• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of aerodynamic characteristics of FSW aircraft with different wing positions under supersonic condition

    2016-11-24 00:47:41LeiJuanmianZhaoShuaiWangSuozhu
    CHINESE JOURNAL OF AERONAUTICS 2016年4期
    關(guān)鍵詞:穩(wěn)定期病患者靶點(diǎn)

    Lei Juanmian,Zhao Shuai,Wang Suozhu

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Numerical study of aerodynamic characteristics of FSW aircraft with different wing positions under supersonic condition

    Lei Juanmian*,Zhao Shuai,Wang Suozhu

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    This paper investigates the influence of forward-swept wing(FSW)positions on the aerodynamic characteristics of aircraft under supersonic condition(Ma=1.5).The numerical method based on Reynolds-averaged Navier–Stokes(RANS)equations,Spalart–Allmaras(S–A)turbulence model and implicit algorithm is utilized to simulate theflow field of the aircraft.The aerodynamic parameters and flow field structures of the horizontal tail and the whole aircraft are presented.The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root,generating an upper wing surface vortex and a trailing edge vortex nearby the wing root.The vortexes generated by FSW have a strong downwash effect on the tail.The lower the vertical position of FSW,the stronger the downwash effect on tail.There fore,the effective angle of attack of tail becomes smaller.In addition,the lift coefficient,drag coefficient and lift–drag ratio of tail decrease,and the center of pressure of tail moves backward gradually.For the whole aircraft,the lower the vertical position of FSW,the smaller lift,drag and center of pressure coefficients of aircraft.The closer the FSW moves towards tail,the bigger pitching moment and center of pressure coefficients of the whole aircraft,but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged.The results have potential application for the design of new concept aircraft.

    1.Introduction

    Nomenclature CL Lift coefficient CD Drag coefficient Cp Pressure coefficient L/D Lift–drag ratioˉxcp Center of pressure coefficient LB Length of body,m DB Diameter of cylindrical body,m Χ Swept angle l Span,m λ Aspect ratio α Angle of attack Initials B Body of aircraft T Tail of aircraft W Wing of aircraft

    As the spanwiseflow of forward-swept wing(FSW)flows from the wingtip to the wing root,the boundary layer of wing root grows thicker,thus the flow separation initially occurs at the wing root.There fore,FSW solves the wingtip stalling problem,improving the aerodynamic efficiency and maneuverability of aircraft.Due to these advantages,FSW technology was introduced into engineering application be fore and during the Second World War.For example,Junkers Company designed the Ju-287 jet bomber in 1940s,which was a typical FSW aircraft at that time.With the increase of Mach number,FSW technology encountered a series of problems,such as aeroelastic divergence and yaw instability.The development of material and control technology helped FSW aircraft enter a new stage.Grumman Corporation built two X-29 technology demonstrators in 1980s and Sukhoi Company showed the Su-47 fighter prototype in 1997;both of them are new representatives of FSW aircraft.In addition,FSW technology has a wide application in guided weapons;the Fire Shadow loitering munition of MBDA Company adopts FSW con figuration to save space and get better aerodynamic characteristics.

    Researchers have investigated the aerodynamic characteristics of FSW aircraft in many respects.In order to optimize theflow field structure and improve the aerodynamic efficiency of FSW aircraft,researchers proposed the canard-FSW con figuration.Behrbohm1found that close-coupled canard wing configuration has many advantages.The aerodynamic interference between canard vortex and wing vortex is favorable and can obviously improve the aerodynamic performance of aircraft.Breitsamter and Laschka2investigated the vortical flow field structure of FSW con figurations by experimental method.Compared with the back-swept wing(BSW)con figuration,the FSW con figuration has a bigger lift-drag ratio under subsonic condition.The leading edge vortex of FSW is generated rotating oppositely to the wingtip vortex at moderate angle of attack.The trailing edge vortex of FSW has the same rotational direction with the wingtip vortex.Zhang et al.3,4investigated the aerodynamic characteristics of canard-FSW con figurations by numerical method.According to their study,the aerodynamic interference and coupling effect between canard and wing have great influences on the aerodynamic characteristics of aircraft.The canard vortex can induce a favorable interference onto the main wing,controlling the separation of boundary layer from the leading edge.Owens and Perkins5studied the aerodynamic characteristics of horizontal tandem wing con figuration by experimental method.Compared with the horizontal two-surface con figuration(FSW and tail),the three-surface con figuration(FSW,tail and canard)provides better longitudinal control ability.Wang et al.6studied the longitudinal aerodynamic characteristics of canard-FSW con figuration by experimental method.The conclusions indicate that the close-coupled canard wing con figuration is helpful to increase the lift coefficient and the stalling angle of FSW.Consequently,the maneuverability of aircraft can be improved greatly.

    Fig.1 Forward-swept wing(FSW)aircraft.

    Table 1 Geometric parameters of FSW aircraft.

    Fig.2 Half of FSW model with structured grid.

    Variable FSW configuration can improve the aerodynamic characteristics of aircraft at subsonic,transonic and supersonic conditions respectively.Liu et al.7–9investigated the flow mechanism of variable FSW configuration by numerical method.According to their study,the orthogonal wing can achieve greater lift-drag ratio while taking of f and landing under subsonic condition.FSW configuration can improve the stalling characteristics of aircraft under transonic condition.BSW configuration can decrease the shock wave drag during chasing and escaping under supersonic condition.Sun et al.10per formed a numerical study on the aerodynamic characteristics of W-shaped tailless configuration.Their results show that the performance of W-shaped tailless configuration is excellent,and has a good prospect for development.Xiao and Wang11studied the aerodynamic characteristics of W-shaped tailless configuration by numerical method.According to their study,the flow separation of FSW initially occurs at wing root,thus the control surfaces nearby wingtip have good operating efficiency.

    Fig.4 Lift coefficient of tail,(CL)T-α.

    Fig.5 Pressure distributions on the tail,α =12°.

    Fig.6 Pressure distributions on the tail,z=0.05,α =12°.

    Theflow separation nearby the root of FSW can be well controlled by proper shape modification.Traub and Lawrence12carried out a comparative study between FSW configuration and BSW configuration by experimental method.The forward extension(a strake)is beneficial when used with FSW but detrimental when used with BSW.Zhang and Laschka13,14investigated the flow control approaches of FSW by experimental method.They found that the closecoupled canard wing and back-swept strake can restrict the flow separation of FSW,thus improve the aerodynamic characteristics of FSW aircraft enormously.

    Fig.7 Streamlines of FSW,α =12°.

    Tail is important control surface and stabilizer of aircraft.It has great influence on the maneuverability and stability of aircraft.So it is necessary to study the aerodynamic characteristics of tail.As far as we know, for the common con figuration with FSW,there is no study on the aerodynamic characteristics of horizontal tail and whole aircraft under supersonic condition.As a supplementary study,this research investigates the aerodynamic characteristics of the horizontal tail and the whole aircraft with different FSW positions.The paper is organized in the following way:Section 2 shows the computational model and numerical method.Section 3 gives out the calculation results and analysis.The conclusions of this study are presented in Section 4.

    2.Numerical method and calculating model

    2.1.Governing equations

    In this paper,thefinite volume method is used to solve the Navier–Stokes equations,which can be written as

    where H is the source term,W,F and G are defined as

    Fig.8 Streamlinesperpendicularto bodyaxis,x=0.94,α =12°.

    Here ρ,E,and p are the density,total energy per unit mass,and pressure of the fluid,respectively.v is the velocity of fluid,and u,v,w are the velocity components.τ is the viscous stress tensor,and τxi,τyi,τzi,τijare the tensor components.i,j,k are the unit vectors and q is the heat flux.

    Total energy E is related to the total enthalpy H by

    2.2.Turbulence model

    The numerical method in this paper uses the Spalart–Allmaras(S–A)turbulence model,which is a relatively simple one-equation model that solves a modeled transport equation for the kinematic eddy(turbulent)viscosity.The S–A model was designed specifically for aeronautics and astronautics applications involving wall-bounded flows and has been shown to give good results for boundary layers subjected to adverse pressure gradients.Moreover,the computational complexity of the S–A model is small and its rate of convergence is fast.

    The transported variable~v in the S–A model is identical to the turbulent kinematic viscosity except in the near-wall(viscosity-affected)region.The transport equation for~v is

    Fig.9 Drag coefficient of tail(CD)Tvs angle of attack α.

    Table 2 Drag coefficient of tail,α =12°.

    Fig.10 Pressure contours of the z=0.08 section,α =12°.

    where Gvis the production of turbulent viscosity and Yvthe destruction of turbulent viscosity that occurs in the near-wall region due to wall blocking and viscous damping.σ~vand Cb2are the constants and~v is the molecular kinematic viscosity.μ is the dynamic viscosity of thefluid.

    2.3.FSW models and computational conditions

    As shown in Fig.1(a),the FSW configuration is composed of body(B),wing(W)and tail(T).According to Table 1,which shows the geometric parameters of each part.

    Fig.11 Lift-drag ratio of tail(L/D)Tvs angle of attack α.

    Fig.1(b)is the left view of body with different FSW positions.The letters ‘B”,‘T” and ‘W” represent the body,tail and wing respectively.The subscripts‘high”,‘middle”,‘low”,‘front” and ‘back” represent different positions of FSW.A simple configuration named BT(Body and Tail)is added to study the aerodynamic characteristics of aircraft with and without wing contrastively.

    The Mach number,static pressure and temperature are Ma=1.5,P=101325 Pa and T=300 K respectively.The range of angle of attack α is 0°–12°.The length of body LB=1 m is used as the reference length,and the cross section area of cylindrical body Sref=0.0064 m2is used as the reference area.

    2.4.Grid and boundary conditions

    As shown in Fig.2,half of the FSW model is utilized to save the computing resources and improve the computational efficiency.The structured grid is used to discrete the computational domain.The pressurefar-field boundary condition is adopted for the outer boundary of computational domain.The symmetry boundary condition is imposed on the longitudinal symmetrical plane.The no-slip wall boundary condition is applied on the surface of aircraft.

    Fig.12Center of pressure coefficient of tailvs angle of attack α.

    Fig.13 Aerodynamic characteristics of the whole aircraft.

    2.5.Validation of computational method

    In order to validate the accuracy of the computational method,the viscous flow field of ONERA-M6 wing is calculated under the conditions of Ma=0.8395,Re=1.172×107and α =3.06°.Fig.3 shows the pressure distribution curves of ONERA-M6 wing surface at 20%and 90%spanwise sections.The calculation results agree well with the experimental data,15which validates the accuracy of the computational method in this paper.Moreover,the calculation method could capture the local shock wave of the wing,which means it is suitable for low supersonic conditions.

    3.Results and analysis

    3.1.Aerodynamic characteristics of FSW aircraft with different vertical wing positions

    The flow field of aircraft with different FSW vertical positions was calculated at Ma=1.5.Fig.4 shows the lift coefficient of a pair of horizontal tails.Compared with the tail of FSW configurations,the tail of BT con figuration has a bigger lift coefficient at the same angle of attack.For the con figurations with FSW,the lower the vertical position of FSW,the smaller the lift coefficient of tail.

    Fig.5 shows the pressure distribution curves of tail surface at α =12°.Normally,the upper tail surface has a smaller pressure coefficient than the lower tail surface,generating a positive normal force.According to Fig.5(a),compared with the tail of BTWmiddle,the tail of BTWhighhas a bigger pressure difference and positive normal force.

    According to Fig.6,which shows the details of Fig.5(a),the upper tail surface of BTWlowhas a bigger pressure coefficient than the lower tail surface.Consequently,the tail root of BTWlowgenerates a negative normal force and decreases the total normal force of tail.As is known,normal force makes a great contribution to lift.

    Based on the above analysis,the lift coefficient of the tail of BTWhighis the biggest,and the lower the vertical position of FSW,the smaller lift coefficient of tail.This agrees well with the regularity in Fig.4.

    As shown in Fig.7,the spanwise flow of FSW flows from the wingtip to wing root,generating an upper wing surface vortex and a trailing edge vortex nearby the wing root and tail root.There fore,the vortexes induced by FSW have a great influence on the aerodynamic characteristics of the tail root.Fig.7 also shows the rotational direction of the vortexes;the trailing edge vortex has the same rotational direction with the wingtip vortex.On the contrary,the upper wing surface vortex has an opposite rotational direction.

    Fig.14 Aerodynamic characteristics of horizontal tail.

    Fig.8 displays the streamlines of the cross-section which is perpendicular to the body axis at the position of x=0.94(x/LB=94%).For the BT configuration without FSW,there is a leeward side vortex above the tail and a windward side vortex below the tail.For the configurations with FSW,such as BTWhighand BTWmiddle,there is an upper wing surface vortex and a trailing edge vortex above the tail,and a windward side vortex below the tail.The flow field structure of the tail of BTWlowconfiguration is similar to the formers,but the trailing edge vortex is divided into two parts by the horizontal tail.As shown in Fig.8(d),the strength of the trailing edge vortex under the tail is stronger than the trailing edge vortex on the tail.Thus the upper tail surface has a bigger pressure coefficient than the lower tail surface,generating a negative normal force at the tail root.

    In summary,both Figs.5 and 8 demonstrate that the vortexes induced by FSW have a significantly downwash effect on the tail,especially on the tail root.The lower the vertical position of FSW,the stronger the downwash effect on the tail;meanwhile the lift coefficient of tail decreases.

    The drag coefficient of a pair of horizontal tails is shown in Fig.9.In the angle of attack range of 0–4°,the drag coefficient of the tail of BTWmiddleis the smallest.But in the angle of attack range of 6–12°,the lower the vertical position of FSW,the smaller the drag coefficient of tail.

    According to Table 2,at the angle of attack α =12°,the pressure drag coefficient of tail decreases with FSW moving downward,but thefriction drag coefficient of tail is basically unchanged.Consequently,the total drag coefficient of tail decreases and this agrees well with the regularity in Fig.9.

    It is known that the shock wave makes a great contribution to the total drag under supersonic condition.Fig.10 gives out the pressure contours of the z=0.08 longitudinal section,which shows the in fluence of FSW on the shock wave strength of tail.As shown in Fig.10,at the position of z=0.08,the lower the vertical position of FSW,the weaker the shock wave strength.In addition,the pressure drag coefficient of tail becomes smaller,and the total drag coefficient of tail decreases.

    相較于現(xiàn)代醫(yī)學(xué),中醫(yī)辨證施治則可通過抑制氣道重塑、調(diào)節(jié)炎性因子、調(diào)節(jié)體內(nèi)免疫功能、改善其血流動(dòng)力學(xué)狀態(tài)、糾正氧化與抗氧化失衡狀態(tài)、影響激素變化等方式對(duì)穩(wěn)定期慢性阻塞性肺疾病產(chǎn)生發(fā)展多環(huán)節(jié)進(jìn)行多靶點(diǎn)、多途徑調(diào)節(jié),從而延緩穩(wěn)定期慢性阻塞性肺疾病患者病情進(jìn)展,提升本病患者的生存質(zhì)量。有研究證實(shí),對(duì)穩(wěn)定期慢性阻塞性肺疾病患者進(jìn)行中西醫(yī)結(jié)合治療的臨床效果更佳[24]。

    In a word,Table 2 and Fig.10 indicate the same thing,the flow of FSW has a great effect on the pressure drag of tail.The pressure drag and total drag coefficients of tail decrease with the FSW moving downward.

    As shown in Fig.11,in the angle of attack range of 0–10°,the lower the vertical position of FSW,the smaller lift-drag ratio of tail.

    Fig.15 Pressure contours of the z=0.08 longitudinal section,α =12°.

    Fig.12 shows the center of pressure coefficient of tail,which is defined as

    where(xcp)Tis the chordwise distance between the leading edge of tail root and the center of pressure of tail,and b0the length of the root chord of tail.It can be seen from Fig.12,the lower the vertical position of FSW,the bigger the center of pressure coefficient of the tail.

    The aerodynamic characteristics of the whole aircraft are shown in Fig.13.At a high angle of attack,the lower the vertical position of FSW,the smaller the lift and drag coefficients of the whole aircraft.Moreover,the center of pressure moves forward gradually.

    3.2.Aerodynamic characteristics of FSW aircraft with different longitudinal wing positions

    Fig.14 shows the effects caused by the longitudinal positions of FSW on the aerodynamic characteristics of the horizontal tail.It can be observed that the longitudinal positions of FSW affect the lift and drag characteristics little.Fig.14(d)shows that the pressure centers of the tail of BTWfrontand BTWmiddleare similar,and both of them locate in front of the pressure center of the tail of BTWback.

    Shock wave makes a great contribution to the total drag under supersonic condition.Fig.15 gives the pressure contours of the z=0.08 longitudinal section,which shows the influence of FSW on the shock wave strength of tail.As shown in Fig.15,with FSW moving towards tail,the shock wave strength of the horizontal tail is basically unchanged,thus the pressure drag coefficient of tail changes little.In addition,the total drag coefficient of tail is basically unchanged.

    4.Conclusions

    (1)The spanwiseflow of FSW flows from the wingtip to wing root,generating an upper wing surface vortex and a trailing edge vortex nearby the wing root.

    (2)The vortexes generated by FSW have a strong downwash effect on the tail,especially on the tail root.The lower the vertical position of FSW,the stronger the downwash effect on tail.There fore,the effective angle of attack of tail becomes smaller.In addition,the lift coefficient,drag coefficient and lift-drag ratio of tail decrease,and the center of pressure of tail moves backward gradually.At high angle of attack,the lower the vertical position of FSW,the smaller lift,drag and center of pressure coefficients of the whole aircraft.

    (3)The closer the FSW moves towards tail,the bigger pitching moment and center of pressure coefficients of the whole aircraft,but the lift and drag characteristics of horizontal tail and the whole aircraft are basically unchanged.

    Fig.16 Aerodynamic characteristics of the whole aircraft.

    1.Behrbohm H.Basic low speed aerodynamic of short-coupled canard configuration of small aspect ratio.Sweden:Linkoping;1965.Report No.:SAABTN-60.

    2.Breitsamter C,Laschka B.Vortical flow field structure at forward swept-wing configurations.J Aircr 2001;38(2):193–206.

    3.Zhang GQ,Yu SCM,Chien A,Yang SX.Aerodynamic characteristics of canard- forward sweptwing aircraft configurations.J Aircr 2013;50(2):378–87.

    4.Zhang GQ,Yang SX,Xu Y.Investigation of vortex interaction in canard-FSW configurations based on the numerical wind tunnel method.Chin J Aeronaut 2009;23(3):3129.

    5.Owens DB,Perkins JN.Stability and control of a three-surface,FSW configuration.J Aircr 1996;33(06):1206–8.

    6.Wang JJ,Zhao X,Wang SF,et al.Experimental investigation on longitudinal aerodynamic characteristics of canard-FSW configuration.Acta Aerodynamica Sin 2004;22(2):237–40[Chinese].

    7.Liu WF,Wang X,Zhang L.Longitudinal characteristics of the aerodynamic configuration with variable FSW.Flight Dyn 2008;26(4):4–7[Chinese].

    8.Liu WF,Wang X,Mi K.A new aerodynamic configuration of UAV with variable FSW.Acta Aeronaut Astronaut Sin 2009;30(5):1–5[Chinese].

    9.Liu WF,Wang X,Liu X.Aerodynamic characteristics and flow mechanism of the configuration with variable FSW.Acta Aerodynamica Sin 2010;28(5):559–64[Chinese].

    10.Sun J,Zhang BQ,Zhou Z,et al.An innovative W-shaped tailless aerodynamic configuration.J Northwestern Polytech Univ 2004;22(3):265–8[Chinese].

    11.Xiao H,Wang LX.Research on control principles and stability characteristics of W-shaped tailless aircraft.Acta Aeronaut Astronaut Sin 2007;28(5):1062–8[Chinese].

    12.Traub LW,Lawrence J.Aerodynamic characteristics of forward and aft swept arrow wings.J Aircr 2009;46(4):1454–7.

    13.Zhang BQ,Laschka B.Control of separated flow at the root for forward swept wing.Acta Aeronaut Astronaut Sin 1992;13(5):241–6[Chinese].

    14.Zhang BQ,Laschka B.On FSW’s aerodynamic characteristics.J Northwestern Polytech Univ 1989;7(3):321–8[Chinese].

    15.Schmitt V,Charpin F.Pressure distributions on the ONERA M6-Wing at transonic Mach numbers,experimental data base for computer program assessment.Paris:the Fluid Dynamics Panel Working Group 04;1979.Report No.:AGARD AR-138.

    Lei Juanmian is a prof essor in Beijing Institute of Technology.Her main research interests arefluid mechanics and aerodynamics.

    Zhao Shuai received his master’s degree at Beijing Institute of Technology in 2016.His main research interest is aerodynamics.

    Wang Suozhu finished his postdoctoral work in Beijing Institute of Technology.His main research interests arefluid mechanics and aerodynamics.

    27 April 2015;revised 7 January 2016;accepted 7 March 2016

    Available online 22 June 2016

    Aerodynamic characteristics;

    Downwash effect;

    Forward-swept wing;

    Numerical simulation;

    Supersonic flow

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.Thisisan open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 10 68912414.

    E-mail addresses:leijm@bit.edu.cn(J.Lei),zhaoshuai985@126.com(S.Zhao),wangsuozhu@163.com(S.Wang).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.06.006

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    猜你喜歡
    穩(wěn)定期病患者靶點(diǎn)
    布地奈德福莫特羅治療慢阻肺穩(wěn)定期,慢阻肺合并肺癌穩(wěn)定期患者的臨床療效
    為罕見病患者提供健康保障
    維生素D受體或是糖尿病治療的新靶點(diǎn)
    中老年保健(2021年3期)2021-12-03 02:32:25
    節(jié)能技術(shù)在呼吸病患者康復(fù)中的應(yīng)用
    中老年保健(2021年4期)2021-08-22 07:08:14
    腫瘤免疫治療發(fā)現(xiàn)新潛在靶點(diǎn)
    讓慢病患者及時(shí)獲得創(chuàng)新藥物
    循序漸進(jìn)式健康教育在基層醫(yī)院卒中病患者中的應(yīng)用
    心力衰竭的分子重構(gòu)機(jī)制及其潛在的治療靶點(diǎn)
    氯胺酮依賴腦內(nèi)作用靶點(diǎn)的可視化研究
    同位素(2014年2期)2014-04-16 04:57:16
    舒利迭聯(lián)合喘可治注射液治療COPD穩(wěn)定期的臨床療效觀察
    国产精品一区二区免费欧美| 十八禁网站免费在线| 欧美另类亚洲清纯唯美| 99热只有精品国产| 婷婷精品国产亚洲av| 亚洲精品日韩av片在线观看| 午夜久久久久精精品| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看| 淫秽高清视频在线观看| 九九在线视频观看精品| 欧美高清性xxxxhd video| 午夜亚洲福利在线播放| 婷婷精品国产亚洲av在线| 熟女人妻精品中文字幕| 亚洲熟妇中文字幕五十中出| 国产视频一区二区在线看| 精品日产1卡2卡| 在线观看美女被高潮喷水网站| 精品午夜福利在线看| 精品午夜福利视频在线观看一区| 国产精品日韩av在线免费观看| 日本免费一区二区三区高清不卡| 免费在线观看日本一区| 亚洲av中文av极速乱 | 黄色丝袜av网址大全| 亚洲av一区综合| 国产一区二区三区av在线 | 99视频精品全部免费 在线| 久9热在线精品视频| 亚洲国产欧洲综合997久久,| 波野结衣二区三区在线| 久久精品国产亚洲av涩爱 | 一本久久中文字幕| 大型黄色视频在线免费观看| 九九爱精品视频在线观看| 久久九九热精品免费| 超碰av人人做人人爽久久| 老熟妇仑乱视频hdxx| 成人性生交大片免费视频hd| 九九久久精品国产亚洲av麻豆| 国产伦精品一区二区三区四那| 俺也久久电影网| 日日夜夜操网爽| 婷婷精品国产亚洲av在线| 亚洲欧美日韩高清在线视频| a在线观看视频网站| 大型黄色视频在线免费观看| xxxwww97欧美| 黄片wwwwww| .国产精品久久| 亚洲图色成人| 一区二区三区四区激情视频 | 亚洲精品成人久久久久久| 国产伦在线观看视频一区| 男人和女人高潮做爰伦理| 美女大奶头视频| 窝窝影院91人妻| 最后的刺客免费高清国语| 搡女人真爽免费视频火全软件 | 免费搜索国产男女视频| netflix在线观看网站| 嫁个100分男人电影在线观看| 久久精品国产清高在天天线| 国产蜜桃级精品一区二区三区| 美女黄网站色视频| 午夜亚洲福利在线播放| 男插女下体视频免费在线播放| 给我免费播放毛片高清在线观看| 黄色女人牲交| 精品一区二区三区视频在线观看免费| 天堂av国产一区二区熟女人妻| aaaaa片日本免费| 久久午夜福利片| 亚洲狠狠婷婷综合久久图片| 村上凉子中文字幕在线| 欧美+日韩+精品| 老司机午夜福利在线观看视频| 偷拍熟女少妇极品色| 亚洲一级一片aⅴ在线观看| 日韩欧美国产一区二区入口| 日韩av在线大香蕉| 两性午夜刺激爽爽歪歪视频在线观看| 春色校园在线视频观看| 免费人成在线观看视频色| av女优亚洲男人天堂| 校园人妻丝袜中文字幕| 国产精品自产拍在线观看55亚洲| 国产视频一区二区在线看| 联通29元200g的流量卡| 如何舔出高潮| 俺也久久电影网| 日日干狠狠操夜夜爽| 色哟哟·www| 欧美bdsm另类| 成人国产一区最新在线观看| 九九在线视频观看精品| 精品久久久久久久人妻蜜臀av| 有码 亚洲区| 欧美又色又爽又黄视频| 欧美绝顶高潮抽搐喷水| 成熟少妇高潮喷水视频| 成年人黄色毛片网站| 日本a在线网址| 精品一区二区免费观看| 日本黄大片高清| 国产亚洲精品av在线| 国产久久久一区二区三区| 一区二区三区免费毛片| 男女边吃奶边做爰视频| 亚洲成人中文字幕在线播放| 国产一级毛片七仙女欲春2| 在线国产一区二区在线| 级片在线观看| 最新在线观看一区二区三区| 国模一区二区三区四区视频| 欧美性猛交黑人性爽| 国产黄片美女视频| 中出人妻视频一区二区| 午夜免费激情av| 日韩强制内射视频| 国产精品国产三级国产av玫瑰| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 69人妻影院| 久久精品91蜜桃| 国产精华一区二区三区| 久久亚洲精品不卡| 亚洲精品在线观看二区| 国产高潮美女av| 亚洲电影在线观看av| h日本视频在线播放| 老司机深夜福利视频在线观看| 18+在线观看网站| 午夜精品一区二区三区免费看| 色尼玛亚洲综合影院| 中出人妻视频一区二区| 在线免费观看不下载黄p国产 | 免费一级毛片在线播放高清视频| 成人亚洲精品av一区二区| 亚洲av免费高清在线观看| 欧美xxxx黑人xx丫x性爽| 日韩av在线大香蕉| 久久久久久国产a免费观看| 波多野结衣高清作品| 国产免费av片在线观看野外av| av国产免费在线观看| 国产精品一及| 亚洲18禁久久av| 丰满的人妻完整版| 亚洲一区二区三区色噜噜| 亚洲国产高清在线一区二区三| 中文亚洲av片在线观看爽| 看免费成人av毛片| 小蜜桃在线观看免费完整版高清| 尤物成人国产欧美一区二区三区| 99热这里只有是精品在线观看| 久久久国产成人免费| videossex国产| 一a级毛片在线观看| 91久久精品电影网| 国产精品久久久久久久电影| 亚洲最大成人中文| 日韩欧美在线乱码| 91麻豆av在线| aaaaa片日本免费| 亚洲无线在线观看| 3wmmmm亚洲av在线观看| 久久热精品热| 村上凉子中文字幕在线| 看黄色毛片网站| 免费人成在线观看视频色| 欧美高清性xxxxhd video| 亚洲精品乱码久久久v下载方式| 久久午夜亚洲精品久久| 国产黄色小视频在线观看| 国语自产精品视频在线第100页| 国产精品久久久久久久久免| 一个人观看的视频www高清免费观看| 久久国内精品自在自线图片| 天堂影院成人在线观看| 免费一级毛片在线播放高清视频| av女优亚洲男人天堂| 一级a爱片免费观看的视频| 免费看光身美女| 好男人在线观看高清免费视频| 亚洲综合色惰| 精品人妻视频免费看| 欧美一区二区精品小视频在线| 全区人妻精品视频| 国产精品国产高清国产av| 中国美白少妇内射xxxbb| 欧美激情国产日韩精品一区| 丰满的人妻完整版| 男女下面进入的视频免费午夜| 波野结衣二区三区在线| 三级男女做爰猛烈吃奶摸视频| 伦理电影大哥的女人| 又紧又爽又黄一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲av五月六月丁香网| 最近在线观看免费完整版| 亚洲aⅴ乱码一区二区在线播放| 日本a在线网址| 欧美性感艳星| а√天堂www在线а√下载| 俄罗斯特黄特色一大片| 嫩草影院入口| or卡值多少钱| 淫秽高清视频在线观看| 最近中文字幕高清免费大全6 | 亚洲精华国产精华精| 岛国在线免费视频观看| 亚洲av第一区精品v没综合| 一边摸一边抽搐一进一小说| 最新在线观看一区二区三区| 黄色欧美视频在线观看| 国产av一区在线观看免费| 亚洲精品乱码久久久v下载方式| 亚洲av不卡在线观看| 亚洲一区高清亚洲精品| 久久99热6这里只有精品| 亚洲欧美精品综合久久99| 简卡轻食公司| 无人区码免费观看不卡| 日韩 亚洲 欧美在线| 久久久色成人| 久9热在线精品视频| 简卡轻食公司| 亚洲av免费高清在线观看| 别揉我奶头~嗯~啊~动态视频| 国产成人av教育| 日本撒尿小便嘘嘘汇集6| 色视频www国产| 久久精品国产99精品国产亚洲性色| 91麻豆av在线| 淫秽高清视频在线观看| 国产伦人伦偷精品视频| 国语自产精品视频在线第100页| 一级a爱片免费观看的视频| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 国产白丝娇喘喷水9色精品| 亚洲成人中文字幕在线播放| 久久6这里有精品| 亚洲男人的天堂狠狠| 成人国产综合亚洲| 久久精品夜夜夜夜夜久久蜜豆| 日本 欧美在线| 欧美性感艳星| 国产高清视频在线观看网站| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲av嫩草精品影院| av女优亚洲男人天堂| 一级黄片播放器| 狂野欧美白嫩少妇大欣赏| 韩国av在线不卡| 精品人妻一区二区三区麻豆 | a级毛片免费高清观看在线播放| 国产一区二区三区在线臀色熟女| 极品教师在线免费播放| 最近最新免费中文字幕在线| 97热精品久久久久久| 禁无遮挡网站| 久久久国产成人精品二区| 日韩欧美在线二视频| av专区在线播放| 成年版毛片免费区| 12—13女人毛片做爰片一| 黄片wwwwww| 高清日韩中文字幕在线| 国产一区二区亚洲精品在线观看| 男女之事视频高清在线观看| 欧美性猛交黑人性爽| 久久久久久久精品吃奶| 久久国内精品自在自线图片| 无人区码免费观看不卡| 亚洲avbb在线观看| 国产又黄又爽又无遮挡在线| 国产精品人妻久久久久久| 变态另类成人亚洲欧美熟女| 国产精品福利在线免费观看| 九九久久精品国产亚洲av麻豆| 床上黄色一级片| av视频在线观看入口| 日韩亚洲欧美综合| 免费看日本二区| av专区在线播放| 一个人看的www免费观看视频| 在线天堂最新版资源| 深夜a级毛片| 久久人人爽人人爽人人片va| 日日干狠狠操夜夜爽| 国产人妻一区二区三区在| 欧美丝袜亚洲另类 | 久久久久久九九精品二区国产| 成人国产麻豆网| 极品教师在线免费播放| 琪琪午夜伦伦电影理论片6080| 亚洲va在线va天堂va国产| 特大巨黑吊av在线直播| 特大巨黑吊av在线直播| 国产伦精品一区二区三区四那| 日韩国内少妇激情av| 在线观看66精品国产| 国产高潮美女av| 亚洲自拍偷在线| 日本五十路高清| 亚洲综合色惰| 嫩草影院精品99| 一区二区三区免费毛片| 国产麻豆成人av免费视频| 日本三级黄在线观看| 国产亚洲精品av在线| 精品一区二区三区人妻视频| 美女免费视频网站| 久久久久久大精品| 男人和女人高潮做爰伦理| 韩国av在线不卡| 99久久成人亚洲精品观看| 看片在线看免费视频| 国产亚洲精品久久久久久毛片| 日韩欧美精品v在线| 国产一区二区在线观看日韩| 亚洲自拍偷在线| 中文亚洲av片在线观看爽| 床上黄色一级片| 真人一进一出gif抽搐免费| 日本黄大片高清| 搞女人的毛片| 黄色日韩在线| 永久网站在线| 精品一区二区免费观看| 美女xxoo啪啪120秒动态图| 别揉我奶头~嗯~啊~动态视频| 九九爱精品视频在线观看| 欧美人与善性xxx| 欧美+亚洲+日韩+国产| 亚洲成人精品中文字幕电影| 国产亚洲精品av在线| 午夜福利在线观看免费完整高清在 | 内射极品少妇av片p| 日本黄大片高清| 少妇人妻一区二区三区视频| 亚洲一级一片aⅴ在线观看| 一级毛片久久久久久久久女| 成人午夜高清在线视频| 狠狠狠狠99中文字幕| 麻豆精品久久久久久蜜桃| 久久人妻av系列| 国产黄片美女视频| 国产av在哪里看| 九色成人免费人妻av| 国产淫片久久久久久久久| 午夜久久久久精精品| 看十八女毛片水多多多| 嫩草影视91久久| 亚洲一级一片aⅴ在线观看| 色精品久久人妻99蜜桃| 国产精品伦人一区二区| 亚洲欧美日韩高清在线视频| 欧美+日韩+精品| 国产精品综合久久久久久久免费| 免费电影在线观看免费观看| 校园人妻丝袜中文字幕| 国内精品宾馆在线| 亚洲人成网站高清观看| 欧美不卡视频在线免费观看| 日日啪夜夜撸| 天堂√8在线中文| 少妇的逼水好多| 禁无遮挡网站| 一级av片app| 看片在线看免费视频| av天堂中文字幕网| 国产 一区精品| 日本a在线网址| 国产精品永久免费网站| 国产精品国产高清国产av| 国产一区二区三区av在线 | 久9热在线精品视频| 亚洲天堂国产精品一区在线| 欧美日韩瑟瑟在线播放| 国产三级在线视频| 床上黄色一级片| 在现免费观看毛片| 久久人妻av系列| .国产精品久久| 国产精品爽爽va在线观看网站| 国产精品永久免费网站| 亚洲国产精品合色在线| 日本免费一区二区三区高清不卡| 亚洲av.av天堂| 在线观看午夜福利视频| 久久精品国产鲁丝片午夜精品 | 国产av不卡久久| 久久久色成人| 国产av麻豆久久久久久久| ponron亚洲| 色哟哟·www| 中出人妻视频一区二区| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 波野结衣二区三区在线| 国产视频内射| 99久久精品一区二区三区| 22中文网久久字幕| 狂野欧美激情性xxxx在线观看| 成年免费大片在线观看| 日韩国内少妇激情av| 国产乱人视频| 波多野结衣高清作品| 在线免费十八禁| 久久精品国产亚洲av涩爱 | 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看| 日本色播在线视频| 校园人妻丝袜中文字幕| 婷婷丁香在线五月| av在线老鸭窝| 亚洲精品一区av在线观看| 最近视频中文字幕2019在线8| 欧美3d第一页| 日韩国内少妇激情av| 国产主播在线观看一区二区| 久久午夜亚洲精品久久| a级一级毛片免费在线观看| 美女被艹到高潮喷水动态| 久久精品国产亚洲av涩爱 | 国产成人av教育| 久久久久免费精品人妻一区二区| 国产乱人视频| 亚洲无线在线观看| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 亚洲人成伊人成综合网2020| 中文字幕高清在线视频| 成人三级黄色视频| 成人无遮挡网站| av在线老鸭窝| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 国产精品电影一区二区三区| 22中文网久久字幕| 毛片一级片免费看久久久久 | 久久人妻av系列| 精品一区二区三区视频在线观看免费| 一夜夜www| 性欧美人与动物交配| 伦理电影大哥的女人| 香蕉av资源在线| 国产欧美日韩一区二区精品| 日日摸夜夜添夜夜添小说| 午夜福利高清视频| 97碰自拍视频| 偷拍熟女少妇极品色| 日韩大尺度精品在线看网址| 搡老熟女国产l中国老女人| 日韩中字成人| 亚洲欧美清纯卡通| 91在线观看av| 国产 一区精品| 午夜免费激情av| 免费一级毛片在线播放高清视频| av国产免费在线观看| 99riav亚洲国产免费| 免费人成在线观看视频色| 精品人妻1区二区| 毛片一级片免费看久久久久 | 亚洲中文日韩欧美视频| 国产亚洲精品久久久久久毛片| 免费av不卡在线播放| 在线免费观看的www视频| 桃色一区二区三区在线观看| av天堂中文字幕网| 亚洲无线在线观看| 99久久成人亚洲精品观看| 在线天堂最新版资源| 我要看日韩黄色一级片| 又爽又黄a免费视频| 亚洲av中文av极速乱 | 免费观看精品视频网站| 自拍偷自拍亚洲精品老妇| 免费观看的影片在线观看| 日日摸夜夜添夜夜添av毛片 | 免费看日本二区| 亚洲一区二区三区色噜噜| 99国产精品一区二区蜜桃av| 免费观看精品视频网站| 在线观看一区二区三区| 国产人妻一区二区三区在| h日本视频在线播放| a级毛片免费高清观看在线播放| 人妻久久中文字幕网| 91在线观看av| 国产精品免费一区二区三区在线| 亚洲成a人片在线一区二区| 国产亚洲精品久久久久久毛片| 舔av片在线| 九色国产91popny在线| 久久人人精品亚洲av| 日本欧美国产在线视频| 成人永久免费在线观看视频| 国产精品国产三级国产av玫瑰| 性欧美人与动物交配| 身体一侧抽搐| 91久久精品国产一区二区成人| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 日本a在线网址| 啦啦啦韩国在线观看视频| 久久这里只有精品中国| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久久电影| 一级毛片久久久久久久久女| 国产成人a区在线观看| 日本色播在线视频| 简卡轻食公司| 婷婷精品国产亚洲av| 最近视频中文字幕2019在线8| 日韩欧美国产在线观看| 成人三级黄色视频| 久99久视频精品免费| 在线观看66精品国产| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 黄片wwwwww| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕日韩| а√天堂www在线а√下载| 国产探花在线观看一区二区| 最好的美女福利视频网| 俺也久久电影网| 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 蜜桃久久精品国产亚洲av| 1000部很黄的大片| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 国产精品一区二区性色av| 欧美一区二区国产精品久久精品| 禁无遮挡网站| 97超级碰碰碰精品色视频在线观看| 久久草成人影院| 午夜福利18| 亚洲欧美日韩高清专用| 成年版毛片免费区| 免费大片18禁| 看片在线看免费视频| 精品午夜福利在线看| 色尼玛亚洲综合影院| 一级a爱片免费观看的视频| 中文字幕精品亚洲无线码一区| 国产精品98久久久久久宅男小说| 免费看美女性在线毛片视频| 国产av一区二区精品久久 | 激情五月婷婷亚洲| 直男gayav资源| 日韩精品有码人妻一区| 中文字幕亚洲精品专区| 男女下面进入的视频免费午夜| 亚洲图色成人| 免费播放大片免费观看视频在线观看| 性色av一级| 日韩av在线免费看完整版不卡| 在现免费观看毛片| 国产熟女欧美一区二区| 国模一区二区三区四区视频| 伦理电影大哥的女人| 国产黄片视频在线免费观看| 久久鲁丝午夜福利片| 国产av国产精品国产| 十八禁网站网址无遮挡 | 亚洲综合色惰| 高清毛片免费看| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| av免费观看日本| 国产视频内射| 免费人妻精品一区二区三区视频| 在线免费观看不下载黄p国产| 91久久精品电影网| 久久久久精品性色| 欧美精品一区二区大全| 日韩亚洲欧美综合| av.在线天堂| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 黑丝袜美女国产一区| 国产精品久久久久久av不卡| 看免费成人av毛片| av国产精品久久久久影院| 精品亚洲成a人片在线观看 | 深爱激情五月婷婷| 中国美白少妇内射xxxbb| 色哟哟·www| 一级毛片 在线播放| 欧美精品国产亚洲| 国产在线一区二区三区精| 免费播放大片免费观看视频在线观看| 一级av片app| 日本色播在线视频| 如何舔出高潮| 26uuu在线亚洲综合色| 美女视频免费永久观看网站| av国产免费在线观看| 国产精品久久久久久久久免| 最黄视频免费看| 嘟嘟电影网在线观看| 亚洲成人中文字幕在线播放| 亚洲精品中文字幕在线视频 | 日本欧美视频一区|