• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition study of 3D aerodynamic configures using improved transport equations modeling

    2016-11-24 00:47:10XuJiakuanBaiJunqiangZhangYangQiaoLei
    CHINESE JOURNAL OF AERONAUTICS 2016年4期

    Xu Jiakuan,Bai Junqiang,Zhang Yang,Qiao Lei

    School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

    Transition study of 3D aerodynamic configures using improved transport equations modeling

    Xu Jiakuan,Bai Junqiang*,Zhang Yang,Qiao Lei

    School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

    As boundary layer transition plays an important role in aerodynamic drag prediction,the proposal and study of transition prediction methods simulating the complex flow phenomena are prerequisite for aerodynamic design.In this paper,with the application of the linear stability theory based on amplification factor transport transition equations on the two-equation shear stress transport(SST)eddy-viscosity model,a new method,the SST-NTS-NCFmodel,is yielded.The new amplification factor transport equation for the crossflow instability induced transition is proposed to add to the NTSequation proposed by Coder,which simulates Tollmien–Schlichting wave transition.The turbulent kinetic energy equation is modified by introducing a new source term that simulates the transition process without the intermittency factor equation.Finally,coupled with these two amplification factor transport equations and SST turbulence model,a four-equation transition turbulence model is built.Comparisons between predictions using the new model and wind-tunnel experiments of NACA64(2)A015,NLF(2)-0415 and ONERA-D infinite swept wing and ONERAM6 swept wing validate the predictive quality of the new SST-NTS-NCFmodel.

    1.Introduction

    With the development of experiment technology,the details of boundary layer transition flows had been researched and revealed very well.1,2In the meantime,the compatible way for engineer application-computational fluid dynamics(CFD)method,is gradually applied and developed for the drag prediction of boundary transition for the aerodynamic design of aircraft.Prediction of boundary layer transition is an important part in the simulation of boundary layer flows because lift and drag are significantly influenced by the transition locations.In 2D boundary layers,bypass transition,laminar separation bubbles and Tollmien–Schlichting(TS)wave always lead to transition.But in 3D boundary layers,crossflow instability usually play an important role in triggering the transition,especially for the swept wing with large swept angle.The prediction of transition phenomenon has an important meaning for aerodynamic calculations.There fore,it is necessary to study and establish a new method to simulate these transition phenomena.To predict these phenomena numerically,an appropriate approach would probably be large eddy simulation(LES)or direct numerical simulations(DNS).But these methods cost huge computational resources.So it could not be used in engineering application.

    In recent years,many methods were proposed to predict boundary layer transition based on Reynoldsaverage Navier–Stokes(RANS)method.A model for bypass and natural transition prediction using the laminar kinetic energy transport equation was proposed by Walters et al.3–5In 2004, Langtry and Menter developed thecorrelation-based transition model6–8using local variables which are coupled with Menter’s two-equation k-ω shear stress transport(SST)turbulent model.9This transition model,which could predict the natural transition,laminar separation transition and the bypass transition,is widely applied in engineering field.10,11But these methods could not predict the cross flow instability induced transition.

    In aviation field,a widely used method in applied aerodynamics is the eNmethod which is based on linear stability analysis,specifically the eNmethod proposed by Smith and Gamberoni12and Van Ingen13.The eNmethod14is basically designed for 2D boundary layers and can be extended to 3D boundary layers,but it still exhibits some deficiencies.A major disadvantage of this method is that the N-factor,which is responsible for a critical amplification of linear disturbances,has to be fit to each test case.Additionally,the application of the eNmethod for a RANS code is complicated due to thefact that some non-local variables need to be solved.Integral boundary layer quantities are gradually solved by some other local variables.

    In 2013,the streamwise amplification factor equation15for TS wave instability has been applied to the Spalart–Allmaras(SA)one-equation eddy-viscosity model16.The equation was validated by using many con figurations in Ref.15But this model is still under development and not impeccable for the cross flow instability induced transition on swept wings.In this paper,the Falkner-Skan-Cooke(FSC)17boundary layer similar equations and linear stability theory(LST)were used to analyze the crosswise velocity pro files and to establish a new amplification factor transport equation for prediction of cross flow instability.Fig.1 shows a series of cross flow velocity profiles of 45°swept wing in various pressure gradients calculated by FSC equations.In Fig.1,η is the non-dimensional distance normal to the wall,w the non-dimensional cross flow velocity and βHrepresents the Hartree pressure gradient.

    Fig.1 Crossflow velocity profiles on swept wings.

    For the transition equations coupling with turbulence model,the qualities of the SA model,in particular its turbulence-suppression function used in conjunction with user-specified trip lines,allow transition to be included without the addition of an intermittency transport equation.15This stands in contrast with the widely implemented transition framework of Langtry and Menter6–8,which uses such a transport equation.

    Finally,it is desirable to apply the two amplification factor transport transition equations(including NTSand NCFequations)to the SST turbulence model.A turbulent kinetic energy production term18was chosen without using an intermittency transport equation so that the two amplification factor transport equations are coupled with SST turbulence model for transition prediction of 3D aerodynamic configuration.

    2.Amplification factor transport equation modeling

    2.1.New NCFamplification factor transport equation governing equation

    With the study of Coder’s model15,the approximate envelope mNethods of Gleyzes et al.19and Drela and Giles20simplify the emethod by tracking only the maximum amplitude of the most-amplified frequencies and assuming linear amplitude growth with locally self-similar boundary-layer development.15Using the approximate envelope method for analysis of crossflow stationary vortices,the envelop amplification factor NCFof the cross flow instabilities is determined as

    The integrand characterizes the spatial growth rate of the instability and depends entirely on the local boundary-layer shapefactor and crosswise displacement thickness ReδCF.Similar to NTSequation,the crosswise amplification factor transport equation is proposed:

    The source term Pn,CFof this equation is a function of streamwise shapefactor H12calculated by a local pressure gradient parameter HLthrough the Falkner-Skan profiles.The coefficient of diffusion term σn,CFis equal to 1.0.In Eq.(2),μ and μtare laminar viscosity value and eddy viscosity value respectively.The source term Pn,CFis

    where Ω is the absolute value of vorticity,ρ the density,fkthe control function,fk=exp[-(RT/2.0)20],RTthe viscous ratio,RT= μt/μ.Thefunction Ngrowth,CFof source term Pn,CFis a combination of correlations to describe the shape-factor dependency of the local boundary-layer growth rate in the crosswise direction.This function is defined as in Eq.(4)and obtained by the FSC velocity profiles.It relates the inflection of local crossflow velocity along the streamwise pressure gradient HLand streamwise shapefactor H12.

    where the three parts of function Ngrowth,CFwere similar to that of Coder’s model,but they werefitted afresh for crossflow velocity profiles.M(H12)and L(H12)werefitted to describe the growth of the crosswise displacement thickness in Falkner-Skan-Cooke boundary layers.The D(H12)correlation has been developed as the damping function and relates the crosswise displacement thickness using the FSC similarity velocity profiles.They are all functions of streamwise shapefactor H12and expressed as

    The Fcrit,CFfunction of source term Pn,CFis used to determine the unstable position of crossflow instability mode in boundary layer and defined as

    Fig.2 Solution of local crossflow velocity.

    where the constant Cz=10.0,Rez=.For swept wing,the cross flow velocity UCFiscalculated using the formula UCF=UsinΔ and the angle could be given by Δ =Λc-Λ+ΛGwhere ΛGis the geometry sweep angle,Λ=arctanthe local sweep angle,and Λcis given by arctan(v/u).In preceding formulas,Cpis pressure coefficient,u and v are Cartesian velocity components in the x-and zdirections respectively.These variables are illustrated in Fig.2 which contains the velocity normal to the leading edge Uc,the velocity component in the span-wise direction Ws,the velocity at boundary layer edge Ue,the stream-wise component velocity U and the crosswise component velocity W(corresponding to UCF).Using this method,the crossflow velocity UCFcould be calculated locally.If the configuration is complex,the redefined coordinate system method proposed by Choi and Kwon21could be used here to calculate the new swept angle under assumption that there is no pressure gradient in the spanwise direction.22Furthermore,the local flow velocity is used to define the reference coordinate system instead of the external potential flow direction,which could be adopted to estimate crossflow velocity UCFapproximately.ReδCF,0is the critical crosswise displacement thickness Reynolds number.is the development slope of NCFcalculated through the FSC velocity pro files and linear stability theory in infinite swept status which is in spatial pattern.Because the traveling crossflow mode is prone to dominant appearance in the presence of larger freestream disturbances,the stationary crossflow vortices is the major mode of swept wing in high fight altitude or low turbulence intensity tunnel.So the stationary mode is the key point of our research.For infinite swept wing,the time amplification rate ωiis 0 and the spanwise disturbance amplification rate βiis 0 according to the Mack’s method.23Also both thefrequency f and ωrare 0 for the analysis of crossflow stationary vortices.So the calculation is simplified to a great extent.β is the spanwise disturbance wavenumber.A series of β was used to calculate the critical crosswise displacement thickness Reynolds number and the slope of most unstable disturbance wave for each shapefactor H12.Thefunction Cm(H12)is obtained by the FSC velocity profiles.

    2.2.Application to k-ω SST turbulence model

    From Refs.24,25,DNS data demonstrates that all small vortices are generated by multilevel shear layers,not by vortex breakdown in the transition region.This is a new theory to explain and analyze the development of boundary layer transition.So it inspired the authors that the intermittency factor is not necessary to be used to govern the transitional flow.The intermittency factor could be replaced by other suit methods.From Ref.18,we can use theft2function to be a suitable algebraic substitute to the transported intermittency factor.The new amplification factor equation was coupled with SST turbulence model by the new production term for turbulence kinetic energy k equation:

    where

    The constant ct5=0.5,ct4=0.05 and κ=0.41.S is the absolute value of strain rate,d the distance to the nearest wall and Χ the modified eddy viscosity ratio18:

    The F1function is defined using the extended form proposed by Langtry and Menter8

    The critical value NTS,crit=-8.43-2.4lnproposed by Mack23and it is recommended that NTS,critco

    uld be limited to nine in general applications for both numerical reasons.Thefact that NTS,crit=9.0 works well for engineering purposes when there is very low freestream turbulence.For the crossflow amplification factor,the critical value of NCF,critvaries from 6.5 to 8.0 and usually 7.0 is chosen.

    2.3.Final equations

    The present model(named NTS+NCFmodel)consists of a transport equation for TS waves,a new transport equation for crossflow stationary vortices,and the equations for turbulence kinetic energy k and specific dissipation rate ω which are modified from the SST k-ω eddy-viscosity model and all of which are listed as follows:

    The NTSmodel is composed of the transport equation for TS waves and the equations for turbulence kinetic energy k and specific dissipation rate ω.All of the variables in the turbulence kinetic energy k equation and specific dissipation rate ω equation can befound in the Ref.9.

    3.Presentation of results

    In the present work,an in-house structured Reynolds averaged Navier–Stokes solver is used as the baseline flow solver.The solver is capable of analyzing two-and 3D configurations in either time accurate or steady-state simulations using a variety of discretization schemes and time-marching algorithms.The spatial discretization involves a semi-discretefinite-volume approach.Upwind-biasing is used for the convective and pressure terms,while central differencing is used for the shear stress and heat transfer terms.Time advancement is implicit with the ability to solve steady or unsteady flows.Multi-grid and mesh sequencing are available for convergence acceleration with the message passing interface(MPI)parallelization computation.In this work,all of the transition prediction results are obtained by using the amplification factor transport equations coupling with the SST turbulence model.

    3.1.NACA64(2)A015 infinite swept wing

    The new amplification factor transport equation was applied to another infinite swept wing flow.The NACA64(2)A015 infinite swept wing test case was experimentally investigated by Boltz et al.in the Ames Research Center26.Thefreestream turbulence intensity of the wind tunnel is very low.Hence,9.0 is chosen for the NTS,critvalue.

    The swept angle of 40°and the angle of attack α =-1°were chosen for validation.The transition locations were measured at Mach number Ma=0.27.Reynolds number Re varies from 4.8×106to 7.3×106in the wind tunnel.The number of grid elements in the wall-normal direction is 61;the chordwise resolution is 121 cells on either wing side.Here,y+(1)of the cell next to the wall is smaller than 1.0.

    The grid sensitive study of NCFequation was per formed here to demonstrate the robustness of the new transition model.In this test,Reynolds number is 7.3×106.The baseline grid is the mesh whose maximum y+(1)is close to 1.0,referred to as the ‘fine”grid,with ‘medium”and ‘coarse” grids generated by successively controlling the maximum y+(1)close to 2.0 and 5.0 respectively.The development of skin friction coefficient Cfon upper surface for the three grids is plotted in Fig.3 that the horizontal ordinate x/c indicates the normalization location of section airfoil.The plotted curves show only a small difference in the transition location between the coarse and medium grids and show almost no difference between the medium and fine grids.The medium grid is there fore regarded as producing grid converged solutions.The lack of significant variation between the medium and fine grid solutions shows that true grid convergence is possible with this transition model and that continued refinement does not deteriorate the solution quality.

    In this case,two critical values 7.0 and 7.5 were tested for these predictions,and it can be seen that NCF,crit=7.5 got better transition locations in Fig.4.For details,at the Reynolds number of 7.3×106,the pressure coefficient Cpand skin friction coefficient Cfof upper surface are plotted in Fig.5.Furthermore,Fig.6 shows the NCFand turbulence kinetic energy K contours around the NACA64(2)A015 infinite 40°swept wing at the Reynolds number of 7.3×106.It can be seen from the figure that,the transition occurred at near the 24%c position where NCFincreases to 7.5.

    Fig.3 Predicted skin-friction distribution along streamwise section of upper surface of NACA64(2)A015 infinite swept wing.

    3.2.NLF(2)-0415 infinite swept wing

    The second case is the classical NLF(2)-0415 infinite swept wing which has been designed in order to investigate transition due to crossflow instability.These experiments were per formed in the wind tunnel at Arizona State University27.The freestream turbulence intensity of the wind tunnel was about 0.09%,so 8.4 is chosen for the NTS,critvalue.The NLF(2)-0415 airfoil was analyzed with the NTSequations proposed by Coder.The mesh is similar to that of NACA64(2)A015 wing.

    The swept angle was 45°and the angle of attack is-4° for all related transition experiments.The transition locations were measured with naphthalene flow visualization technique,hot wire,and hot film measurements at Reynolds number varying from 1.9×106to 3.8×106in the wind tunnel.Once the Reynolds number was greater than 2.3×106,the transition process was assumed to be almost dominated by crossflow instability.If the equation for TS waves was used here,there would be a large difference of transition locations between the experimental data and CFD predictions.

    The results of the computations of upper surface compared with the experiment data are plotted in Fig.7.The transition locations are shown depending on the Reynolds number.Computations were per formed with the Coder NTSequation and the present NTS+NCFequation.In Fig.7,it can be seen that the results of the present equations are in very good agreement with the experimental data.Nevertheless,compared to the Coder’s NTStransition prediction method which almost became invalid for these status,the results of NTS+NCFequations are very promising.Fig.8 shows the pressure coefficient and skin friction coefficient on the upper surface of NLF(2)-0415 infinite swept wing at the Reynolds number of 3.27×106and Mach number of 0.209.Fig.9 illustrates the pressure coefficient,skin friction coefficient and the streamlines on the upper surface of NLF(2)-0415 infinite swept wing at the Reynolds number of 3.72×106and Mach number of 0.238,which validate the accuracy of simulation of crossflow instability induced transition on swept wing compared to the experiment data.

    Fig.4 Transition locations on upper surface of NACA64(2)A015 infinite 40°swept wing.

    Fig.5 Pressure and skin friction coefficients of upper surface of NACA64(2)A015 infinite 40°swept wing at the Re=7.3×106,Ma=0.27,α=-1°.

    3.3.ONERA-M6 swept wing and ONERA-D infinite swept wing

    Finally,the new amplification factor transport equation was tested to the ONERA-M6 wing and the ONERA-D infinite swept wing which was experimentally investigated in the ONERA S2Ch low-speed wind tunnel.28,29

    Fig.6 NCFand kinetic energy contours of upper surface of NACA64(2)A015 infinite 40°swept wing at Reynolds number of 7.3×106.

    Fig.7 Transition locations on upper surface of NLF(2)-0415 infinite swept wing.

    Fig.8 Pressure and skin friction coefficients of upper surface of NLF(2)-0415 infinite swept wing at Re=3.27×106.

    Fig.9 Pressure and skin friction coefficients of upper surface of NLF(2)-0415 infinite swept wing at Re=3.72×106.

    Fig.10 Laminar and turbulent regions on upper and lower surfaces of ONERA-M6 swept wing.

    ONERA-M6 wing is a single element semi-span swept,tapered wing with an aspect ratio of 3.8 and a taper ratio of 0.562.The leading edge sweep angle is 30°and the trailing edge sweep angle is 15.8°.At the 25%line of the wing,this results in a sweep angle of 26.7°.The design of the wing was based on a symmetric airfoil using the ONERA-D section perpendicular to the 40%line.For ONERA-M6 wing experiment,the value of freestream turbulence intensity(FSTI)of the wind tunnel is about 0.2%.Measurements were per formed at Ma=0.262 and Re=3.5×106.The angle of attack varying from 0°to 15°were measured in the wind tunnel.

    Fig.10 shows the depiction of the laminar and turbulent surface regions from the test showing the naphthalene distribution on the wing.For details,Fig.11 shows the transition locations of lower surface at the spanwise position zs/b=0.45 for different angles of attack on the lower side of the wing.For the numerical results,the transition locations were determined at the minimum of the skin friction coefficient distribution in the given spanwise wing section.The results show that the application of the SST+NTS+NCFmodel improves the accuracy of predicted transition location significantly.For an angle of attack of 5°,NCFcontour and kinetic energy contour of the spanwise section zs/b=0.45 are shown in Fig.12.It can be seen from thefigure that the transition occurred near the 32%c position of the lower surface where NCFincreases to 6.0.This transition location is very close to experiment data and prediction accuracy is significantly improved compared with Langtry’s transition model.

    Fig.11 Transition locations for lower surface of ONERA-M6 swept wing at zs/b=0.45.

    Fig.12 NCFand kinetic energy contours of spanwise section zs/b=0.45 of ONERA-M6 swept wing at α =5°.

    Fig.13 Transition locations for upper surface of ONERA-D infinite swept wing.

    For the ONERA-D infinite swept wing,the freestream turbulence intensity of the wind tunnel was about 0.2%.The angle of attack is α =-6°.The two Reynolds numbers,Re=1.0×106and Re=1.5×106were chosen to be measured in the wind tunnel.The swept angle varies from 0 to 60°and several swept wings due to crossflow instability were used to validated the present model here.In Fig.13,the transition locations for the ONERA-D wing for the NTS+NCFmodel are given in comparison to the experimental data.In addition,the NTSequation for TS waves was plotted,even though it is not designed for 3D transition phenomena.For all computations using different transition prediction methods,the Menter SST k-ω turbulence model was used.Compared to the experimental data,there are deviations of the computed results,but compared to the original NTSamplification factor equation,the results are very satisfying and promising.

    Attention should be paid to the NCF,crithere.For ONERAM6 wing and ONERA-D infinite swept wing,NCF,crit=6.0 could get a better results and NCF,crit=7.0 would lead to a delayed transition position,so the value of NCF,critwas calibrated empirically.

    4.Conclusions

    The four-equation model has been established by two amplification factor transport equations for TS wave instability and crossflow instability transition incorporating linear stability theory based on the approximate envelope method and the SST turbulence model.The new model was confirmed by transition predictions of the infinite NACA64(2)A015 4°swept wing,NLF(2)-0415 infinite swept wing and ONERA-M6 wing.

    (1)Solutions obtained for infinite swept wing and M6 wing using SST-NTS-NCFmodel agree well with experimental transition characteristics.The critical value of NCFmight influence the position of transition and it was calibrated empirically to get a better result.As is known to all,it can befound in many wind tunnel experiments that the critical values of NCFare case-sensitive.So it still needs to be researched further.

    (2)Thesefavorable comparisons lend confidence in the transition equation,demonstrating that the intermittency factor equation could be supplanted by the new turbulent kinetic energy source term for interfacing between the transition and turbulence models.

    (3)The development functions of crossflow instability are all obtained through the crossflow stationary vortices conditionally,so it still needs to be enhanced further for traveling waves.

    In the future,the transition model as presented will be developed and applied to more complex aerodynamic configurations at high Reynolds number transition predictions and be extended for supersonic flows.

    Acknowledgement

    This study was supported by the National Basic Research Program of China(No.2014CB744804).

    1.Lee CB,Wu JZ.Transition in wall-bounded flows.Appl Mech Rev 2008;61(3):030802.

    2.Lee C,Li R.Dominant structure for turbulent production in a transitional boundary layer.J Turbul 2007;8(55):1–35.

    3.Walters KD,Leylek JH.Computational fluid dynamics study of wake-induced transition on a compressor-like flat plate.J Turbomach 2005;127(1):52–63.

    4.Walters KD,Cokljat D.A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow.J Fluid Eng T ASME 2008;130(12),121401-1-14.

    5.Reza TZ,Mahmood S,Amir K.Prediction of boundary layer transition based on modeling of laminar fluctuations using RANS approach.Chinese J Aeronaut 2009;22(2):113–20.

    6.Menter FR,Langtry RB,Likki SR,Suzen YB,Huang PG,Vo¨lker S.A correlation-based transition model using local variables Part I:model formulation.J Turbomach 2004;128(3):413–22.

    7.Menter FR,Langtry RB,Likki SR,Suzen YB,Huang PG,Vo¨lker S.A correlation-based transition model using local variables Part II:test cases and industrial applications.J Turbomach 2004;128(3):423–34.

    8.Langtry RB,Menter FR.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes.AIAA J 2009;47(12):2894–906.

    9.Menter FR.Two-equation eddy-viscosity turbulence models for engineering applications.AIAA J 1994;32(8):1598–605.

    10.Wang YT,Zhang YL,Li S,Meng DH.Calibration of transition model and its validation in low-speed flows with high-order numerical method.Chinese J Aeronaut 2015;28(3):704–11.

    11.Xia CC,Chen WF.Boundary-layer transition prediction using a simplified correlation-based model.Chinese J Aeronaut 2016;29(1):66–75.

    12.Smith AMO,Gamberoni N.Transition,pressure gradient and stability theory.Long Beach(CA):Douglas Aircraft Company;1956,Report No.:ES-26388.

    13.Van Ingen JL.A suggested semi-empirical method for the calculation of the boundary layer transition region.Delft:Delft University of Technology;1956,Report No.:VTH-74.

    14.Bertolotti FP.Linear and nonlinear stability of boundary layers with streamwisevaryingproperties[dissertation].Columbus(Ohio):The Ohio State University;1990.

    15.Coder JG,Maughmer MD.Computational fluid dynamics compatible transition modeling using an amplification factor transport equation.AIAA J 2014;52(11):2506–12.

    16.Spalart PR,Allmaras SR.One-equation turbulence model for aerodynamic flows.Reston:AIAA;1992,Report No.:AIAA-1992-0439.

    17.Cooke JC.The boundary layer of a class of infinite yawed cylinders.Math Proc Camb Phil Soc 1950;46(4):645–8.

    18.Coder JG,Maughmer MD.Application of the amplification factor transport transition model to the shear stress transport model.Reston:AIAA;2015,Report No.:AIAA-2015-0588.

    19.Gleyzes C,Cousteix J,Bonnet JL.Calculation method of leading edge separation bubbles.In:Cebeci T,editor.Numerical and physical aspects of aerodynamic flows II.New York:Springer-Verlag;1983.p.173–92.

    20.Drela M,Giles MB.Viscous-inviscid analysis of transonic and low-reynolds number airfoils.AIAA J 1987;25(10):1347–55.

    21.Choi JH,Kwon OJ.Enhancement of a correlation-based transition turbulence model for simulating crossflow instability.AIAA J 2015;53(10):3063–72.

    22.Hogberg M,Henningson D.Secondary instability of cross-flow vortices in Falkner-Skan-Cooke boundary layers.J Fluid Mech 1998;368:339–57.

    23.Mack LM.Transition prediction and linear stability theory.Paris:AGARD;1977,Report No.:AGARD Report CP-224.

    24.Lu P,Liu C.DNS study on mechanism of small length scale generation in late boundary layer transition.Phys D:Nonlinear Phenomena 2012;241(1):11–24.

    25.Liu C,Yan Y,Lu P.Physics of turbulence generation and sustenance in a boundary layer.Comput Fluids 2014;102:353–84.

    26.Boltz FW,Kenyon GC,Allen CQ.Effects of sweep angle on the boundary-layer stability characteristics of an untapered wing at low speeds.Washington,D.C.:NASA;1960,Report No.:NASA TN-D-338.

    27.Dagenhart JR,Saric WS.Crossflow stability and transition experiments in swept-wing flow.Washington,D.C.:NASA;1999,Report No.:TP-1999-209344.

    28.Schmitt V,Monneris B,Dorey G,Capelier C.Etude de la couche limite tridimensionnelle sur une aile en fleche.Paris:ONERA;1975,Report No.:14/1713-AN.

    29.Seyfert C,Krumbein A.Correlation-based transition transport modeling forthree-dimensionalaerodynamic configurations.Reston:AIAA;2012,Report No.:AIAA-2012-0448.

    Xu Jiakuan is a Ph.D.candidate at School of Aeronautics,Northwestern Polytechnical University.His research interests are boundary layer transition modeling,laminar design and CFD.

    Bai Junqiang is a prof essor and Ph.D.supervisor at School of Aeronautics,Northwestern Polytechnical University,His current research interests are aircraft design,aerodynamic optimization,high-lift design,flight mechanics and CFD.

    Zhang Yang is doing his post-doctoral research at School of Aeronautics,Northwestern Polytechnical University.His research interests are turbulence modeling,hybrid RANS/LES and CFD.

    Qiao Lei is a Ph.D.candidate at School of Aeronautics,Northwestern Polytechnical University.His research interest lies in mathematical schemes analysis of CFD.

    20 July 2015;revised 21 September 2015;accepted 8 January 2016

    Available online 22 June 2016

    Boundary layer;

    CFD;

    Crossflow instability;

    Linear stability theory;

    Transition;

    Turbulence

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.Thisisan open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.

    E-mail addresses:xujiakuanbond@163.com(J.Xu),junqiang@nwpu.edu.cn(J.Bai),vvip@nwpu.edu.cn(Y.Zhang),qiaol618@163.com(L.Qiao).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.06.002

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    桃红色精品国产亚洲av| 狠狠狠狠99中文字幕| 日韩欧美三级三区| 欧美日本中文国产一区发布| 久久av网站| 精品一区二区三区av网在线观看 | 少妇猛男粗大的猛烈进出视频| 国产人伦9x9x在线观看| 高潮久久久久久久久久久不卡| 久久人妻av系列| 国产成人啪精品午夜网站| 久久青草综合色| 欧美日韩国产mv在线观看视频| 亚洲国产欧美网| 免费日韩欧美在线观看| 激情视频va一区二区三区| 男女无遮挡免费网站观看| 91麻豆精品激情在线观看国产 | 欧美精品亚洲一区二区| 久久久精品区二区三区| 欧美黄色片欧美黄色片| 丝袜美腿诱惑在线| 国产精品成人在线| 国产精品偷伦视频观看了| 夜夜夜夜夜久久久久| 日韩一卡2卡3卡4卡2021年| 人妻久久中文字幕网| 午夜成年电影在线免费观看| 午夜久久久在线观看| 9191精品国产免费久久| 在线观看免费视频日本深夜| 在线观看免费视频日本深夜| 免费日韩欧美在线观看| 欧美成人午夜精品| 搡老岳熟女国产| 少妇被粗大的猛进出69影院| 黄色视频,在线免费观看| 日本精品一区二区三区蜜桃| 成人亚洲精品一区在线观看| 午夜福利在线观看吧| 丝袜人妻中文字幕| 亚洲第一欧美日韩一区二区三区 | 亚洲三区欧美一区| 天天躁夜夜躁狠狠躁躁| 他把我摸到了高潮在线观看 | av福利片在线| 亚洲综合色网址| aaaaa片日本免费| aaaaa片日本免费| 丰满人妻熟妇乱又伦精品不卡| 国产成+人综合+亚洲专区| 在线观看免费视频日本深夜| 少妇精品久久久久久久| 啦啦啦 在线观看视频| 国产三级黄色录像| 18禁美女被吸乳视频| 欧美日韩成人在线一区二区| 日本撒尿小便嘘嘘汇集6| 国产高清videossex| 日本av手机在线免费观看| 欧美人与性动交α欧美软件| 午夜视频精品福利| 91精品三级在线观看| 肉色欧美久久久久久久蜜桃| 国产欧美日韩综合在线一区二区| 亚洲欧洲日产国产| 中文亚洲av片在线观看爽 | 午夜福利在线观看吧| 高清视频免费观看一区二区| 国产成人精品久久二区二区91| 男女免费视频国产| 免费在线观看黄色视频的| 久久青草综合色| 午夜激情久久久久久久| 99riav亚洲国产免费| 亚洲av日韩在线播放| 久久久久久久精品吃奶| 欧美日韩亚洲综合一区二区三区_| 90打野战视频偷拍视频| 老司机影院毛片| 久久国产精品男人的天堂亚洲| 日韩欧美国产一区二区入口| 欧美日韩黄片免| 精品国内亚洲2022精品成人 | 久久久久精品人妻al黑| 久久久久精品人妻al黑| 一二三四社区在线视频社区8| 一个人免费看片子| 丝袜喷水一区| 亚洲精品久久成人aⅴ小说| 91成人精品电影| 亚洲全国av大片| 成年版毛片免费区| 色婷婷久久久亚洲欧美| 久热爱精品视频在线9| 国产精品亚洲一级av第二区| 成人特级黄色片久久久久久久 | 他把我摸到了高潮在线观看 | 亚洲一区中文字幕在线| 十八禁高潮呻吟视频| 黄片小视频在线播放| 高清视频免费观看一区二区| 99精品久久久久人妻精品| 国产国语露脸激情在线看| 国产亚洲午夜精品一区二区久久| 欧美性长视频在线观看| 亚洲一区中文字幕在线| 黑人巨大精品欧美一区二区蜜桃| 欧美在线黄色| 中文字幕人妻丝袜制服| 国产成人av教育| 老司机福利观看| av一本久久久久| 黑人操中国人逼视频| 在线十欧美十亚洲十日本专区| 热99国产精品久久久久久7| 另类精品久久| h视频一区二区三区| 国产一区二区三区在线臀色熟女 | 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲av高清不卡| 搡老熟女国产l中国老女人| 一二三四在线观看免费中文在| 久久精品国产a三级三级三级| 欧美在线黄色| 久久久久精品人妻al黑| 十八禁人妻一区二区| 国产精品美女特级片免费视频播放器 | 亚洲va日本ⅴa欧美va伊人久久| 国产av国产精品国产| 9热在线视频观看99| 欧美+亚洲+日韩+国产| av在线播放免费不卡| 欧美日本中文国产一区发布| 99riav亚洲国产免费| 亚洲天堂av无毛| 精品欧美一区二区三区在线| 日本av手机在线免费观看| 变态另类成人亚洲欧美熟女 | 80岁老熟妇乱子伦牲交| 别揉我奶头~嗯~啊~动态视频| av片东京热男人的天堂| 91精品国产国语对白视频| 国产亚洲av高清不卡| 999精品在线视频| 嫩草影视91久久| 黑丝袜美女国产一区| 亚洲天堂av无毛| 国产在线精品亚洲第一网站| 在线 av 中文字幕| 国产一区有黄有色的免费视频| 最近最新中文字幕大全免费视频| aaaaa片日本免费| 一边摸一边抽搐一进一小说 | 国产日韩一区二区三区精品不卡| 久久精品亚洲精品国产色婷小说| 老司机靠b影院| 久热这里只有精品99| 91av网站免费观看| 国产熟女午夜一区二区三区| 狂野欧美激情性xxxx| 国产精品亚洲av一区麻豆| 黄色a级毛片大全视频| 岛国在线观看网站| av线在线观看网站| 成在线人永久免费视频| 亚洲人成电影观看| 精品国产乱子伦一区二区三区| 亚洲午夜精品一区,二区,三区| 中文字幕制服av| 国产伦理片在线播放av一区| 一夜夜www| 国产黄频视频在线观看| 在线av久久热| xxxhd国产人妻xxx| 国产高清视频在线播放一区| 一区二区日韩欧美中文字幕| 国产av又大| www.精华液| 国产老妇伦熟女老妇高清| videos熟女内射| 五月开心婷婷网| 国产成人欧美在线观看 | 亚洲欧美一区二区三区久久| 三上悠亚av全集在线观看| 久久久久精品人妻al黑| 久久香蕉激情| 欧美 亚洲 国产 日韩一| 精品亚洲乱码少妇综合久久| 久久中文字幕人妻熟女| 精品国产一区二区久久| 最近最新中文字幕大全电影3 | 国产成人啪精品午夜网站| 真人做人爱边吃奶动态| 成人国产一区最新在线观看| 1024香蕉在线观看| 国产黄频视频在线观看| 国精品久久久久久国模美| 不卡av一区二区三区| 91麻豆精品激情在线观看国产 | 午夜福利乱码中文字幕| cao死你这个sao货| 中文字幕人妻熟女乱码| 日日爽夜夜爽网站| 国产亚洲精品一区二区www | 亚洲国产成人一精品久久久| 日韩三级视频一区二区三区| 亚洲一区二区三区欧美精品| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| 99香蕉大伊视频| 久久热在线av| 又紧又爽又黄一区二区| 国产在线免费精品| 最新在线观看一区二区三区| 美女福利国产在线| 曰老女人黄片| 在线观看一区二区三区激情| 精品福利永久在线观看| 中文字幕色久视频| 国产成人欧美| 美女高潮到喷水免费观看| 欧美精品一区二区免费开放| 美国免费a级毛片| 久久久久久人人人人人| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 亚洲国产欧美一区二区综合| 高清av免费在线| 亚洲色图av天堂| 一本一本久久a久久精品综合妖精| 日本一区二区免费在线视频| 色老头精品视频在线观看| 欧美激情 高清一区二区三区| 老司机午夜十八禁免费视频| 女同久久另类99精品国产91| 大香蕉久久网| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 中文字幕人妻丝袜一区二区| 国产区一区二久久| 国产精品亚洲一级av第二区| 欧美日韩亚洲综合一区二区三区_| 国产高清videossex| 日韩免费av在线播放| 久久久久久久精品吃奶| 91精品国产国语对白视频| 热99久久久久精品小说推荐| 大码成人一级视频| 国产精品影院久久| 欧美亚洲 丝袜 人妻 在线| 大香蕉久久网| 久久久久精品国产欧美久久久| 欧美日韩亚洲高清精品| 十八禁人妻一区二区| 9191精品国产免费久久| 美女高潮到喷水免费观看| 在线播放国产精品三级| 新久久久久国产一级毛片| 日本a在线网址| 女警被强在线播放| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| 国产av国产精品国产| 午夜福利视频在线观看免费| 电影成人av| 亚洲色图综合在线观看| 精品人妻在线不人妻| 日韩人妻精品一区2区三区| 国产1区2区3区精品| 久热这里只有精品99| 女人精品久久久久毛片| 亚洲精品国产区一区二| 天堂中文最新版在线下载| av一本久久久久| 日韩制服丝袜自拍偷拍| a在线观看视频网站| 黑人操中国人逼视频| 久久天堂一区二区三区四区| av又黄又爽大尺度在线免费看| 亚洲三区欧美一区| 人成视频在线观看免费观看| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 一区在线观看完整版| 欧美日韩精品网址| 午夜福利在线免费观看网站| 日日夜夜操网爽| 国产精品久久久av美女十八| 99热国产这里只有精品6| 一边摸一边抽搐一进一出视频| 欧美黑人精品巨大| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 1024视频免费在线观看| 亚洲成人手机| 国产在线免费精品| 精品国内亚洲2022精品成人 | 精品少妇一区二区三区视频日本电影| 一二三四社区在线视频社区8| 黄色片一级片一级黄色片| 一级黄色大片毛片| 大香蕉久久网| 国产aⅴ精品一区二区三区波| 动漫黄色视频在线观看| 亚洲七黄色美女视频| 一级毛片电影观看| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 在线观看www视频免费| 一级,二级,三级黄色视频| 女人爽到高潮嗷嗷叫在线视频| 老司机深夜福利视频在线观看| 女人高潮潮喷娇喘18禁视频| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 久久亚洲真实| 午夜日韩欧美国产| 欧美激情 高清一区二区三区| 老司机福利观看| 亚洲熟女毛片儿| 免费女性裸体啪啪无遮挡网站| 最近最新免费中文字幕在线| av网站在线播放免费| 精品国产乱子伦一区二区三区| 国产日韩欧美视频二区| 日韩三级视频一区二区三区| 日韩视频一区二区在线观看| 久久亚洲真实| 国产熟女午夜一区二区三区| av国产精品久久久久影院| 建设人人有责人人尽责人人享有的| 国产欧美日韩一区二区三| 香蕉丝袜av| 超色免费av| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 高清视频免费观看一区二区| 亚洲av电影在线进入| 成人国语在线视频| 无限看片的www在线观看| av天堂在线播放| 90打野战视频偷拍视频| 99精品久久久久人妻精品| 久久青草综合色| 91字幕亚洲| 亚洲精品久久成人aⅴ小说| 美女主播在线视频| 亚洲精品在线美女| 亚洲人成电影观看| 99国产精品一区二区三区| 亚洲,欧美精品.| 欧美国产精品一级二级三级| 色在线成人网| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 精品少妇黑人巨大在线播放| 黄片播放在线免费| 久热这里只有精品99| 女人精品久久久久毛片| www.自偷自拍.com| 久久久久久久久久久久大奶| 香蕉久久夜色| kizo精华| 亚洲avbb在线观看| 欧美日韩精品网址| 久久免费观看电影| 久久精品亚洲熟妇少妇任你| 99精品欧美一区二区三区四区| 亚洲免费av在线视频| 又黄又粗又硬又大视频| 搡老岳熟女国产| 日本av免费视频播放| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 国产精品1区2区在线观看. | 久久人妻福利社区极品人妻图片| 国产精品免费大片| 蜜桃国产av成人99| 久久人妻福利社区极品人妻图片| 青青草视频在线视频观看| 午夜福利欧美成人| 日本vs欧美在线观看视频| 伊人久久大香线蕉亚洲五| 久久精品亚洲av国产电影网| 女人被躁到高潮嗷嗷叫费观| 久久午夜亚洲精品久久| 老司机亚洲免费影院| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看 | 五月天丁香电影| 19禁男女啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 日日摸夜夜添夜夜添小说| 精品人妻1区二区| 中文欧美无线码| 一二三四在线观看免费中文在| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 丝瓜视频免费看黄片| 国产av精品麻豆| 久久精品国产综合久久久| 免费高清在线观看日韩| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 国产精品偷伦视频观看了| 无限看片的www在线观看| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久免费高清国产稀缺| 纵有疾风起免费观看全集完整版| 国产成人av教育| 999久久久精品免费观看国产| 91成年电影在线观看| 国产精品一区二区在线不卡| 精品人妻在线不人妻| 国产精品一区二区在线不卡| 亚洲精品美女久久av网站| 国产高清国产精品国产三级| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 日韩欧美国产一区二区入口| 国产一区二区在线观看av| 国产野战对白在线观看| 亚洲免费av在线视频| 老熟女久久久| 国产国语露脸激情在线看| 国产日韩欧美亚洲二区| 婷婷丁香在线五月| 亚洲 国产 在线| 成人黄色视频免费在线看| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 老熟女久久久| 一本色道久久久久久精品综合| 中文字幕精品免费在线观看视频| av欧美777| 日本撒尿小便嘘嘘汇集6| 在线观看66精品国产| 黄色视频,在线免费观看| 国精品久久久久久国模美| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| 午夜福利视频在线观看免费| 人人妻人人澡人人看| 91成人精品电影| 亚洲成a人片在线一区二区| 美女视频免费永久观看网站| 中国美女看黄片| 亚洲专区国产一区二区| 国产福利在线免费观看视频| a级毛片黄视频| 国产成人精品无人区| netflix在线观看网站| 国产在线视频一区二区| 国产高清videossex| 新久久久久国产一级毛片| 日韩一卡2卡3卡4卡2021年| 老熟女久久久| 色综合欧美亚洲国产小说| 丝瓜视频免费看黄片| 热99re8久久精品国产| 动漫黄色视频在线观看| 日本a在线网址| 丰满迷人的少妇在线观看| 欧美黄色片欧美黄色片| 大片电影免费在线观看免费| av在线播放免费不卡| 国产成人免费观看mmmm| 国产野战对白在线观看| 丰满人妻熟妇乱又伦精品不卡| videos熟女内射| 99热网站在线观看| 亚洲国产成人一精品久久久| 国产精品亚洲av一区麻豆| 欧美+亚洲+日韩+国产| 99精品久久久久人妻精品| 老司机在亚洲福利影院| 超色免费av| 不卡一级毛片| 免费看十八禁软件| 激情在线观看视频在线高清 | 亚洲av欧美aⅴ国产| 曰老女人黄片| 视频在线观看一区二区三区| 国产老妇伦熟女老妇高清| 成人亚洲精品一区在线观看| 丝袜美足系列| a级毛片在线看网站| av免费在线观看网站| 国产成人精品久久二区二区91| 欧美 亚洲 国产 日韩一| 国产成人影院久久av| 午夜激情av网站| 国产精品久久久久久人妻精品电影 | 亚洲第一青青草原| 亚洲国产欧美网| 夜夜爽天天搞| 亚洲三区欧美一区| 桃红色精品国产亚洲av| 老熟妇仑乱视频hdxx| 欧美日韩一级在线毛片| 在线亚洲精品国产二区图片欧美| 国产精品亚洲av一区麻豆| 97在线人人人人妻| 免费av中文字幕在线| 欧美老熟妇乱子伦牲交| 亚洲午夜理论影院| 岛国毛片在线播放| 免费日韩欧美在线观看| 男女边摸边吃奶| 少妇粗大呻吟视频| 日本av免费视频播放| 免费黄频网站在线观看国产| 大片电影免费在线观看免费| 国产在线视频一区二区| 一区二区三区国产精品乱码| 岛国毛片在线播放| 女人爽到高潮嗷嗷叫在线视频| 黄色视频,在线免费观看| 中文字幕精品免费在线观看视频| 久久久久久久精品吃奶| 国产精品1区2区在线观看. | 乱人伦中国视频| 欧美成人免费av一区二区三区 | 变态另类成人亚洲欧美熟女 | 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月 | 可以免费在线观看a视频的电影网站| 国产不卡一卡二| 色婷婷av一区二区三区视频| 国产成人系列免费观看| 极品人妻少妇av视频| 久久精品国产a三级三级三级| 无人区码免费观看不卡 | av福利片在线| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 黄色视频在线播放观看不卡| 高清黄色对白视频在线免费看| 侵犯人妻中文字幕一二三四区| 欧美日韩福利视频一区二区| 大型黄色视频在线免费观看| av片东京热男人的天堂| 一本一本久久a久久精品综合妖精| 色综合婷婷激情| 国产在线免费精品| 国产精品1区2区在线观看. | 国产精品国产高清国产av | 久久精品人人爽人人爽视色| 黑人猛操日本美女一级片| 亚洲第一av免费看| 久久久久久亚洲精品国产蜜桃av| 涩涩av久久男人的天堂| 在线av久久热| avwww免费| 国产成人欧美在线观看 | 亚洲午夜理论影院| 大型av网站在线播放| 高潮久久久久久久久久久不卡| 极品教师在线免费播放| 久久国产精品影院| 男人操女人黄网站| 久久国产精品影院| 免费观看人在逋| av免费在线观看网站| 国产av精品麻豆| 欧美性长视频在线观看| 欧美亚洲 丝袜 人妻 在线| 久久久久久免费高清国产稀缺| 免费在线观看黄色视频的| 久久久久久人人人人人| 老司机福利观看| h视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| www.自偷自拍.com| 国产一区二区在线观看av| 国产伦理片在线播放av一区| 欧美日韩福利视频一区二区| 精品亚洲乱码少妇综合久久| 老司机午夜福利在线观看视频 | 啦啦啦 在线观看视频| 王馨瑶露胸无遮挡在线观看| 最近最新中文字幕大全免费视频| 老司机靠b影院| 久久这里只有精品19| 少妇粗大呻吟视频| 成人黄色视频免费在线看| 免费少妇av软件| 免费av中文字幕在线| 丝袜美腿诱惑在线| av免费在线观看网站| 高清毛片免费观看视频网站 | 免费观看人在逋| 免费在线观看视频国产中文字幕亚洲| 日韩三级视频一区二区三区| 久久 成人 亚洲| 国产精品av久久久久免费| 黄片播放在线免费| 高清黄色对白视频在线免费看| 妹子高潮喷水视频| 99久久精品国产亚洲精品| 亚洲专区中文字幕在线| 精品国产乱码久久久久久小说| 亚洲专区中文字幕在线| 超色免费av| 九色亚洲精品在线播放| 亚洲精品乱久久久久久| av有码第一页| 动漫黄色视频在线观看|