• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition study of 3D aerodynamic configures using improved transport equations modeling

    2016-11-24 00:47:10XuJiakuanBaiJunqiangZhangYangQiaoLei
    CHINESE JOURNAL OF AERONAUTICS 2016年4期

    Xu Jiakuan,Bai Junqiang,Zhang Yang,Qiao Lei

    School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

    Transition study of 3D aerodynamic configures using improved transport equations modeling

    Xu Jiakuan,Bai Junqiang*,Zhang Yang,Qiao Lei

    School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

    As boundary layer transition plays an important role in aerodynamic drag prediction,the proposal and study of transition prediction methods simulating the complex flow phenomena are prerequisite for aerodynamic design.In this paper,with the application of the linear stability theory based on amplification factor transport transition equations on the two-equation shear stress transport(SST)eddy-viscosity model,a new method,the SST-NTS-NCFmodel,is yielded.The new amplification factor transport equation for the crossflow instability induced transition is proposed to add to the NTSequation proposed by Coder,which simulates Tollmien–Schlichting wave transition.The turbulent kinetic energy equation is modified by introducing a new source term that simulates the transition process without the intermittency factor equation.Finally,coupled with these two amplification factor transport equations and SST turbulence model,a four-equation transition turbulence model is built.Comparisons between predictions using the new model and wind-tunnel experiments of NACA64(2)A015,NLF(2)-0415 and ONERA-D infinite swept wing and ONERAM6 swept wing validate the predictive quality of the new SST-NTS-NCFmodel.

    1.Introduction

    With the development of experiment technology,the details of boundary layer transition flows had been researched and revealed very well.1,2In the meantime,the compatible way for engineer application-computational fluid dynamics(CFD)method,is gradually applied and developed for the drag prediction of boundary transition for the aerodynamic design of aircraft.Prediction of boundary layer transition is an important part in the simulation of boundary layer flows because lift and drag are significantly influenced by the transition locations.In 2D boundary layers,bypass transition,laminar separation bubbles and Tollmien–Schlichting(TS)wave always lead to transition.But in 3D boundary layers,crossflow instability usually play an important role in triggering the transition,especially for the swept wing with large swept angle.The prediction of transition phenomenon has an important meaning for aerodynamic calculations.There fore,it is necessary to study and establish a new method to simulate these transition phenomena.To predict these phenomena numerically,an appropriate approach would probably be large eddy simulation(LES)or direct numerical simulations(DNS).But these methods cost huge computational resources.So it could not be used in engineering application.

    In recent years,many methods were proposed to predict boundary layer transition based on Reynoldsaverage Navier–Stokes(RANS)method.A model for bypass and natural transition prediction using the laminar kinetic energy transport equation was proposed by Walters et al.3–5In 2004, Langtry and Menter developed thecorrelation-based transition model6–8using local variables which are coupled with Menter’s two-equation k-ω shear stress transport(SST)turbulent model.9This transition model,which could predict the natural transition,laminar separation transition and the bypass transition,is widely applied in engineering field.10,11But these methods could not predict the cross flow instability induced transition.

    In aviation field,a widely used method in applied aerodynamics is the eNmethod which is based on linear stability analysis,specifically the eNmethod proposed by Smith and Gamberoni12and Van Ingen13.The eNmethod14is basically designed for 2D boundary layers and can be extended to 3D boundary layers,but it still exhibits some deficiencies.A major disadvantage of this method is that the N-factor,which is responsible for a critical amplification of linear disturbances,has to be fit to each test case.Additionally,the application of the eNmethod for a RANS code is complicated due to thefact that some non-local variables need to be solved.Integral boundary layer quantities are gradually solved by some other local variables.

    In 2013,the streamwise amplification factor equation15for TS wave instability has been applied to the Spalart–Allmaras(SA)one-equation eddy-viscosity model16.The equation was validated by using many con figurations in Ref.15But this model is still under development and not impeccable for the cross flow instability induced transition on swept wings.In this paper,the Falkner-Skan-Cooke(FSC)17boundary layer similar equations and linear stability theory(LST)were used to analyze the crosswise velocity pro files and to establish a new amplification factor transport equation for prediction of cross flow instability.Fig.1 shows a series of cross flow velocity profiles of 45°swept wing in various pressure gradients calculated by FSC equations.In Fig.1,η is the non-dimensional distance normal to the wall,w the non-dimensional cross flow velocity and βHrepresents the Hartree pressure gradient.

    Fig.1 Crossflow velocity profiles on swept wings.

    For the transition equations coupling with turbulence model,the qualities of the SA model,in particular its turbulence-suppression function used in conjunction with user-specified trip lines,allow transition to be included without the addition of an intermittency transport equation.15This stands in contrast with the widely implemented transition framework of Langtry and Menter6–8,which uses such a transport equation.

    Finally,it is desirable to apply the two amplification factor transport transition equations(including NTSand NCFequations)to the SST turbulence model.A turbulent kinetic energy production term18was chosen without using an intermittency transport equation so that the two amplification factor transport equations are coupled with SST turbulence model for transition prediction of 3D aerodynamic configuration.

    2.Amplification factor transport equation modeling

    2.1.New NCFamplification factor transport equation governing equation

    With the study of Coder’s model15,the approximate envelope mNethods of Gleyzes et al.19and Drela and Giles20simplify the emethod by tracking only the maximum amplitude of the most-amplified frequencies and assuming linear amplitude growth with locally self-similar boundary-layer development.15Using the approximate envelope method for analysis of crossflow stationary vortices,the envelop amplification factor NCFof the cross flow instabilities is determined as

    The integrand characterizes the spatial growth rate of the instability and depends entirely on the local boundary-layer shapefactor and crosswise displacement thickness ReδCF.Similar to NTSequation,the crosswise amplification factor transport equation is proposed:

    The source term Pn,CFof this equation is a function of streamwise shapefactor H12calculated by a local pressure gradient parameter HLthrough the Falkner-Skan profiles.The coefficient of diffusion term σn,CFis equal to 1.0.In Eq.(2),μ and μtare laminar viscosity value and eddy viscosity value respectively.The source term Pn,CFis

    where Ω is the absolute value of vorticity,ρ the density,fkthe control function,fk=exp[-(RT/2.0)20],RTthe viscous ratio,RT= μt/μ.Thefunction Ngrowth,CFof source term Pn,CFis a combination of correlations to describe the shape-factor dependency of the local boundary-layer growth rate in the crosswise direction.This function is defined as in Eq.(4)and obtained by the FSC velocity profiles.It relates the inflection of local crossflow velocity along the streamwise pressure gradient HLand streamwise shapefactor H12.

    where the three parts of function Ngrowth,CFwere similar to that of Coder’s model,but they werefitted afresh for crossflow velocity profiles.M(H12)and L(H12)werefitted to describe the growth of the crosswise displacement thickness in Falkner-Skan-Cooke boundary layers.The D(H12)correlation has been developed as the damping function and relates the crosswise displacement thickness using the FSC similarity velocity profiles.They are all functions of streamwise shapefactor H12and expressed as

    The Fcrit,CFfunction of source term Pn,CFis used to determine the unstable position of crossflow instability mode in boundary layer and defined as

    Fig.2 Solution of local crossflow velocity.

    where the constant Cz=10.0,Rez=.For swept wing,the cross flow velocity UCFiscalculated using the formula UCF=UsinΔ and the angle could be given by Δ =Λc-Λ+ΛGwhere ΛGis the geometry sweep angle,Λ=arctanthe local sweep angle,and Λcis given by arctan(v/u).In preceding formulas,Cpis pressure coefficient,u and v are Cartesian velocity components in the x-and zdirections respectively.These variables are illustrated in Fig.2 which contains the velocity normal to the leading edge Uc,the velocity component in the span-wise direction Ws,the velocity at boundary layer edge Ue,the stream-wise component velocity U and the crosswise component velocity W(corresponding to UCF).Using this method,the crossflow velocity UCFcould be calculated locally.If the configuration is complex,the redefined coordinate system method proposed by Choi and Kwon21could be used here to calculate the new swept angle under assumption that there is no pressure gradient in the spanwise direction.22Furthermore,the local flow velocity is used to define the reference coordinate system instead of the external potential flow direction,which could be adopted to estimate crossflow velocity UCFapproximately.ReδCF,0is the critical crosswise displacement thickness Reynolds number.is the development slope of NCFcalculated through the FSC velocity pro files and linear stability theory in infinite swept status which is in spatial pattern.Because the traveling crossflow mode is prone to dominant appearance in the presence of larger freestream disturbances,the stationary crossflow vortices is the major mode of swept wing in high fight altitude or low turbulence intensity tunnel.So the stationary mode is the key point of our research.For infinite swept wing,the time amplification rate ωiis 0 and the spanwise disturbance amplification rate βiis 0 according to the Mack’s method.23Also both thefrequency f and ωrare 0 for the analysis of crossflow stationary vortices.So the calculation is simplified to a great extent.β is the spanwise disturbance wavenumber.A series of β was used to calculate the critical crosswise displacement thickness Reynolds number and the slope of most unstable disturbance wave for each shapefactor H12.Thefunction Cm(H12)is obtained by the FSC velocity profiles.

    2.2.Application to k-ω SST turbulence model

    From Refs.24,25,DNS data demonstrates that all small vortices are generated by multilevel shear layers,not by vortex breakdown in the transition region.This is a new theory to explain and analyze the development of boundary layer transition.So it inspired the authors that the intermittency factor is not necessary to be used to govern the transitional flow.The intermittency factor could be replaced by other suit methods.From Ref.18,we can use theft2function to be a suitable algebraic substitute to the transported intermittency factor.The new amplification factor equation was coupled with SST turbulence model by the new production term for turbulence kinetic energy k equation:

    where

    The constant ct5=0.5,ct4=0.05 and κ=0.41.S is the absolute value of strain rate,d the distance to the nearest wall and Χ the modified eddy viscosity ratio18:

    The F1function is defined using the extended form proposed by Langtry and Menter8

    The critical value NTS,crit=-8.43-2.4lnproposed by Mack23and it is recommended that NTS,critco

    uld be limited to nine in general applications for both numerical reasons.Thefact that NTS,crit=9.0 works well for engineering purposes when there is very low freestream turbulence.For the crossflow amplification factor,the critical value of NCF,critvaries from 6.5 to 8.0 and usually 7.0 is chosen.

    2.3.Final equations

    The present model(named NTS+NCFmodel)consists of a transport equation for TS waves,a new transport equation for crossflow stationary vortices,and the equations for turbulence kinetic energy k and specific dissipation rate ω which are modified from the SST k-ω eddy-viscosity model and all of which are listed as follows:

    The NTSmodel is composed of the transport equation for TS waves and the equations for turbulence kinetic energy k and specific dissipation rate ω.All of the variables in the turbulence kinetic energy k equation and specific dissipation rate ω equation can befound in the Ref.9.

    3.Presentation of results

    In the present work,an in-house structured Reynolds averaged Navier–Stokes solver is used as the baseline flow solver.The solver is capable of analyzing two-and 3D configurations in either time accurate or steady-state simulations using a variety of discretization schemes and time-marching algorithms.The spatial discretization involves a semi-discretefinite-volume approach.Upwind-biasing is used for the convective and pressure terms,while central differencing is used for the shear stress and heat transfer terms.Time advancement is implicit with the ability to solve steady or unsteady flows.Multi-grid and mesh sequencing are available for convergence acceleration with the message passing interface(MPI)parallelization computation.In this work,all of the transition prediction results are obtained by using the amplification factor transport equations coupling with the SST turbulence model.

    3.1.NACA64(2)A015 infinite swept wing

    The new amplification factor transport equation was applied to another infinite swept wing flow.The NACA64(2)A015 infinite swept wing test case was experimentally investigated by Boltz et al.in the Ames Research Center26.Thefreestream turbulence intensity of the wind tunnel is very low.Hence,9.0 is chosen for the NTS,critvalue.

    The swept angle of 40°and the angle of attack α =-1°were chosen for validation.The transition locations were measured at Mach number Ma=0.27.Reynolds number Re varies from 4.8×106to 7.3×106in the wind tunnel.The number of grid elements in the wall-normal direction is 61;the chordwise resolution is 121 cells on either wing side.Here,y+(1)of the cell next to the wall is smaller than 1.0.

    The grid sensitive study of NCFequation was per formed here to demonstrate the robustness of the new transition model.In this test,Reynolds number is 7.3×106.The baseline grid is the mesh whose maximum y+(1)is close to 1.0,referred to as the ‘fine”grid,with ‘medium”and ‘coarse” grids generated by successively controlling the maximum y+(1)close to 2.0 and 5.0 respectively.The development of skin friction coefficient Cfon upper surface for the three grids is plotted in Fig.3 that the horizontal ordinate x/c indicates the normalization location of section airfoil.The plotted curves show only a small difference in the transition location between the coarse and medium grids and show almost no difference between the medium and fine grids.The medium grid is there fore regarded as producing grid converged solutions.The lack of significant variation between the medium and fine grid solutions shows that true grid convergence is possible with this transition model and that continued refinement does not deteriorate the solution quality.

    In this case,two critical values 7.0 and 7.5 were tested for these predictions,and it can be seen that NCF,crit=7.5 got better transition locations in Fig.4.For details,at the Reynolds number of 7.3×106,the pressure coefficient Cpand skin friction coefficient Cfof upper surface are plotted in Fig.5.Furthermore,Fig.6 shows the NCFand turbulence kinetic energy K contours around the NACA64(2)A015 infinite 40°swept wing at the Reynolds number of 7.3×106.It can be seen from the figure that,the transition occurred at near the 24%c position where NCFincreases to 7.5.

    Fig.3 Predicted skin-friction distribution along streamwise section of upper surface of NACA64(2)A015 infinite swept wing.

    3.2.NLF(2)-0415 infinite swept wing

    The second case is the classical NLF(2)-0415 infinite swept wing which has been designed in order to investigate transition due to crossflow instability.These experiments were per formed in the wind tunnel at Arizona State University27.The freestream turbulence intensity of the wind tunnel was about 0.09%,so 8.4 is chosen for the NTS,critvalue.The NLF(2)-0415 airfoil was analyzed with the NTSequations proposed by Coder.The mesh is similar to that of NACA64(2)A015 wing.

    The swept angle was 45°and the angle of attack is-4° for all related transition experiments.The transition locations were measured with naphthalene flow visualization technique,hot wire,and hot film measurements at Reynolds number varying from 1.9×106to 3.8×106in the wind tunnel.Once the Reynolds number was greater than 2.3×106,the transition process was assumed to be almost dominated by crossflow instability.If the equation for TS waves was used here,there would be a large difference of transition locations between the experimental data and CFD predictions.

    The results of the computations of upper surface compared with the experiment data are plotted in Fig.7.The transition locations are shown depending on the Reynolds number.Computations were per formed with the Coder NTSequation and the present NTS+NCFequation.In Fig.7,it can be seen that the results of the present equations are in very good agreement with the experimental data.Nevertheless,compared to the Coder’s NTStransition prediction method which almost became invalid for these status,the results of NTS+NCFequations are very promising.Fig.8 shows the pressure coefficient and skin friction coefficient on the upper surface of NLF(2)-0415 infinite swept wing at the Reynolds number of 3.27×106and Mach number of 0.209.Fig.9 illustrates the pressure coefficient,skin friction coefficient and the streamlines on the upper surface of NLF(2)-0415 infinite swept wing at the Reynolds number of 3.72×106and Mach number of 0.238,which validate the accuracy of simulation of crossflow instability induced transition on swept wing compared to the experiment data.

    Fig.4 Transition locations on upper surface of NACA64(2)A015 infinite 40°swept wing.

    Fig.5 Pressure and skin friction coefficients of upper surface of NACA64(2)A015 infinite 40°swept wing at the Re=7.3×106,Ma=0.27,α=-1°.

    3.3.ONERA-M6 swept wing and ONERA-D infinite swept wing

    Finally,the new amplification factor transport equation was tested to the ONERA-M6 wing and the ONERA-D infinite swept wing which was experimentally investigated in the ONERA S2Ch low-speed wind tunnel.28,29

    Fig.6 NCFand kinetic energy contours of upper surface of NACA64(2)A015 infinite 40°swept wing at Reynolds number of 7.3×106.

    Fig.7 Transition locations on upper surface of NLF(2)-0415 infinite swept wing.

    Fig.8 Pressure and skin friction coefficients of upper surface of NLF(2)-0415 infinite swept wing at Re=3.27×106.

    Fig.9 Pressure and skin friction coefficients of upper surface of NLF(2)-0415 infinite swept wing at Re=3.72×106.

    Fig.10 Laminar and turbulent regions on upper and lower surfaces of ONERA-M6 swept wing.

    ONERA-M6 wing is a single element semi-span swept,tapered wing with an aspect ratio of 3.8 and a taper ratio of 0.562.The leading edge sweep angle is 30°and the trailing edge sweep angle is 15.8°.At the 25%line of the wing,this results in a sweep angle of 26.7°.The design of the wing was based on a symmetric airfoil using the ONERA-D section perpendicular to the 40%line.For ONERA-M6 wing experiment,the value of freestream turbulence intensity(FSTI)of the wind tunnel is about 0.2%.Measurements were per formed at Ma=0.262 and Re=3.5×106.The angle of attack varying from 0°to 15°were measured in the wind tunnel.

    Fig.10 shows the depiction of the laminar and turbulent surface regions from the test showing the naphthalene distribution on the wing.For details,Fig.11 shows the transition locations of lower surface at the spanwise position zs/b=0.45 for different angles of attack on the lower side of the wing.For the numerical results,the transition locations were determined at the minimum of the skin friction coefficient distribution in the given spanwise wing section.The results show that the application of the SST+NTS+NCFmodel improves the accuracy of predicted transition location significantly.For an angle of attack of 5°,NCFcontour and kinetic energy contour of the spanwise section zs/b=0.45 are shown in Fig.12.It can be seen from thefigure that the transition occurred near the 32%c position of the lower surface where NCFincreases to 6.0.This transition location is very close to experiment data and prediction accuracy is significantly improved compared with Langtry’s transition model.

    Fig.11 Transition locations for lower surface of ONERA-M6 swept wing at zs/b=0.45.

    Fig.12 NCFand kinetic energy contours of spanwise section zs/b=0.45 of ONERA-M6 swept wing at α =5°.

    Fig.13 Transition locations for upper surface of ONERA-D infinite swept wing.

    For the ONERA-D infinite swept wing,the freestream turbulence intensity of the wind tunnel was about 0.2%.The angle of attack is α =-6°.The two Reynolds numbers,Re=1.0×106and Re=1.5×106were chosen to be measured in the wind tunnel.The swept angle varies from 0 to 60°and several swept wings due to crossflow instability were used to validated the present model here.In Fig.13,the transition locations for the ONERA-D wing for the NTS+NCFmodel are given in comparison to the experimental data.In addition,the NTSequation for TS waves was plotted,even though it is not designed for 3D transition phenomena.For all computations using different transition prediction methods,the Menter SST k-ω turbulence model was used.Compared to the experimental data,there are deviations of the computed results,but compared to the original NTSamplification factor equation,the results are very satisfying and promising.

    Attention should be paid to the NCF,crithere.For ONERAM6 wing and ONERA-D infinite swept wing,NCF,crit=6.0 could get a better results and NCF,crit=7.0 would lead to a delayed transition position,so the value of NCF,critwas calibrated empirically.

    4.Conclusions

    The four-equation model has been established by two amplification factor transport equations for TS wave instability and crossflow instability transition incorporating linear stability theory based on the approximate envelope method and the SST turbulence model.The new model was confirmed by transition predictions of the infinite NACA64(2)A015 4°swept wing,NLF(2)-0415 infinite swept wing and ONERA-M6 wing.

    (1)Solutions obtained for infinite swept wing and M6 wing using SST-NTS-NCFmodel agree well with experimental transition characteristics.The critical value of NCFmight influence the position of transition and it was calibrated empirically to get a better result.As is known to all,it can befound in many wind tunnel experiments that the critical values of NCFare case-sensitive.So it still needs to be researched further.

    (2)Thesefavorable comparisons lend confidence in the transition equation,demonstrating that the intermittency factor equation could be supplanted by the new turbulent kinetic energy source term for interfacing between the transition and turbulence models.

    (3)The development functions of crossflow instability are all obtained through the crossflow stationary vortices conditionally,so it still needs to be enhanced further for traveling waves.

    In the future,the transition model as presented will be developed and applied to more complex aerodynamic configurations at high Reynolds number transition predictions and be extended for supersonic flows.

    Acknowledgement

    This study was supported by the National Basic Research Program of China(No.2014CB744804).

    1.Lee CB,Wu JZ.Transition in wall-bounded flows.Appl Mech Rev 2008;61(3):030802.

    2.Lee C,Li R.Dominant structure for turbulent production in a transitional boundary layer.J Turbul 2007;8(55):1–35.

    3.Walters KD,Leylek JH.Computational fluid dynamics study of wake-induced transition on a compressor-like flat plate.J Turbomach 2005;127(1):52–63.

    4.Walters KD,Cokljat D.A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow.J Fluid Eng T ASME 2008;130(12),121401-1-14.

    5.Reza TZ,Mahmood S,Amir K.Prediction of boundary layer transition based on modeling of laminar fluctuations using RANS approach.Chinese J Aeronaut 2009;22(2):113–20.

    6.Menter FR,Langtry RB,Likki SR,Suzen YB,Huang PG,Vo¨lker S.A correlation-based transition model using local variables Part I:model formulation.J Turbomach 2004;128(3):413–22.

    7.Menter FR,Langtry RB,Likki SR,Suzen YB,Huang PG,Vo¨lker S.A correlation-based transition model using local variables Part II:test cases and industrial applications.J Turbomach 2004;128(3):423–34.

    8.Langtry RB,Menter FR.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes.AIAA J 2009;47(12):2894–906.

    9.Menter FR.Two-equation eddy-viscosity turbulence models for engineering applications.AIAA J 1994;32(8):1598–605.

    10.Wang YT,Zhang YL,Li S,Meng DH.Calibration of transition model and its validation in low-speed flows with high-order numerical method.Chinese J Aeronaut 2015;28(3):704–11.

    11.Xia CC,Chen WF.Boundary-layer transition prediction using a simplified correlation-based model.Chinese J Aeronaut 2016;29(1):66–75.

    12.Smith AMO,Gamberoni N.Transition,pressure gradient and stability theory.Long Beach(CA):Douglas Aircraft Company;1956,Report No.:ES-26388.

    13.Van Ingen JL.A suggested semi-empirical method for the calculation of the boundary layer transition region.Delft:Delft University of Technology;1956,Report No.:VTH-74.

    14.Bertolotti FP.Linear and nonlinear stability of boundary layers with streamwisevaryingproperties[dissertation].Columbus(Ohio):The Ohio State University;1990.

    15.Coder JG,Maughmer MD.Computational fluid dynamics compatible transition modeling using an amplification factor transport equation.AIAA J 2014;52(11):2506–12.

    16.Spalart PR,Allmaras SR.One-equation turbulence model for aerodynamic flows.Reston:AIAA;1992,Report No.:AIAA-1992-0439.

    17.Cooke JC.The boundary layer of a class of infinite yawed cylinders.Math Proc Camb Phil Soc 1950;46(4):645–8.

    18.Coder JG,Maughmer MD.Application of the amplification factor transport transition model to the shear stress transport model.Reston:AIAA;2015,Report No.:AIAA-2015-0588.

    19.Gleyzes C,Cousteix J,Bonnet JL.Calculation method of leading edge separation bubbles.In:Cebeci T,editor.Numerical and physical aspects of aerodynamic flows II.New York:Springer-Verlag;1983.p.173–92.

    20.Drela M,Giles MB.Viscous-inviscid analysis of transonic and low-reynolds number airfoils.AIAA J 1987;25(10):1347–55.

    21.Choi JH,Kwon OJ.Enhancement of a correlation-based transition turbulence model for simulating crossflow instability.AIAA J 2015;53(10):3063–72.

    22.Hogberg M,Henningson D.Secondary instability of cross-flow vortices in Falkner-Skan-Cooke boundary layers.J Fluid Mech 1998;368:339–57.

    23.Mack LM.Transition prediction and linear stability theory.Paris:AGARD;1977,Report No.:AGARD Report CP-224.

    24.Lu P,Liu C.DNS study on mechanism of small length scale generation in late boundary layer transition.Phys D:Nonlinear Phenomena 2012;241(1):11–24.

    25.Liu C,Yan Y,Lu P.Physics of turbulence generation and sustenance in a boundary layer.Comput Fluids 2014;102:353–84.

    26.Boltz FW,Kenyon GC,Allen CQ.Effects of sweep angle on the boundary-layer stability characteristics of an untapered wing at low speeds.Washington,D.C.:NASA;1960,Report No.:NASA TN-D-338.

    27.Dagenhart JR,Saric WS.Crossflow stability and transition experiments in swept-wing flow.Washington,D.C.:NASA;1999,Report No.:TP-1999-209344.

    28.Schmitt V,Monneris B,Dorey G,Capelier C.Etude de la couche limite tridimensionnelle sur une aile en fleche.Paris:ONERA;1975,Report No.:14/1713-AN.

    29.Seyfert C,Krumbein A.Correlation-based transition transport modeling forthree-dimensionalaerodynamic configurations.Reston:AIAA;2012,Report No.:AIAA-2012-0448.

    Xu Jiakuan is a Ph.D.candidate at School of Aeronautics,Northwestern Polytechnical University.His research interests are boundary layer transition modeling,laminar design and CFD.

    Bai Junqiang is a prof essor and Ph.D.supervisor at School of Aeronautics,Northwestern Polytechnical University,His current research interests are aircraft design,aerodynamic optimization,high-lift design,flight mechanics and CFD.

    Zhang Yang is doing his post-doctoral research at School of Aeronautics,Northwestern Polytechnical University.His research interests are turbulence modeling,hybrid RANS/LES and CFD.

    Qiao Lei is a Ph.D.candidate at School of Aeronautics,Northwestern Polytechnical University.His research interest lies in mathematical schemes analysis of CFD.

    20 July 2015;revised 21 September 2015;accepted 8 January 2016

    Available online 22 June 2016

    Boundary layer;

    CFD;

    Crossflow instability;

    Linear stability theory;

    Transition;

    Turbulence

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.Thisisan open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail addresses:xujiakuanbond@163.com(J.Xu),junqiang@nwpu.edu.cn(J.Bai),vvip@nwpu.edu.cn(Y.Zhang),qiaol618@163.com(L.Qiao).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.06.002

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    亚洲专区中文字幕在线| 亚洲精品日韩在线中文字幕| 国产日韩欧美在线精品| 久久影院123| 国产福利在线免费观看视频| 在线观看免费视频网站a站| 日韩大片免费观看网站| 中文字幕人妻丝袜制服| 午夜福利乱码中文字幕| 亚洲精品国产区一区二| 天天躁日日躁夜夜躁夜夜| 久久久国产一区二区| 两性夫妻黄色片| 久久中文字幕一级| 亚洲全国av大片| 曰老女人黄片| 91精品伊人久久大香线蕉| 欧美日韩一级在线毛片| 高清黄色对白视频在线免费看| 人妻 亚洲 视频| 日韩制服丝袜自拍偷拍| 日韩一区二区三区影片| 一本大道久久a久久精品| 免费在线观看黄色视频的| 国内毛片毛片毛片毛片毛片| 午夜免费观看性视频| 国产高清视频在线播放一区 | 丝袜脚勾引网站| 欧美大码av| 国产区一区二久久| 中国美女看黄片| 国产精品.久久久| 一个人免费看片子| 丰满饥渴人妻一区二区三| 一本大道久久a久久精品| 人人妻人人澡人人看| 欧美精品一区二区大全| 日韩三级视频一区二区三区| 国产一级毛片在线| 精品第一国产精品| 99香蕉大伊视频| 亚洲性夜色夜夜综合| 精品人妻在线不人妻| 少妇粗大呻吟视频| 欧美精品啪啪一区二区三区 | 欧美乱码精品一区二区三区| 午夜激情久久久久久久| 电影成人av| 美女中出高潮动态图| 国产日韩欧美亚洲二区| 中文字幕制服av| 热re99久久国产66热| 我的亚洲天堂| 免费不卡黄色视频| 国产精品久久久久久人妻精品电影 | 免费观看人在逋| 午夜影院在线不卡| 999精品在线视频| 国产在视频线精品| 淫妇啪啪啪对白视频 | 久久 成人 亚洲| 日本猛色少妇xxxxx猛交久久| 亚洲精品久久午夜乱码| 免费久久久久久久精品成人欧美视频| 国产精品成人在线| 亚洲七黄色美女视频| www.av在线官网国产| 国产三级黄色录像| 精品人妻在线不人妻| 国产在线一区二区三区精| 嫩草影视91久久| 老熟女久久久| 欧美性长视频在线观看| 91精品伊人久久大香线蕉| 男女国产视频网站| 两人在一起打扑克的视频| 99精品久久久久人妻精品| 亚洲人成电影观看| 精品福利永久在线观看| 老司机影院毛片| 视频区欧美日本亚洲| 日韩电影二区| 国产在线一区二区三区精| 精品亚洲成国产av| 国产一区有黄有色的免费视频| 国产精品久久久久久精品古装| 一二三四在线观看免费中文在| 99国产精品一区二区三区| 国产成人精品久久二区二区免费| 淫妇啪啪啪对白视频 | 国产亚洲欧美精品永久| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲综合一区二区三区_| 人妻一区二区av| 在线观看人妻少妇| 亚洲欧美日韩另类电影网站| 又黄又粗又硬又大视频| 天天躁日日躁夜夜躁夜夜| 一级毛片电影观看| 午夜老司机福利片| tocl精华| av超薄肉色丝袜交足视频| cao死你这个sao货| 亚洲国产精品一区二区三区在线| 91av网站免费观看| 丝袜美腿诱惑在线| 色94色欧美一区二区| 啦啦啦免费观看视频1| 飞空精品影院首页| 狠狠精品人妻久久久久久综合| 成年av动漫网址| 亚洲欧美激情在线| 狂野欧美激情性bbbbbb| 中文字幕精品免费在线观看视频| 亚洲欧美一区二区三区久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品一区二区在线不卡| 午夜激情久久久久久久| 欧美日韩福利视频一区二区| 人成视频在线观看免费观看| 岛国毛片在线播放| 精品少妇黑人巨大在线播放| 超碰97精品在线观看| 久久 成人 亚洲| 窝窝影院91人妻| 日韩中文字幕视频在线看片| 亚洲欧美成人综合另类久久久| 久久天躁狠狠躁夜夜2o2o| 狠狠婷婷综合久久久久久88av| 大陆偷拍与自拍| 久久人妻福利社区极品人妻图片| 欧美日韩亚洲综合一区二区三区_| 国产三级黄色录像| 大香蕉久久网| bbb黄色大片| 在线观看免费日韩欧美大片| 后天国语完整版免费观看| 成人手机av| 99精品久久久久人妻精品| 一级,二级,三级黄色视频| 超色免费av| 国产xxxxx性猛交| 午夜福利视频在线观看免费| 久久人人97超碰香蕉20202| 另类精品久久| 亚洲精品在线美女| 在线观看www视频免费| 国产亚洲av高清不卡| 97精品久久久久久久久久精品| 午夜激情av网站| 丝袜在线中文字幕| 亚洲全国av大片| 另类精品久久| 999久久久精品免费观看国产| 亚洲伊人色综图| 免费在线观看影片大全网站| 91成人精品电影| 在线观看人妻少妇| 亚洲国产毛片av蜜桃av| 亚洲第一av免费看| 国产一区有黄有色的免费视频| 美女午夜性视频免费| 男女无遮挡免费网站观看| 午夜免费观看性视频| 国产免费av片在线观看野外av| 国产精品国产av在线观看| kizo精华| 日韩三级视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区黑人| 18在线观看网站| 国产成人影院久久av| 99国产综合亚洲精品| 国产精品久久久久久人妻精品电影 | 亚洲av电影在线观看一区二区三区| 成人影院久久| 亚洲欧美日韩高清在线视频 | 亚洲av电影在线进入| 视频区欧美日本亚洲| 黑丝袜美女国产一区| 免费观看av网站的网址| 精品免费久久久久久久清纯 | 天天躁日日躁夜夜躁夜夜| 国产成人精品久久二区二区91| 成在线人永久免费视频| 男女之事视频高清在线观看| 亚洲九九香蕉| 十八禁网站免费在线| 高清视频免费观看一区二区| 亚洲性夜色夜夜综合| 欧美在线一区亚洲| 国产三级黄色录像| 五月开心婷婷网| 久久人妻熟女aⅴ| 麻豆av在线久日| 中文字幕人妻熟女乱码| 亚洲第一欧美日韩一区二区三区 | 国产精品一二三区在线看| 男女午夜视频在线观看| 国产日韩欧美亚洲二区| 精品人妻一区二区三区麻豆| 国产又色又爽无遮挡免| 国产精品久久久人人做人人爽| 国产av一区二区精品久久| 成人亚洲精品一区在线观看| 中亚洲国语对白在线视频| 欧美日韩福利视频一区二区| 女警被强在线播放| 桃花免费在线播放| 婷婷丁香在线五月| www.熟女人妻精品国产| 国产精品免费大片| 日本wwww免费看| 国产一区二区在线观看av| 国产激情久久老熟女| 99国产精品99久久久久| xxxhd国产人妻xxx| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 热re99久久国产66热| 精品国产国语对白av| 亚洲欧美精品综合一区二区三区| 国产成人欧美| 免费少妇av软件| 99国产精品免费福利视频| 美女脱内裤让男人舔精品视频| 久久人妻熟女aⅴ| 男女边摸边吃奶| 老司机午夜福利在线观看视频 | 久久亚洲国产成人精品v| 亚洲av电影在线进入| 最近最新免费中文字幕在线| 亚洲人成电影观看| 欧美一级毛片孕妇| 99久久综合免费| 秋霞在线观看毛片| 老熟妇仑乱视频hdxx| videosex国产| 99精国产麻豆久久婷婷| 午夜福利在线观看吧| bbb黄色大片| 亚洲国产中文字幕在线视频| av天堂久久9| 91九色精品人成在线观看| 又紧又爽又黄一区二区| 国产深夜福利视频在线观看| 精品视频人人做人人爽| 欧美精品一区二区大全| 桃花免费在线播放| 国产精品 欧美亚洲| 中文字幕av电影在线播放| 女性被躁到高潮视频| 亚洲精品中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美黑人欧美精品刺激| 天堂中文最新版在线下载| 国产一区二区三区av在线| 日韩大片免费观看网站| 一区二区三区四区激情视频| 99久久99久久久精品蜜桃| 侵犯人妻中文字幕一二三四区| 飞空精品影院首页| a级片在线免费高清观看视频| 免费观看av网站的网址| 人人妻人人澡人人看| 青草久久国产| 婷婷丁香在线五月| 欧美国产精品一级二级三级| 热re99久久国产66热| 一边摸一边做爽爽视频免费| 精品亚洲成a人片在线观看| 欧美黄色片欧美黄色片| 亚洲av日韩在线播放| 69精品国产乱码久久久| 香蕉国产在线看| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频| 亚洲av成人不卡在线观看播放网 | 久久性视频一级片| 国产亚洲欧美精品永久| 精品国产国语对白av| 久久久精品区二区三区| avwww免费| 亚洲七黄色美女视频| 亚洲国产av影院在线观看| 精品国产乱子伦一区二区三区 | 久久精品国产亚洲av香蕉五月 | 国产精品一区二区免费欧美 | 人人妻人人澡人人爽人人夜夜| 亚洲一区二区三区欧美精品| 成人国产av品久久久| 一个人免费在线观看的高清视频 | av天堂久久9| 两个人看的免费小视频| 色播在线永久视频| 久久久精品区二区三区| 巨乳人妻的诱惑在线观看| 欧美日本中文国产一区发布| 麻豆av在线久日| 自拍欧美九色日韩亚洲蝌蚪91| 久久 成人 亚洲| 欧美日韩黄片免| 精品人妻在线不人妻| 日韩欧美免费精品| 最黄视频免费看| 2018国产大陆天天弄谢| 午夜福利影视在线免费观看| 好男人电影高清在线观看| 成人免费观看视频高清| 一级片免费观看大全| 成人黄色视频免费在线看| www.熟女人妻精品国产| 一本大道久久a久久精品| 乱人伦中国视频| 啦啦啦 在线观看视频| 午夜精品久久久久久毛片777| 亚洲色图综合在线观看| 国产亚洲精品一区二区www | 97人妻天天添夜夜摸| 国产亚洲精品第一综合不卡| 啦啦啦 在线观看视频| 黄片大片在线免费观看| 亚洲国产中文字幕在线视频| 热re99久久国产66热| 999精品在线视频| 男女无遮挡免费网站观看| 俄罗斯特黄特色一大片| 别揉我奶头~嗯~啊~动态视频 | h视频一区二区三区| 日韩欧美免费精品| 久久这里只有精品19| 精品国内亚洲2022精品成人 | 国产91精品成人一区二区三区 | 国产免费福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产成人免费无遮挡视频| 久久久久久久大尺度免费视频| 国产精品久久久人人做人人爽| 狠狠狠狠99中文字幕| 首页视频小说图片口味搜索| 一区二区三区乱码不卡18| 一个人免费看片子| 国产成人免费观看mmmm| 久久久久视频综合| 亚洲国产欧美网| 在线亚洲精品国产二区图片欧美| 捣出白浆h1v1| 99精品久久久久人妻精品| 啦啦啦在线免费观看视频4| 老司机靠b影院| 国产欧美亚洲国产| 精品熟女少妇八av免费久了| 国产av国产精品国产| 每晚都被弄得嗷嗷叫到高潮| av有码第一页| 国产97色在线日韩免费| 一本久久精品| 精品人妻1区二区| 免费观看人在逋| 精品久久蜜臀av无| 国产精品一区二区精品视频观看| tube8黄色片| 亚洲国产欧美一区二区综合| 老司机午夜福利在线观看视频 | 十八禁人妻一区二区| 多毛熟女@视频| 久久久精品区二区三区| 国产一区二区三区综合在线观看| 日韩有码中文字幕| 久久青草综合色| 12—13女人毛片做爰片一| www.999成人在线观看| 制服诱惑二区| 亚洲精品久久午夜乱码| 免费在线观看影片大全网站| 十八禁网站网址无遮挡| 成年人黄色毛片网站| 天堂8中文在线网| 丝袜在线中文字幕| www.av在线官网国产| 操出白浆在线播放| 美女福利国产在线| av线在线观看网站| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 热99国产精品久久久久久7| 亚洲欧美色中文字幕在线| 男女免费视频国产| 国产激情久久老熟女| 国产精品一二三区在线看| 久久久精品免费免费高清| 狠狠狠狠99中文字幕| 欧美国产精品一级二级三级| 亚洲欧美精品综合一区二区三区| 美女高潮喷水抽搐中文字幕| av福利片在线| 无遮挡黄片免费观看| 国产男女超爽视频在线观看| 夜夜夜夜夜久久久久| 五月天丁香电影| 久久久欧美国产精品| 精品熟女少妇八av免费久了| 欧美人与性动交α欧美软件| 人妻 亚洲 视频| 欧美日韩视频精品一区| 日日夜夜操网爽| 午夜福利视频在线观看免费| 男女边摸边吃奶| 成人影院久久| 久久久久久人人人人人| 日本a在线网址| 青青草视频在线视频观看| 啦啦啦啦在线视频资源| 在线天堂中文资源库| 亚洲av男天堂| 9热在线视频观看99| 国产精品二区激情视频| 热99re8久久精品国产| 咕卡用的链子| 久久精品熟女亚洲av麻豆精品| 色精品久久人妻99蜜桃| 91老司机精品| 嫩草影视91久久| 欧美激情高清一区二区三区| 美女扒开内裤让男人捅视频| 侵犯人妻中文字幕一二三四区| 十八禁网站免费在线| 精品一区二区三区四区五区乱码| 国产精品久久久久成人av| 久久精品国产亚洲av香蕉五月 | 我要看黄色一级片免费的| 国产主播在线观看一区二区| 在线观看免费日韩欧美大片| 啦啦啦视频在线资源免费观看| 91成人精品电影| 久久天躁狠狠躁夜夜2o2o| 亚洲精品久久午夜乱码| 97在线人人人人妻| 母亲3免费完整高清在线观看| 亚洲国产精品一区三区| 自线自在国产av| 亚洲一码二码三码区别大吗| 丰满迷人的少妇在线观看| www.自偷自拍.com| 欧美xxⅹ黑人| 久久热在线av| 国产野战对白在线观看| 嫁个100分男人电影在线观看| 黄色片一级片一级黄色片| 多毛熟女@视频| 少妇粗大呻吟视频| 亚洲欧美精品自产自拍| 日本av手机在线免费观看| 丁香六月天网| 久久精品亚洲av国产电影网| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 久久ye,这里只有精品| 女人高潮潮喷娇喘18禁视频| 电影成人av| 美女福利国产在线| 久热这里只有精品99| 99久久国产精品久久久| 777久久人妻少妇嫩草av网站| 国产一区二区激情短视频 | 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| √禁漫天堂资源中文www| 中文字幕制服av| 麻豆av在线久日| 在线 av 中文字幕| 久久国产精品大桥未久av| 两个人看的免费小视频| 精品亚洲乱码少妇综合久久| 亚洲精华国产精华精| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 日本wwww免费看| 少妇 在线观看| 成在线人永久免费视频| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 亚洲精品久久久久久婷婷小说| 99久久99久久久精品蜜桃| www.999成人在线观看| 亚洲综合色网址| 美女视频免费永久观看网站| 1024视频免费在线观看| 国产成+人综合+亚洲专区| 亚洲国产日韩一区二区| 中文精品一卡2卡3卡4更新| 日韩制服丝袜自拍偷拍| 国产精品偷伦视频观看了| 亚洲va日本ⅴa欧美va伊人久久 | 交换朋友夫妻互换小说| 国产免费视频播放在线视频| 80岁老熟妇乱子伦牲交| 免费不卡黄色视频| 啦啦啦啦在线视频资源| 在线看a的网站| 热re99久久国产66热| 一本一本久久a久久精品综合妖精| 老司机福利观看| av天堂在线播放| 香蕉国产在线看| 国产精品一区二区精品视频观看| 国产av精品麻豆| av在线播放精品| 日韩欧美一区二区三区在线观看 | 精品高清国产在线一区| 亚洲成人国产一区在线观看| 中文精品一卡2卡3卡4更新| 男人舔女人的私密视频| 国产黄频视频在线观看| 在线 av 中文字幕| 日韩视频一区二区在线观看| 国产精品一区二区免费欧美 | 日本vs欧美在线观看视频| 另类精品久久| 天天操日日干夜夜撸| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产日韩一区二区| 国产精品欧美亚洲77777| 精品亚洲成国产av| 日韩有码中文字幕| 午夜两性在线视频| 国产福利在线免费观看视频| 亚洲成人手机| 欧美黄色片欧美黄色片| 日本猛色少妇xxxxx猛交久久| av在线app专区| 操出白浆在线播放| 国产亚洲一区二区精品| 国产精品久久久久久人妻精品电影 | 大型av网站在线播放| 丰满少妇做爰视频| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 精品一区二区三卡| 精品一区二区三区四区五区乱码| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 亚洲一区中文字幕在线| 精品国产乱码久久久久久男人| 久久 成人 亚洲| 亚洲久久久国产精品| 成人影院久久| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 伊人久久大香线蕉亚洲五| 成人黄色视频免费在线看| 秋霞在线观看毛片| 亚洲av欧美aⅴ国产| 亚洲va日本ⅴa欧美va伊人久久 | 久久香蕉激情| 久久久精品区二区三区| 最新的欧美精品一区二区| 精品福利观看| 黄频高清免费视频| 咕卡用的链子| 国产av精品麻豆| 91精品国产国语对白视频| 欧美黑人欧美精品刺激| 精品一区在线观看国产| 久热这里只有精品99| 自拍欧美九色日韩亚洲蝌蚪91| 涩涩av久久男人的天堂| 国产成人一区二区三区免费视频网站| 欧美日韩亚洲高清精品| 久久香蕉激情| 悠悠久久av| 久9热在线精品视频| 麻豆乱淫一区二区| 这个男人来自地球电影免费观看| 九色亚洲精品在线播放| 亚洲黑人精品在线| 欧美精品亚洲一区二区| 亚洲精华国产精华精| 少妇 在线观看| 久久精品成人免费网站| 99热全是精品| 一区二区三区精品91| 亚洲精品在线美女| 国产精品偷伦视频观看了| 亚洲成人免费电影在线观看| 最新的欧美精品一区二区| 黑人巨大精品欧美一区二区mp4| 久久久久久久久久久久大奶| 男人爽女人下面视频在线观看| 最近最新中文字幕大全免费视频| 高清欧美精品videossex| 男女之事视频高清在线观看| av电影中文网址| 天堂中文最新版在线下载| 国产精品久久久久成人av| 免费女性裸体啪啪无遮挡网站| 国产精品熟女久久久久浪| 国产成人精品无人区| 老司机亚洲免费影院| 亚洲av日韩在线播放| 色老头精品视频在线观看| 欧美精品人与动牲交sv欧美| 一级a爱视频在线免费观看| 国产精品 国内视频| 又紧又爽又黄一区二区| 国产精品偷伦视频观看了| 婷婷色av中文字幕| 国产欧美日韩一区二区精品| 久久久久久久大尺度免费视频| 国产极品粉嫩免费观看在线| www.自偷自拍.com| 国产成人免费观看mmmm| 国产一区有黄有色的免费视频| 婷婷丁香在线五月| 国产主播在线观看一区二区|