| .国产精品久久| 91狼人影院| 免费人成在线观看视频色| 国产日韩欧美亚洲二区| 免费观看性生交大片5| 五月玫瑰六月丁香| 九色成人免费人妻av| 欧美另类一区| 久久久久久伊人网av| www.av在线官网国产| 日韩视频在线欧美| 联通29元200g的流量卡| 97超碰精品成人国产| 免费看光身美女| 国产乱人偷精品视频| 香蕉精品网在线| 极品教师在线视频| 国产大屁股一区二区在线视频| 日日啪夜夜爽| 一本久久精品| 一级a做视频免费观看| 免费播放大片免费观看视频在线观看| 欧美精品一区二区免费开放| 亚洲精品日韩av片在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲成人av在线免费| 三级经典国产精品| 不卡视频在线观看欧美| 岛国毛片在线播放| 日本黄大片高清| 22中文网久久字幕| 欧美三级亚洲精品| 国产精品麻豆人妻色哟哟久久| 在线免费观看不下载黄p国产| 色婷婷久久久亚洲欧美| a 毛片基地| 日韩强制内射视频| 亚洲av福利一区| 中国三级夫妇交换| 色婷婷av一区二区三区视频| 日韩不卡一区二区三区视频在线| 美女主播在线视频| 男人舔奶头视频| 伦理电影大哥的女人| 高清毛片免费看| 亚洲欧美日韩卡通动漫| 少妇裸体淫交视频免费看高清| 一级a做视频免费观看| 日日撸夜夜添| 精品久久久久久电影网| 最黄视频免费看| 亚洲熟女精品中文字幕| 国产亚洲5aaaaa淫片| 男女边摸边吃奶| 精品人妻偷拍中文字幕| 全区人妻精品视频| 在线观看av片永久免费下载| 高清黄色对白视频在线免费看 | 精品人妻一区二区三区麻豆| 成年av动漫网址| 亚洲国产成人一精品久久久| 香蕉精品网在线| 晚上一个人看的免费电影| 国产精品伦人一区二区| 美女高潮的动态| 亚洲国产成人一精品久久久| 久久精品久久久久久久性| 国产 精品1| 国产精品久久久久久久久免| 欧美极品一区二区三区四区| 国产美女午夜福利| av女优亚洲男人天堂| 午夜老司机福利剧场| 欧美精品亚洲一区二区| 国产v大片淫在线免费观看| 国产免费又黄又爽又色| 欧美变态另类bdsm刘玥| 国产色爽女视频免费观看| 久久久精品免费免费高清| 国产在线视频一区二区| 熟女电影av网| 亚洲精华国产精华液的使用体验| 中文字幕亚洲精品专区| 亚洲成人一二三区av| 性色av一级| 日本欧美视频一区| 亚洲久久久国产精品| 亚洲欧美日韩东京热| 日本黄色日本黄色录像| 国产av精品麻豆| 不卡视频在线观看欧美| www.av在线官网国产| 国产乱人视频| 亚洲欧美成人综合另类久久久| 亚洲国产欧美人成| 91久久精品国产一区二区三区| 亚洲天堂av无毛| 2022亚洲国产成人精品| 哪个播放器可以免费观看大片| 色婷婷av一区二区三区视频| 日本av免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 七月丁香在线播放| 久久久国产一区二区| 中国国产av一级| 一二三四中文在线观看免费高清| 一区二区三区免费毛片| 国产成人免费无遮挡视频| 天天躁日日操中文字幕| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区国产| 男人爽女人下面视频在线观看| 热99国产精品久久久久久7| 在线 av 中文字幕| 狂野欧美白嫩少妇大欣赏| 国产精品一二三区在线看| 干丝袜人妻中文字幕| 国产91av在线免费观看| 精品亚洲成a人片在线观看 | 亚洲精品乱码久久久久久按摩| 亚洲精品乱码久久久久久按摩| 日产精品乱码卡一卡2卡三| 少妇人妻一区二区三区视频| 日韩精品有码人妻一区| 97超视频在线观看视频| 国产精品精品国产色婷婷| 18禁在线无遮挡免费观看视频| 在线免费十八禁| 国产欧美日韩一区二区三区在线 | 我的老师免费观看完整版| av网站免费在线观看视频| 国产精品一区二区性色av| 黄片wwwwww| 国产视频首页在线观看| 色婷婷久久久亚洲欧美| 成年人午夜在线观看视频| 97精品久久久久久久久久精品| 国产亚洲av片在线观看秒播厂| 亚州av有码| 天堂中文最新版在线下载| 国产女主播在线喷水免费视频网站| 亚洲激情五月婷婷啪啪| 99热国产这里只有精品6| 久久影院123| 亚洲精品日本国产第一区| 国产精品蜜桃在线观看| 国产亚洲av片在线观看秒播厂| 久久精品熟女亚洲av麻豆精品| 国产黄片美女视频| 国产永久视频网站| 欧美bdsm另类| 亚洲精品国产成人久久av| 99久国产av精品国产电影| 欧美高清性xxxxhd video| 久久久欧美国产精品| 男女无遮挡免费网站观看| 色综合色国产| 在线看a的网站| 久久久久久九九精品二区国产| 又大又黄又爽视频免费| 国产高清国产精品国产三级 | 内射极品少妇av片p| 国产黄片美女视频| 国产永久视频网站| 免费播放大片免费观看视频在线观看| 九色成人免费人妻av| 91精品国产国语对白视频| 精品人妻熟女av久视频| 国产久久久一区二区三区| 成人午夜精彩视频在线观看| 成人高潮视频无遮挡免费网站| 亚洲精品aⅴ在线观看| av国产免费在线观看| 国产男人的电影天堂91| 亚洲av电影在线观看一区二区三区| 亚洲高清免费不卡视频| 51国产日韩欧美| 久久精品国产亚洲av天美| h视频一区二区三区| 久久鲁丝午夜福利片| 国产精品一区二区性色av| 亚洲天堂av无毛| 国国产精品蜜臀av免费| 嫩草影院入口| 色婷婷久久久亚洲欧美| 黄色欧美视频在线观看| 精品国产露脸久久av麻豆| 九九久久精品国产亚洲av麻豆| 中国三级夫妇交换| 天堂8中文在线网| videossex国产| 纯流量卡能插随身wifi吗| 伦精品一区二区三区| 日产精品乱码卡一卡2卡三| 噜噜噜噜噜久久久久久91| 国产精品嫩草影院av在线观看| 嫩草影院新地址| 精品人妻熟女av久视频| 午夜视频国产福利| 午夜日本视频在线| 九色成人免费人妻av| 91精品国产国语对白视频| 国产免费一区二区三区四区乱码| 熟女人妻精品中文字幕| 日本欧美视频一区| 亚洲久久久国产精品| 五月开心婷婷网| 这个男人来自地球电影免费观看 | 国产亚洲5aaaaa淫片| 夫妻午夜视频| 国产人妻一区二区三区在| 黄色欧美视频在线观看| 亚洲成人av在线免费| 身体一侧抽搐| av在线观看视频网站免费| 国产亚洲欧美精品永久| 能在线免费看毛片的网站| 新久久久久国产一级毛片| 日日摸夜夜添夜夜添av毛片| 最近中文字幕2019免费版| 黄片无遮挡物在线观看| 国产亚洲欧美精品永久| 久久 成人 亚洲| 亚洲精品中文字幕在线视频 | 成年人午夜在线观看视频| 成年av动漫网址| 日韩成人伦理影院| 亚洲av国产av综合av卡| 97在线视频观看| 国产免费视频播放在线视频| 亚洲欧美日韩另类电影网站 | 99国产精品免费福利视频| 中文天堂在线官网| 久久久久久久久大av| 啦啦啦中文免费视频观看日本| 免费黄色在线免费观看| 欧美一级a爱片免费观看看| 在线精品无人区一区二区三 | 国产亚洲精品久久久com| 熟妇人妻不卡中文字幕| 日韩成人伦理影院| 欧美精品人与动牲交sv欧美| 爱豆传媒免费全集在线观看| 一区二区三区四区激情视频| 国产乱来视频区| 国产精品99久久久久久久久| 观看av在线不卡| 女人十人毛片免费观看3o分钟| 亚洲精品日本国产第一区| 亚洲国产精品国产精品| 人人妻人人爽人人添夜夜欢视频 | 成人午夜精彩视频在线观看| 亚洲精品视频女| 欧美少妇被猛烈插入视频| 国产美女午夜福利| 日韩欧美一区视频在线观看 | 欧美精品一区二区大全| 九色成人免费人妻av| 好男人视频免费观看在线| 免费看av在线观看网站| 日韩电影二区| 大陆偷拍与自拍| www.色视频.com| 婷婷色综合www| 久久婷婷青草| 欧美日韩视频精品一区| 自拍欧美九色日韩亚洲蝌蚪91 | 日本爱情动作片www.在线观看| 久久人人爽人人片av| 欧美高清成人免费视频www| 中文欧美无线码| 国产精品久久久久久av不卡| 欧美 日韩 精品 国产| 大香蕉久久网| 国产成人91sexporn| 春色校园在线视频观看| 精品一区二区三卡| 只有这里有精品99| 欧美日韩视频高清一区二区三区二| 在线 av 中文字幕| 欧美成人午夜免费资源| 看十八女毛片水多多多| 日韩大片免费观看网站| 在线 av 中文字幕| 亚洲无线观看免费| 精品国产露脸久久av麻豆| 九九久久精品国产亚洲av麻豆| 99久久综合免费| 97在线人人人人妻| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影小说 | 99热6这里只有精品| 欧美日本视频| 黄片wwwwww| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 夜夜看夜夜爽夜夜摸| 一本—道久久a久久精品蜜桃钙片| 一区二区三区乱码不卡18| 精品亚洲乱码少妇综合久久| 波野结衣二区三区在线| 久久99热这里只有精品18| 久久韩国三级中文字幕| 亚洲不卡免费看| 欧美日韩综合久久久久久| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| 精品视频人人做人人爽| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 亚洲一区二区三区欧美精品| 91久久精品国产一区二区三区| 三级国产精品片| 国产成人一区二区在线| 亚洲精品日韩av片在线观看| 亚洲,一卡二卡三卡| 老熟女久久久| 日本免费在线观看一区| 国产亚洲91精品色在线| 国产美女午夜福利| 国产精品不卡视频一区二区| 国产精品无大码| 日日摸夜夜添夜夜爱| 伊人久久国产一区二区| 成年美女黄网站色视频大全免费 | 婷婷色av中文字幕| 女人久久www免费人成看片| 中文精品一卡2卡3卡4更新| 免费看日本二区| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 久久久色成人| 久久这里有精品视频免费| 亚洲精品久久久久久婷婷小说| 天美传媒精品一区二区| videos熟女内射| 日产精品乱码卡一卡2卡三| 精品久久久久久久末码| 中文字幕久久专区| 国产真实伦视频高清在线观看| 亚洲色图综合在线观看| 国产成人精品一,二区| 亚洲欧美日韩无卡精品| 最后的刺客免费高清国语| 免费看不卡的av| 看非洲黑人一级黄片| 国产在视频线精品| 欧美一级a爱片免费观看看| 亚洲av日韩在线播放| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 久久久久久久久久久免费av| 夫妻午夜视频| 日日啪夜夜爽| 深夜a级毛片| 五月天丁香电影| 91狼人影院| 亚洲国产精品专区欧美| 水蜜桃什么品种好| 插逼视频在线观看| 青春草亚洲视频在线观看| 免费黄网站久久成人精品| 欧美精品一区二区大全| 欧美成人a在线观看| 午夜免费男女啪啪视频观看| www.色视频.com| 成年免费大片在线观看| 人体艺术视频欧美日本| 国产精品国产三级国产av玫瑰| 下体分泌物呈黄色| 日韩在线高清观看一区二区三区| 国产真实伦视频高清在线观看| 性色avwww在线观看| 欧美老熟妇乱子伦牲交| 国产伦精品一区二区三区视频9| 国产在视频线精品| 亚洲精华国产精华液的使用体验| 国产精品精品国产色婷婷| 免费黄色在线免费观看| 少妇高潮的动态图| 啦啦啦在线观看免费高清www| 成年免费大片在线观看| 欧美日韩综合久久久久久| 免费av中文字幕在线| 欧美极品一区二区三区四区| 日本黄大片高清| 观看美女的网站| 免费黄频网站在线观看国产| 精品人妻视频免费看| 51国产日韩欧美| 两个人的视频大全免费| 高清欧美精品videossex| 国产色婷婷99| 精品久久久久久久久亚洲| 简卡轻食公司| av天堂中文字幕网| 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 丰满人妻一区二区三区视频av| 女的被弄到高潮叫床怎么办| 国产精品一区二区性色av| 视频中文字幕在线观看| 国产大屁股一区二区在线视频| 中文欧美无线码| 午夜老司机福利剧场| 亚洲最大成人中文| 18禁在线播放成人免费| av专区在线播放| 丰满人妻一区二区三区视频av| 亚洲精品国产av蜜桃| freevideosex欧美| 国产精品熟女久久久久浪| 日韩国内少妇激情av| 免费av中文字幕在线| 亚洲第一av免费看| 亚洲美女视频黄频| 美女视频免费永久观看网站| 午夜日本视频在线| 黄色视频在线播放观看不卡| 成人亚洲精品一区在线观看 | 亚洲色图综合在线观看| 精品一品国产午夜福利视频| 国产精品秋霞免费鲁丝片| 日本黄色片子视频| 久久精品人妻少妇| 成年人午夜在线观看视频| 黑丝袜美女国产一区| 国产黄片视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 亚洲国产欧美在线一区| 亚洲人成网站在线播| 国产黄频视频在线观看| 国产人妻一区二区三区在| 欧美三级亚洲精品| 免费观看无遮挡的男女| 另类亚洲欧美激情| 一级毛片 在线播放| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 亚洲人与动物交配视频| 寂寞人妻少妇视频99o| 插阴视频在线观看视频| 大香蕉久久网| 亚洲国产精品一区三区| 精品久久久噜噜| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 永久免费av网站大全| tube8黄色片| 高清日韩中文字幕在线| 如何舔出高潮| 欧美bdsm另类| 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄| 极品教师在线视频| 亚洲欧美精品专区久久| 免费在线观看成人毛片| 中文字幕av成人在线电影| 婷婷色综合www| 少妇高潮的动态图| 综合色丁香网| 国产伦理片在线播放av一区| 欧美国产精品一级二级三级 | 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 青春草国产在线视频| 亚洲精品自拍成人| a 毛片基地| 男女免费视频国产| 亚洲欧美清纯卡通| 黄色日韩在线| av国产精品久久久久影院| 日韩成人伦理影院| 久久影院123| 久久亚洲国产成人精品v| 一级毛片电影观看| 成年女人在线观看亚洲视频| 日韩中文字幕视频在线看片 | 国产一区二区三区av在线| 水蜜桃什么品种好| 人妻夜夜爽99麻豆av| 久久国内精品自在自线图片| 久久女婷五月综合色啪小说| 嫩草影院新地址| 国产伦在线观看视频一区| 搡老乐熟女国产| 国产av一区二区精品久久 | 最后的刺客免费高清国语| 久久女婷五月综合色啪小说| 久久97久久精品| 日韩国内少妇激情av| 国产精品女同一区二区软件| 国产又色又爽无遮挡免| 97在线视频观看| 日韩欧美一区视频在线观看 | 亚洲国产精品专区欧美| av线在线观看网站| 美女国产视频在线观看| 国产色爽女视频免费观看| 啦啦啦在线观看免费高清www| 中文字幕久久专区| 有码 亚洲区| 国产精品国产av在线观看| 一边亲一边摸免费视频| 久久国产精品男人的天堂亚洲 | 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产a三级三级三级| 国产成人91sexporn| 在线观看人妻少妇| 日韩中文字幕视频在线看片 | 日日撸夜夜添| 老师上课跳d突然被开到最大视频| 国产成人免费观看mmmm| 久久久a久久爽久久v久久| 五月玫瑰六月丁香| 免费人成在线观看视频色| 免费av中文字幕在线| 91狼人影院| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲精品一区在线观看 | 久久久久久久大尺度免费视频| 精品久久久久久久久亚洲| 极品教师在线视频| 观看av在线不卡| 国产欧美日韩一区二区三区在线 | 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 亚洲人成网站高清观看| 色哟哟·www| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜 | 久久久午夜欧美精品| 超碰97精品在线观看| 一区二区av电影网| 精品亚洲成国产av| 可以免费在线观看a视频的电影网站|