• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variability of European beech wood density as influenced by interactions between treering growth and aspect

    2016-11-24 05:35:53DanielaDiaconuMarcWassenbergandHeinrichSpiecker
    Forest Ecosystems 2016年3期

    Daniela Diaconu,Marc Wassenberg and Heinrich Spiecker

    Variability of European beech wood density as influenced by interactions between treering growth and aspect

    Daniela Diaconu*,Marc Wassenberg and Heinrich Spiecker

    Background:Wood density is considered to be the most important predictor of wood quality but despite its importance,diffuse-porous tree species have been the subject of only a limited number of studies.The importance of European beech forests for Central Europe calls for profound research to examine the potential impact of a warmer climate on the quality of beech timber.

    Methods:In this study we analysed the influence of tree-ring width and tree-ring age on the wood density of beech, and whether the wood density response to these two parameters is modified by aspect.A linear mixed-effects model for wood density was constructed for mean density data measured with high frequency densitometry on stem discs from 72 beech trees sampled from two different aspects(northeast-NE and southwest-SW)of a valley in southwestern Germany.

    Results:Part of the variability of mean annual wood density was explained by cambial age:an increase in cambial age resulted in an increase in mean wood density.Tree-ring width and aspect had only a small influence on wood density. Wood density on the SW aspect was lower than on the NE with a difference of approximately 0.006 g/cm3.The between-tree variability was very high.

    Conclusions:The significant interaction between cambial age and aspect reflects the importance of site conditions at older tree ages:with increasing cambial age the difference between aspects becomes stronger.Our results give a better understanding of the importance of site conditions on the wood quality of beech.

    Fagus sylvatica,HF densitometry,Wood quality,Wood density,Aspect

    Background

    The structure and characteristics of tree-rings contain extremely valuable information concerning wood quality. Tree-ring research is essential in developing management guidelines to improve wood quality and productivity(Spiecker 2002).The variation of different tree-ring parameters with changes in climate can be analysed at different scales by the analysis of tree-ring width,cell structure parameters or wood density.

    One of the most important parameters of wood quality is wood density,due to its correlation with the calorific value and also with mechanical properties such as hardness,stiffness and strength(Hacke et al.2001;Niklas and Spatz 2010;Shmulsky and Jones 2011).Analysis of wood density has developed into a valuable dendroecological tool for studying the relationship between environment,tree growth and wood quality.In the context of predictions of a warmer and dryer climate in the future, wood quality becomes a crucial issue.With increased nitrogen deposition and more CO2in the atmosphere an increase in the radial growth of trees is expected(Becker et al.1995;Spiecker et al.1996;Kahle et al.2008).However,wider tree-rings do not necessarily imply a higher or lower density.

    The relationship between tree-ring width and tree-ring density has been intensively studied and it varies according to tree species(Bontemps et al.2013).For instance for spruce an increase in tree-ring width was found to decrease wood density(M?kinen et al.2007;Piispanenet al.2014;Franceschini et al.2010),while for oak Guilley et al.(2004)found that an increase in tree-ring width results in an increase in wood density.

    Knowledge of interactions between the effects of radial growth on wood density under different environments becomes very important for the selection process of appropriate silvicultural treatments under projected global warming scenarios.Studies which link wood density to tree-ring width,cambial age,different environmental factors or silvicultural practices were mostly carried out for conifer species(Cregg et al.1988;Jozsa and Brix 1989;Bouriaud et al.2005;Filipescu et al.2014).For broadleaves,due to the vessel distribution within the tree-rings,these studies are limited to ring porous tree species(Bergès et al.2008;Guilley et al.1999);wood density variation of diffuse-porous tree species has rarely been analysed(Zhang 1995;Bouriaud et al.2004;Skomarkova et al.2006;Bontemps et al.2013).

    European beech(Fagus sylvatica L.)is the most abundant broad-leaved forest tree species in Central Europe (Ellenberg 1996),and due to its high ecological and economic importance it is one of the most relevant hardwood tree species for forest management in this region. Therefore,profound research to examine the effects of a warmer and dryer climate on wood quality of beech is needed.

    Our work complements the study done by Bouriaud (2004)and brings new arguments to the discussion on wood density variation of beech due to changing environmental conditions.We measured the mean annual density of European beech sampled from two opposing slopes with high frequency(HF)densitometry,a method which utilises the dielectric properties of wood(Torgovnikov 1993).This technique is based on the high frequency(HF)propagation of electromagnetic waves by a microelectrode system through the wood sample(Schinker et al.2003;Boden et al.2012).The signal received by the dielectric measuring device is directly influenced by the dielectric properties of the wood sample along the radius,and the variation of the dielectric permittivity is correlated with the density variations(Schinker et al. 2003).HF densitometry has been shown to perform reliable measurements of wood density(Wassenberg et al. 2014;Wassenberg et al.2015b)and results compare well to X-ray densitometry(Schinker et al.2003).When compared to X-ray measurements this method provides the advantage that it is extremely fast,non-destructive and relatively inexpensive;this method was used in several dendroclimatological studies in recent years(Fan et al.2009;Bender et al.2012;Montwé et al.2014;Shchupakivskyy et al.2014;Wassenberg et al.2015a;Hackenberg et al.2015).

    The objectives of our study were 1)to analyse the effect of tree-ring width and tree-ring age on mean annual density of European beech and 2)to test whether the wood density response to ring width and cambial ring age is modified by aspect.

    Methods

    Study site and experimental design

    The study area is located in southwestern Germany in a beech-dominated forest in the Swabian Alb,about 100 km south-southwest from Stuttgart.Experimental sites are situated on two opposite-exposed slopes:northeast(NE)and south-west(SW)aspects of a narrow valley close to the city of Tuttlingen.Elevation is~800 m and~760 m a.s.l.for the NE and SW aspect respectively, both with an inclination of 23–30°.The climate in the areaissemi-continental,withameanannualair temperature of ca 7.0°C,and annual precipitation of 900 mm.Rainfall does not vary significantly across the valley(Ge?ler 2001).The stands have an average age of 80–100 years(Hauser 2003).

    The first difference between the aspects is regarding the soil profiles.On the SW aspect the soil profile is particularly rocky,with soils containing 20–45 vol%rocks and stones in the upper 20 cm and up to 80%below 0.50 m compared with the NE aspect where the soils contain only 15 vol%rocks in the upper soil layer and 30 vol%rocks below 0.50 m(Hildebrand et al.1998; Ge?ler et al.2005).The second important difference between aspects is that due to the higher radiation interception at the canopy layer on the SW site,the temperature is higher,the evapotranspiration is increased,and therefore,the water availability is permanently lower than on the NE aspect(Mayer et al.2002). Differences between aspects are noticeable also regarding the site index,the mean height of the dominant trees (h100)at base age 100 years being 29.2 m on the NE and 23.4 m on the SW aspect(Spiecker et al.2001).

    The rocky soil profile merged with the lower water availability on the SW aspect makes the study area resemble a model ecosystem where the climate projections for the next 50 to 100 years are represented by the relatively warm and dry SW aspect,and the current climate typical for the majority of beech forests in central Europe is represented by the relatively cold and wet NE facing slope(Rennenberg 1998).

    In winter of 1998–1999,within the framework of a larger interdisciplinary study(SFB 433:Beech dominated deciduous forests under the influence of climate and management:ecological,silvicultural and social analyses”),a thinning experiment was established in the study area.The objective of the study was to develop operational stand management concepts for enhancing the resilience and adaptive capacity of beech forests to changing climatic conditions,especially to summer drought, taking into account ecological and economic aspects.The experimental design included different thinning treatments in a randomised block design established on each aspect and replicated three times on the NE and two times on the SW aspect.

    Sampling and measurements

    All trees inside experimental plots were numbered and marked at 1.3 m stem height for repeated diameter measurements.The diameter measurements were assessed for all trees with a calliper,in 1999 before thinning.

    The material of this study study is represented by the trees which were removed during the thinning operation.On each aspect a total of 36 random trees from different blocks(treatment replication)were selected (NNE=36,NSW=36,Ntotal=72).The selected trees are equally distributed in different social classes,according to the Kraft class.From each tree a stem disc at a height of 1.3 m from the ground was removed and analysed in the laboratory.The surface of all cross sections was prepared with a diamond fly cutter(Spiecker et al.2000) and four radii per sample were measured for tree-ring width and wood density.

    Radial growth was measured using a semi-automatic image analysis software developed at the Chair of Forest Growth and Dendroecology.The individual tree growth series were cross-dated with a reference chronology with the software PAST4(Personal Analysis System for Tree-Ring Research,SCIEM,version 4.3.1014).

    Wood density was determined using HF densitometry (Schinker et al.2003).We used the same HF probe for all samples(type D,approximately 80 μm integration width,see Fig.1–Wassenberg et al.2015b).The mean density was calculated per year,tree and aspect as an arithmetic mean between the four radii that were measured.In order to convert the voltage units to real density values we used the calibration method developed by Wassenberg et al.(2014).

    Data analysis

    All data exploration,analysis and graphics were carried out using the R programming environment 3.1.3(R Core Team 2014).The R packages used for the analysis were: reshape2(Wickham 2007),ggplot2(Wickham 2009)and plyr(Wickham 2011).For computing the mixed-effects models we used the package lme4(Bates et al.2015)and lmerTest(Kuznetsova et al.,2014).The hierarchical partitioning of the independent variables was computed with the package hier.part(Walsh and Mac Nally 2013).

    We analysed the effect of tree-ring width,tree-ring age,site and their interactions on wood density.For this purpose,we computed a mixed-effects model for mean annual wood density with tree-ring width,aspect,cambial age and their interactions as fixed effects and tree and year as random effects(Eq.1).

    with yibeing mean annual density of individual trees on the ithaspect,TRW-tree-ring width and CA-cambial age(tree-ring age counted from the pith).αnare coefficients to be estimated.

    The mixed effects modelling approach provides a flexible tool for the analysis of grouped data,giving the possibility to incorporate fixed as well as random effects within one model.Fixed effects parameters are common to all subjects,whereas random effects parameters are specific to each subject(Pinheiro and Bates 2000).Fixed effects have an influence on the mean of the dependent variable,while random effects influence the variance of the dependent variable(Crawley 2007).The effect of tree (from different blocks of treatment replication)and year were treated as random effects to properly account for their random variability.

    A significant interaction between two main effects means that the effect of a variable depends on the level of the other(Dormann 2013).The interaction term TRW:Aspect allows the magnitude of the tree-ring width on mean annual wood density to vary across the valley. The second interaction term CA:Aspect permits the effect of tree-ring age on mean annual wood density to vary with aspect.

    Results

    The hierarchical contributions of each independent variable included in the model on mean annual wood density are illustrated in Fig.1.From the three independent variables,most of wood density variability was explained by cambial age,followed by site effects and tree-ring width.

    The difference between the two aspects was larger for ring width than for wood density(Fig.2).Results of ttest comparisons showed that both parameters were significantly different between expositions,but the trees on the NE aspect display significantly wider tree-rings and only slightly higher wood density than the ones on the opposite slope.Specifically,the mean tree-ring width of the trees on the NE aspect was 4.2351 mm/y(±1.9423) and 3.0794 mm/y(±1.3147)on the SW aspect.Mean annual wood density on the NE exposed slope was on average 0.5968(±0.0312)g/cm3and slightly lower on the SW with 0.5908(±0.0299)g/cm3.

    The results of the developed mixed-effects model showed that as main effect,aspect was not statistically significant(p>0.05),but the interaction between aspect and tree-ring width as well as between cambial age and aspect were significant.All coefficients with statistically significant influence on wood density indicated plausible relationships with respect to biological interpretation. The parameter estimates,standard errors,and p-values of the parameters for the model presented in Equation 1 are listed in Table 1.The plot of the obtained residuals against the predicted values did not indicate any systematic deviation.

    Wood density was slightly positively influenced by an increase in tree-ring width and cambial age(Figs.3 and 4).For both parameters the annual density variability among trees was rather high.The significant interactions between tree-ring width and aspect,and cambial age and aspect are illustrated in Figs.5 and 6.With an increase in tree-ring width,wood density increases much faster for the trees on the SW aspect compared with trees on the opposite slope(Fig.5).Nevertheless,with increasing cambial age,wood density is significantly higher for the trees on the NE aspect than on the SW (Fig.6).

    Table 1 Parameter estimates and error statistics for the mean annual wood density model

    Discussion

    In this case study we evaluated differences in mean annual wood density of European beech as influenced by tree-ring width and tree-ring age under differing climatic site conditions.We showed that wood density of European beech in southwestern Germany is influenced by tree-ring age,and slightly by tree-ring width and environment,but there is a very high variability between individual trees.

    Cambial age effect

    Cambial age or the age of the tree-rings starting from the pith was found to have a significant role in wood density variation for different tree species.In our study the mean annual wood density was correlated with the tree-ring age from the pith-an increase in tree-ring age resulting in an increase in tree-ring wood density.Our results are in contradiction with the results of Bouriaud (2004)who found a negative relationship between ring density and ring age.This might be explained by the different age of the samples(45–70 years in Bouriaud vs 80–90 years in our case),by the different sample size(30 vs.72 trees)or by environmental influence.A similar tree-ring age effect has been shown by De Bell et al. (2002)who studied wood density variation in young poplars and found an increase in wood density in the first three years,a decrease in the 4th and 5th year followed again by an increase until the 9th year.However,the weak influence of cambial age on mean annual wood density,reflects also that part of the total variation of annual wood density might be explained by other factors such as weather and climate.

    Site effect

    Environmental influence in our study was represented by the aspect effect,the water stress for trees on the SW exposed slope being higher,and the soil profile being particularly rocky.Bouriaud(2004)did not find any influence of soil water deficit on ring density.In our study the difference in mean annual wood density between expositions was very small:0.006 g/cm3less for trees on the SW aspect.Our results highlight higher sensitivity of tree-ring width to dry conditions compared with wood density-the difference in radial growth between expositions was more significant than for wood density.Particularly,the mean tree-ring width of trees on the NE aspect was approximately 40%higher than on the SW, while the mean annual density was only 1%higher than on the SW exposed slope(Fig.2).The significant interaction between aspect and tree-ring age showed that with an increasing tree age the annual wood density of trees on the SW aspect is significantly lower than on the NE.This provides evidence that in older trees such a difference in wood density between moist and dry conditions might become larger.

    Z’Graggen(1992)showed that maximum wood density in beech towards the end of the growing season is mostly explained by climate.Likewise,work by Sass and Eckstein(1995)also found that vessel formation at the end of the vegetation period is strongly influenced by the amount of rainfall in July.Moreover,van der Maaten (2012)found that water stress has a main impact on wood formation in beech.Hence,the local environmental factors play a significant role on the variation of wood density.

    In a more extreme climate,with more frequent summer droughts,site conditions similar to the ones presented in this study(SW aspect)might have a stronger impact on beech wood anatomy,and therefore,on wood density.Wood density depends on the number of vessels per unit area and also their size(Preston et al.2006). The variation of these two parameters as well as the way vessels are grouped within the xylem,directly influences wood density.For instance,von Arx et al.(2013)found that on dry sites vessels are grouped in more and larger clusters than on moist sites.These findings imply that wood density on dry sites might be lower than on moist sites due to the higher vessel area within any single treering.However,our results showed that the difference in mean annual wood density between aspects is very small.Moreover,only with two aspects,and due to the very high variability between individual trees it is hard to draw decisive conclusions regarding the environmental influence on wood density.This is why we encourage future studies also to investigate the intra-annual density profile linked to the architecture of the water conducting system of European beech or other diffuse-porous tree species under contrasting site conditions.

    Tree-ring width effect

    Due to the arrangement of vessels along the tree-ring (Sass and Eckstein 1995),wood density of diffuse-porous tree species might be only slightly influenced by a change in tree-ring width.In our study,the relationship between these two parameters was positive,significant but relatively weak-an increase in tree-ring width results in slightly higher tree-ring wood density.Our results are confirmed by Zhang(1995)who observed only a little influence of growth rate on specific gravity and mechanical proprieties of other diffuse-porous tree species(birch and poplar).Likewise,Bontemps et al.(2013)found a positive but weak relationship between these two parameters for common beech in Northeastern France.Bouriaud(2004)reported no significant influence of tree-ring width on wood density.Both studies stated very large between-tree variability,which was considered to weaken the correlation.

    When considering also the aspect,an increase in treering width on the SW aspect increased wood density more than on the NE.This implies,that the wider treerings of trees on the SW aspect have less total vessel area within xylem than on the NE.It is well known that different silvicultural treatments such as thinning increase radial growth.This has been shown also for European beech(Boncina et al.2007;Le Goff and Ottorini 1993,1999;van der Maaten 2012;Diaconu et al.2015). In this context our results reveal that thinning might not only give higher radial growth rates but also higher wood density.Eilmann et al.(2014)found a significant positive relationship between tree-ring width and total vessel area of beech,showing that if trees have higher growth rates,this is due to the formation of large vessels.At the same time,they found a strong negative relationship between vessel density and tree-ring width meaning that with wider tree-rings vessel density is decreasing.With low conduit density,wood density might also increase.This is confirmed by another analysis within the study area concerning the xylem plasticity in the hydraulic architecture of European beech in response to thinning,here,where the mean vessel area, the vessel density and the number of vessel groups within xylem significantly decreased in thinned trees compared to the unthinned trees(unpublished observation).These correlations show as well the investment in different types of tissues with increasing tree-ring width, and prove that with higher growth rates trees invest more in carbon sequestration than in their hydraulic system.In our study,considering the significant interaction effect between tree-ring width and aspect on wood density,thinning might represent a potential adaptation measure to a warmer climate by making the water conducting system more robust against hydraulic failure especially of the trees growing under more drought-prone climate.

    Conclusion

    In this study we have described the wood density variation of European beech trees as influenced by interactions between tree-ring growth and aspect.We showed that wood density of beech is influenced by tree-ring age,followed by site effects and tree-ring width.The influence of site effects on wood density was less sensitive than for tree-ring width.The significant interaction between aspect and tree-ring age showed that the present difference of 6 kg/m3between NE and SW aspect might increase at older ages.At the same time,the interaction between aspect and tree-ring width reflects that silvicultural treatments such as thinning applied to increase radial growth could have different effects on wood density according to the local climate.

    The high sample size coupled with the long time series,offers an indication of the effect of tree-ring age, tree-ring width and local climate on wood density of European beech,and highlights as well the high variability between individual trees.Our findings bring new arguments into the present discussion of wood quality in a warmer climate and represent an important aspect for the forest management sector.Nevertheless,as our study is not replicated at other sites,the presented results are valid only for the climatic conditions in our study region and in order to generalise our findings a broader analysis needs to be carried out.Likewise,further analysis on the same or similar material but focused on wood anatomy(fibre,conduit and ray characteristics), together with climate or dendrometer data might offer a more precise indication of the influencing factors on wood density and might explain more of the interannual wood density variability of European beech trees.

    Competing interests

    The authors declare that they have no competing interest.

    Authors’contributions

    HS conceived the study and contributed to its design and coordination.All TRW and HF-density measurements were carried out by MW.Data analysis was performed by DD.The manuscript was written by DD with advice from MW and HS.All authors contributed to the interpretation and discussion of the results.All authors read and approved the final manuscript.

    Acknowledgments

    This study used material from the collaborative research project SFB 433 (“Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische,waldbauliche und sozialwissenschaftliche Analysen”-Beech dominated deciduous forests under the influence of climate and forest management).DD is funded by the project BuKlim within Waldklimafods program of BMEL/BMUB(“Gef?rdert durch Bundesministerium für Ern?hrung und Landwirtschaft und das Bundesministerium für Umwelt, Naturschutz,Bau und Reaktorsicherheit aufgrund eines Beschlusses des Deutschen Bundestages”).The authors would like to thank Jonathan Sheppard for English language revisions to the manuscript.

    References

    Bates D,Maechler M,Bolker B,Walker S(2015)Fitting linear mixed-effects models using lme4.J Stat Softw 67(1):1-48.doi:10.18637/jss.v067.i01

    Becker M,Bert GD,Bouchon J,Dupouey JL,Picard JF,Ulrich E(1995)Long term changes in forest productivity:the dendrochronological approach.In: Landmann G,Bonneau M(eds)Forest decline and atmospheric deposition effects in the French mountains.Springer,Berlin,Heidelberg

    Bender BJ,Mann M,Backofen R,Spiecker H(2012)Microstructure alignment of wood density profiles:an approach to equalize radial differences in growth rate.Trees 26(4):1267-1274.doi:10.1007/s00468-012-0702-y

    Bergès L,Nepveu G,Franc A(2008)Effects of ecological factors on radial growth and wood density components of sessile oak(Quercus petraea Liebl.)in Northern France.For Ecol Manage 255(3-4):567-579.doi:10.1016/j.foreco. 2007.09.027

    Boden S,Schinker MG,Duncker P,Spiecker H(2012)Resolution abilities and measuring depth of high-frequency densitometry on wood samples. Measurement 45(7):1913-1921.doi:10.1016/j.measurement.2012.03.013

    Boncina A,Kadunc A,Robic D(2007)Effects of selective thinning on growth and development of beech(Fagus sylvatica L.)forest stands in southeastern Slovenia.Ann For Sci 64(1):47-57.doi:10.1051/forest:2006087

    Bontemps J,Gelhaye P,Nepveu G,Hervé J(2013)When tree rings behave like foam:moderate historical decrease in the mean ring density of common beech paralleling a strong historical growth increase.Ann For Sci 70(4):329-343.doi:10.1007/s13595-013-0263-2

    Bouriaud O,Bréda N,Le Moguédec G,Nepveu G(2004)Modelling variability of wood density in beech as affected by ring age,radial growth and climate. Trees 18(3):264-276.doi:10.1007/s00468-003-0303-x

    Bouriaud O,Leban J,Bert D,Deleuze C(2005)Intra-annual variations in climate influence growth and wood density of Norway spruce.Tree Physiol 25:651-660

    Crawley MJ(2007)The R book.Wiley,England

    Cregg BM,Dougherty PM,Hennessey TC(1988)Growth and wood quality of young loblolly pine trees in relation to stand density and climatic factors.f. Can J For Res 18(7):851-858.doi:10.1139/x88-131

    DeBell DS,Singleton R,Harrington CA,Gartner BL(2002)Wood density and fiber length in young Populus stems:relation to clone,age,growth rate,and pruning.Wood Fiber Sci 34:529-539

    Diaconu D,Kahle H,Spiecker H(2015)Tree-and stand-level thinning effects on growth of european beech(Fagus sylvatica L.)on a Northeast-and a Southwest-facing slope in Southwest Germany.Forests 6(9):3256-3277.doi: 10.3390/f6093256

    Dormann CF(2013)Parametrische Statistik:Verteilungen,Maximum Likelihood und GLM in R.Springer,Berlin

    Eilmann B,Sterck F,Wegner L,de Vries SMG,von Arx G,Mohren GMJ,den Ouden J,Sass-Klaassen U(2014)Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiol 34(8):882-893.doi:10.1093/treephys/tpu069

    Ellenberg H(1996)Vegetation Mitteleuropas mit den Alpen in ?kologischer, dynamischer und historischer Sicht:170 Tabellen,5.,stark ver?nd.und verb. Aufl.UTB,vol 8104.Ulmer,Stuttgart

    Fan Z,Br?uning A,Yang B,Cao K(2009)Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China.Glob Planet Chang 65(1-2):1-11.doi:10.1016/j.gloplacha.2008.10.001

    Filipescu CN,Lowell EC,Koppenaal R,Mitchell AK(2014)Modeling regional and climatic variation of wood density and ring width in intensively managed Douglas-fir.Can J For Res 44(3):220-229.doi:10.1139/cjfr-2013-0275

    Franceschini T,Bontemps J,Gelhaye P,Rittie D,Herve J,Gegout J,Leban J(2010) Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century.Ann For Sci 67(8):816.doi:10.1051/ forest/2010055

    Ge?ler A,Schrempp S,Matzarakis A,Mayer H,Rennenberg H,Adams MA(2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech(Fagus sylvatica).New Phytol 150:653-664

    Ge?ler A,Jung K,Gasche R,Papen H,Heidenfelder A,B?rner E,Metzler B,Augustin S, Hildebrand E,Rennenberg H(2005)Climate and forest management influence nitrogen balance of European beech forests:microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots.Eur J Forest Res 124(2):95-111.doi:10.1007/s10342-005-0055-9

    Guilley E,Herve J,Huber F,Nepveu G(1999)Modelling variability of within-ring density components in Quercus petraea Liebl.with mixed-effect models and simulating the influence of contrasting silvicultures on wood density.Ann For Sci 56:449-458

    Guilley E,Hervé J,Nepveu G(2004)The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl.For Ecol Manage 189(1-3):111-121.doi:10.1016/j.foreco. 2003.07.033

    Hacke UG,Sperry JS,Pockman WT,Davis SD,McCulloh KA(2001)Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure.Oecologia 126(4):457-461.doi:10.1007/ s004420100628

    Hackenberg J,Wassenberg M,Spiecker H,Sun D(2015)Non destructive method for biomass prediction combining TLS derived tree volume and wood density.Forests 6(4):1274-1300.doi:10.3390/f6041274

    Hauser S(2003).Dynamik hochaufgel?ster radialer Schaftver?nderungen und des Dickenwachstums bei Buchen(FAgus sylvatica L.)der Schw?bischen Alb unter dem Einfluss von Witterung und Bewirtschaftung.Dissertation,Albert-Ludwigs Universit?t Freiburg

    Hildebrand E,Augustin S,Schack-Kirchner H(1998)Bodenkundliche Charakterisierung der Kernfl?chen.In:Rennenberg H(ed)Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische, waldbauliche und sozialwissenschaftliche Analysen-Vorcharakterisierung der Untersuchungsfl?chen.Eigenverlag der Universit?t Freiburg,Freiburg,pp 7-12

    Jozsa LA,Brix H(1989)The effects of fertilization and thinning on wood quality of a 24-year-old Douglas-fir stand.Can J For Res 19(9):1137-1145.doi:10.1139/x89-172

    Kahle HP,Karjalainen T,Schuck A,? GI,Kellom?ki S,Mellert K,Prietzel J,Rehfuess KE,Spiecker H(2008)Causes and consequences of forest growth trends in Europe:Results of the Recognition project.In:European Forest Institute Research Report,vol 21.Brill,Leiden

    Kuznetsova A,Brunn Brockhoff P,Haubo Bojesen Christensen R(2014).lmerTest: Tests in Linear Mixed Effects Models.r package version 2.0-29.https://cran.rproject.org/web/packages/lmerTest/index.html.Accessed 22 May 2015

    Le Goff N,Ottorini J(1993)Thinning and climate effects on growth of beech (Fagus sylvatica L.)in experimental stands.For Ecol Manage 62:1-14

    Le Goff N,Ottorini J(1999)Effects of thinning on beech growth.Interaction with climatic factors.Rev For Fr 51:355-364

    M?kinen H,Jaakkola T,Piispanen R,Saranp?? P(2007)Predicting wood and tracheid properties of Norway spruce.For Ecol Manage 241(1-3):175-188. doi:10.1016/j.foreco.2007.01.017

    Mayer H,Holst T,Schindler D(2002)Microclimate within beech stands-part I: photosynthetically active radiation.Forstwiss Cent 121(6):301-321.doi:10. 1046/j.1439-0337.2002.02038.x

    Montwé D,Spiecker H,Hamann A(2014)An experimentally controlled extreme drought in a Norway spruce forest reveals fast hydraulic response and subsequent recovery of growth rates.Trees 28(3):891-900.doi:10.1007/ s00468-014-1002-5

    Niklas KJ,Spatz H(2010)Worldwide correlations of mechanical properties and green wood density.Am J Bot 97(10):1587-1594.doi:10.3732/ajb.1000150

    Piispanen R,Heinonen J,Valkonen S,M?kinen H,Lundqvist S,Saranp?? P(2014) Wood density of Norway spruce in uneven-aged stands 1.Can J For Res 44(2):136-144.doi:10.1139/cjfr-2013-0201

    Pinheiro JC,Bates DM(2000)Mixed-Effects Models in S and S-PLUS.Statistics and computing,Springer,New York

    Preston KA,Cornwell WK,Denoyer JL(2006)Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms.New Phytol 170(4):807-818.doi:10.1111/j.1469-8137.2006.01712.x

    R Core Team(2014)R:A Language and Environment for Statistical Computing.R Foundation for Statistical Computing,Vienna,Available online at http://www. R-project.org/

    Rennenberg H(1998)Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische,waldbauliche und sozialwissenschaftliche Analysen-Vorcharakterisierung der Untersuchungsfl?chen.Eigenverlag der Universit?t Freiburg,Freiburg

    Sass U,Eckstein D(1995)The variability of vessel size in beech(Fagus sylvatica L.) and its ecophysiological interpretation.Trees 9:247-252

    Schinker MG,Hansen N,Spiecker H(2003)High-frequency densitometry-a new method for the rapid evaluation of wood density variations.IAWA J 24(3):231-239

    Shchupakivskyy R,Clauder L,Linke N,Pfriem A(2014)Application of high-frequency densitometry to detect changes in early-and latewood density of oak(Quercus robur L.)due to thermal modification.Eur J Wood Wood Prod 72(1):5-10.doi: 10.1007/s00107-013-0744-x

    Shmulsky R,Jones PD(2011)Hardwood Structure.In:Forest Products and Wood Science An Introduction,Sixthth edn.Wiley-Blackwell,Oxford.doi:10.1002/ 9780470960035.ch5

    Skomarkova MV,Vaganov EA,Mund M,Knohl A,Linke P,Boerner A,Schulze E (2006)Inter-annual and seasonal variability of radial growth,wood density and carbon isotope ratios in tree rings of beech(Fagus sylvatica)growing in Germany and Italy.Trees 20(5):571-586.doi:10.1007/s00468-006-0072-4

    Spiecker H(2002)Tree rings and forest management in Europe. Dendrochronologia 20(1-2):191-202.doi:10.1078/1125-7865-00016

    Spiecker H,Mielik?inen K,K?hl M,Skovsgaard JP(1996)Growth Trends in European Forests:Studies from 12 Countries.Springer,Berlin,Heidelberg

    Spiecker H,Ebding T,Park Y,Hansen J,Schinker MG,D?ll W(2000)Cell structure in tree rings:novel methods for preparation and image analysis of large cross sections.IAWA J 21(3):361-373.doi:10.1163/22941932-90000253

    Spiecker H,Kahle H,Hauser S(2001)Klima und Witterung als Einflu?faktoren für das Baumwachstum in Laubw?ldern:retrospektiven Analysen undMonitoring.In:Rennenberg,H.(ed)Buchendominierte Laubw?lder unter dem Einflu? von Klima und Bewirtschaftung:?kologische,waldbauliche und sozialwissenschaftliche Analysen-Vorcharakterisierung der Untersuchungsfl?chen;Abschlu?bericht des SFB 443.Eigenverlag der Universit?t Freiburg,Freiburg,pp 307-333.

    Torgovnikov GI(1993)Dielectric Properties of Wood and Wood-Based Materials. Springer,Berlin,Heidelberg

    van der Maaten E(2012)Intra-and interannual growth responses of European beech(Fagus sylvativa L.)to climate,aspect and thinning in the Swabian Alb -southwestern Germany.Dissertation,Albert-Ludwigs-Universit?t Freiburg

    von Arx G,Kueffer C,Fonti P(2013)Quantifying plasticity in vessel groupingadded value from the image analysis tool ROXAS.IAWA J 34(4):433-445.doi: 10.1163/22941932-00000035

    Walsh C,Mac Nally R(2013)hier.part:Hierarchical Partitioning:Variance partition of a multivariate data set.https://cran.r-project.org/web/packages/hier.part/ hier.part.pdf.Accessed 21 May 2015

    Wassenberg M,Montwé D,Kahle H,Spiecker H(2014)Exploring high frequency densitometry calibration functions for different tree species. Dendrochronologia 32(3):273-281.doi:10.1016/j.dendro.2014.07.001

    Wassenberg M,Chiu H,Guo W,Spiecker H(2015a)Analysis of wood density profiles of tree stems:incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations.Trees 29(2):551-561. doi:10.1007/s00468-014-1134-7

    Wassenberg M,Schinker M,Spiecker H(2015b)Technical aspects of applying high frequency densitometry:Probe-sample contact,sample surface preparation and integration width of different dielectric probes. Dendrochronologia 34:10-18.doi:10.1016/j.dendro.2015.03.001

    Wickham H(2007)Reshaping data with the reshape package.J Stat Softw 21:1-20

    Wickham H(2009)Ggplot2:Elegant graphics for data analysis.In:Gentleman R, Hornik K,Parmigiani G(eds)Use R!Springer,New York.doi:10.1007/978-0-387-98141-3

    Wickham H(2011)The split-apply-combine sttrategy for data analysis.J Stat Softw 40:1-29

    Z'Graggen S(1992)Dendrohistometrisch-klimatologische Untersuchung an Buchen(Fagus silvatica L.).Dissertation,University of Basel

    Zhang SY(1995)Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci Technol 29:451-465

    *Correspondence:Daniela.Diaconu@iww.uni-freiburg.de

    Chair of Forest Growth and Dendroecology,Albert-Ludwigs-University, Tennenbacher Str.4,79106 Freiburg,Germany

    ?2016 Diaconu et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

    International License(http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and

    reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    20 December 2015 Accepted:24 February 2016

    h视频一区二区三区| 1024视频免费在线观看| svipshipincom国产片| 欧美xxⅹ黑人| 日韩欧美免费精品| 国产亚洲欧美在线一区二区| 高清黄色对白视频在线免费看| 蜜桃在线观看..| 黄色片一级片一级黄色片| 1024视频免费在线观看| 精品久久久久久电影网| 一级片'在线观看视频| 久久热在线av| 久久久国产一区二区| 日韩中文字幕视频在线看片| 日韩欧美一区二区三区在线观看 | 国产又色又爽无遮挡免| 一进一出抽搐动态| 热re99久久国产66热| 人人澡人人妻人| 国产成+人综合+亚洲专区| 手机成人av网站| a 毛片基地| 欧美日韩黄片免| 青青草视频在线视频观看| 成人18禁高潮啪啪吃奶动态图| 麻豆av在线久日| 亚洲精品一区蜜桃| 午夜两性在线视频| 正在播放国产对白刺激| 一区二区av电影网| av免费在线观看网站| 99久久综合免费| 国产精品一区二区免费欧美 | 无遮挡黄片免费观看| 777久久人妻少妇嫩草av网站| 视频区欧美日本亚洲| 丝袜美腿诱惑在线| 69精品国产乱码久久久| 操美女的视频在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩国产mv在线观看视频| 久久综合国产亚洲精品| 国产精品久久久人人做人人爽| 考比视频在线观看| 捣出白浆h1v1| 亚洲人成77777在线视频| 狠狠婷婷综合久久久久久88av| 国产亚洲一区二区精品| 丰满饥渴人妻一区二区三| av电影中文网址| 国产av又大| 午夜精品国产一区二区电影| 国产亚洲av片在线观看秒播厂| 国产又色又爽无遮挡免| 免费黄频网站在线观看国产| 久久久久久久国产电影| 精品一区二区三卡| 久久久精品区二区三区| 国产人伦9x9x在线观看| 女性生殖器流出的白浆| 国产在线视频一区二区| 一区福利在线观看| tube8黄色片| 飞空精品影院首页| 国产日韩欧美亚洲二区| 一个人免费看片子| 少妇被粗大的猛进出69影院| 51午夜福利影视在线观看| 久久九九热精品免费| 亚洲国产看品久久| 久久久久网色| 可以免费在线观看a视频的电影网站| 夜夜夜夜夜久久久久| 一级毛片女人18水好多| 亚洲va日本ⅴa欧美va伊人久久 | 在线精品无人区一区二区三| 午夜激情av网站| 蜜桃国产av成人99| 妹子高潮喷水视频| 亚洲欧美色中文字幕在线| 黄片小视频在线播放| 大陆偷拍与自拍| videosex国产| 国产黄色免费在线视频| 人妻久久中文字幕网| 丝袜美足系列| 亚洲全国av大片| 久久精品熟女亚洲av麻豆精品| 1024香蕉在线观看| 国产免费现黄频在线看| 国产一区二区激情短视频 | kizo精华| 欧美激情高清一区二区三区| 亚洲av欧美aⅴ国产| 黄片大片在线免费观看| 十分钟在线观看高清视频www| 欧美久久黑人一区二区| 亚洲av电影在线观看一区二区三区| 啦啦啦中文免费视频观看日本| a 毛片基地| 一级a爱视频在线免费观看| 建设人人有责人人尽责人人享有的| 国产在线观看jvid| 99精品欧美一区二区三区四区| 啦啦啦中文免费视频观看日本| 久久久久久免费高清国产稀缺| 婷婷成人精品国产| 少妇 在线观看| 欧美大码av| 91精品伊人久久大香线蕉| 国产黄色免费在线视频| 日韩视频一区二区在线观看| 亚洲全国av大片| 真人做人爱边吃奶动态| 亚洲三区欧美一区| 最近中文字幕2019免费版| 啦啦啦免费观看视频1| 一个人免费看片子| 久久毛片免费看一区二区三区| 热99久久久久精品小说推荐| 国产一区二区三区综合在线观看| 考比视频在线观看| 一二三四社区在线视频社区8| 999久久久国产精品视频| 99国产精品免费福利视频| 婷婷成人精品国产| 亚洲欧美激情在线| 99热全是精品| 精品人妻1区二区| 日韩制服丝袜自拍偷拍| 少妇裸体淫交视频免费看高清 | 啦啦啦啦在线视频资源| 99久久99久久久精品蜜桃| 国产av国产精品国产| 99热国产这里只有精品6| 秋霞在线观看毛片| 水蜜桃什么品种好| 久久人人97超碰香蕉20202| 两个人免费观看高清视频| 狠狠精品人妻久久久久久综合| 国产又爽黄色视频| 亚洲三区欧美一区| 免费少妇av软件| a级片在线免费高清观看视频| 高清视频免费观看一区二区| av欧美777| 精品亚洲成国产av| 午夜免费观看性视频| 男人添女人高潮全过程视频| 久久亚洲精品不卡| 精品少妇黑人巨大在线播放| 亚洲av日韩精品久久久久久密| 亚洲av国产av综合av卡| 老司机午夜福利在线观看视频 | 黄频高清免费视频| 性少妇av在线| 久久久久精品国产欧美久久久 | 亚洲欧美激情在线| 国产高清视频在线播放一区 | 一级毛片女人18水好多| 黄色视频在线播放观看不卡| 国产精品久久久人人做人人爽| 天天操日日干夜夜撸| 亚洲情色 制服丝袜| 亚洲av成人不卡在线观看播放网 | 男人爽女人下面视频在线观看| 亚洲精品一二三| 成年美女黄网站色视频大全免费| 丰满人妻熟妇乱又伦精品不卡| 女人被躁到高潮嗷嗷叫费观| 精品免费久久久久久久清纯 | 日韩中文字幕视频在线看片| 国产亚洲一区二区精品| 国内毛片毛片毛片毛片毛片| 中国国产av一级| 亚洲av成人不卡在线观看播放网 | 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| 肉色欧美久久久久久久蜜桃| 在线av久久热| 91精品国产国语对白视频| 丝袜美足系列| 香蕉丝袜av| 国产免费现黄频在线看| 国产一区二区三区av在线| 黑人欧美特级aaaaaa片| 妹子高潮喷水视频| 久久久久精品人妻al黑| 桃红色精品国产亚洲av| 高清av免费在线| 亚洲自偷自拍图片 自拍| 国产xxxxx性猛交| 日韩熟女老妇一区二区性免费视频| 欧美亚洲 丝袜 人妻 在线| 如日韩欧美国产精品一区二区三区| 最近最新中文字幕大全免费视频| 最新的欧美精品一区二区| 国产高清videossex| 国产免费视频播放在线视频| 天堂俺去俺来也www色官网| 亚洲精品第二区| 亚洲av成人一区二区三| 午夜日韩欧美国产| 超碰成人久久| 一边摸一边做爽爽视频免费| 99久久人妻综合| 亚洲视频免费观看视频| 免费观看av网站的网址| 国产精品.久久久| 亚洲精品久久午夜乱码| 夜夜骑夜夜射夜夜干| 亚洲精品中文字幕在线视频| 亚洲成人免费av在线播放| 日日夜夜操网爽| 中文字幕av电影在线播放| 天堂俺去俺来也www色官网| av在线老鸭窝| 久久人妻熟女aⅴ| 欧美精品人与动牲交sv欧美| 国产国语露脸激情在线看| 久久午夜综合久久蜜桃| 人妻人人澡人人爽人人| av线在线观看网站| 少妇被粗大的猛进出69影院| 亚洲视频免费观看视频| 性色av乱码一区二区三区2| 欧美日韩福利视频一区二区| 久久综合国产亚洲精品| 欧美日韩国产mv在线观看视频| 亚洲精品一区蜜桃| 一区二区日韩欧美中文字幕| 免费女性裸体啪啪无遮挡网站| 亚洲人成电影免费在线| 天堂8中文在线网| 美国免费a级毛片| 999久久久国产精品视频| 亚洲人成77777在线视频| 日韩大片免费观看网站| 老司机在亚洲福利影院| 国产成人免费无遮挡视频| 一本大道久久a久久精品| 国产精品香港三级国产av潘金莲| 国产精品久久久久久人妻精品电影 | 国产精品成人在线| 一本—道久久a久久精品蜜桃钙片| 亚洲va日本ⅴa欧美va伊人久久 | 精品国产乱码久久久久久男人| 久久久久久久久久久久大奶| 婷婷丁香在线五月| 黄色怎么调成土黄色| av电影中文网址| 男女午夜视频在线观看| 久久精品人人爽人人爽视色| 欧美黄色淫秽网站| 99九九在线精品视频| 欧美黑人欧美精品刺激| 免费av中文字幕在线| 新久久久久国产一级毛片| 丝袜人妻中文字幕| 手机成人av网站| 日韩视频一区二区在线观看| 亚洲色图综合在线观看| 黄片小视频在线播放| 色综合欧美亚洲国产小说| 嫩草影视91久久| 亚洲av日韩在线播放| 大片免费播放器 马上看| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 手机成人av网站| 亚洲久久久国产精品| 亚洲精品久久久久久婷婷小说| 国产福利在线免费观看视频| 十分钟在线观看高清视频www| 亚洲欧美激情在线| 老熟女久久久| 天堂中文最新版在线下载| 国产成人欧美在线观看 | 欧美日韩成人在线一区二区| 亚洲 欧美一区二区三区| av在线老鸭窝| 国产欧美日韩一区二区精品| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 国产av精品麻豆| 国产区一区二久久| 国产1区2区3区精品| 极品少妇高潮喷水抽搐| 亚洲,欧美精品.| 久久精品人人爽人人爽视色| 国产麻豆69| 欧美国产精品va在线观看不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产亚洲av高清一级| 中文字幕最新亚洲高清| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 国产男女超爽视频在线观看| av国产精品久久久久影院| 国产真人三级小视频在线观看| 色婷婷av一区二区三区视频| www.自偷自拍.com| 日本av免费视频播放| 亚洲欧美精品综合一区二区三区| 啪啪无遮挡十八禁网站| 国产精品熟女久久久久浪| 天天添夜夜摸| 免费一级毛片在线播放高清视频 | 一级片免费观看大全| 99九九在线精品视频| 国产欧美亚洲国产| 亚洲情色 制服丝袜| 欧美黑人精品巨大| 欧美一级毛片孕妇| 一个人免费看片子| 首页视频小说图片口味搜索| 国产野战对白在线观看| 国产成人免费观看mmmm| 午夜免费成人在线视频| 久久久国产成人免费| 激情视频va一区二区三区| 人成视频在线观看免费观看| 美女国产高潮福利片在线看| 天堂中文最新版在线下载| 亚洲欧美一区二区三区久久| 国产男女超爽视频在线观看| 精品卡一卡二卡四卡免费| 亚洲精品国产精品久久久不卡| 国产片内射在线| 亚洲欧美色中文字幕在线| 两人在一起打扑克的视频| 999精品在线视频| 嫁个100分男人电影在线观看| 精品国产国语对白av| 欧美日韩中文字幕国产精品一区二区三区 | 视频区图区小说| 欧美国产精品va在线观看不卡| 久久人人97超碰香蕉20202| 丝袜美足系列| 在线观看舔阴道视频| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 女人精品久久久久毛片| 国产一区二区 视频在线| 欧美97在线视频| 亚洲第一欧美日韩一区二区三区 | 亚洲自偷自拍图片 自拍| 9热在线视频观看99| av视频免费观看在线观看| 一级,二级,三级黄色视频| 精品第一国产精品| 老汉色∧v一级毛片| 国产一区二区激情短视频 | 国产精品久久久久久精品古装| 91av网站免费观看| 熟女少妇亚洲综合色aaa.| 男人舔女人的私密视频| 黑丝袜美女国产一区| 人人妻人人澡人人看| 国产精品1区2区在线观看. | 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 精品免费久久久久久久清纯 | 国产亚洲av高清不卡| 考比视频在线观看| 99香蕉大伊视频| 美女国产高潮福利片在线看| 美女高潮到喷水免费观看| 人妻久久中文字幕网| 免费观看av网站的网址| 亚洲国产av新网站| 淫妇啪啪啪对白视频 | 999久久久国产精品视频| av有码第一页| 亚洲国产中文字幕在线视频| 国产精品一二三区在线看| 欧美激情高清一区二区三区| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 嫁个100分男人电影在线观看| 欧美乱码精品一区二区三区| 国产av一区二区精品久久| 久久这里只有精品19| 建设人人有责人人尽责人人享有的| 51午夜福利影视在线观看| 伦理电影免费视频| 国产精品一区二区精品视频观看| 欧美黑人欧美精品刺激| 免费av中文字幕在线| 精品人妻1区二区| 国产一级毛片在线| 精品亚洲成a人片在线观看| 国产精品av久久久久免费| 欧美人与性动交α欧美精品济南到| 国产老妇伦熟女老妇高清| 老汉色av国产亚洲站长工具| 午夜激情久久久久久久| 悠悠久久av| 成年美女黄网站色视频大全免费| 欧美日韩福利视频一区二区| 日本av免费视频播放| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲国产日韩一区二区| 欧美日韩亚洲高清精品| 国产亚洲精品久久久久5区| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av| 日本av免费视频播放| 亚洲精品av麻豆狂野| 久久狼人影院| 最近最新中文字幕大全免费视频| 日日夜夜操网爽| 99re6热这里在线精品视频| www.精华液| 亚洲全国av大片| 久久国产精品大桥未久av| 黄片播放在线免费| 国产精品香港三级国产av潘金莲| 一区二区av电影网| 国产精品一区二区精品视频观看| 男女免费视频国产| 国产成人啪精品午夜网站| 韩国精品一区二区三区| 亚洲黑人精品在线| 不卡av一区二区三区| 男女之事视频高清在线观看| 丝袜美足系列| 99re6热这里在线精品视频| 可以免费在线观看a视频的电影网站| 老汉色∧v一级毛片| 午夜福利在线观看吧| 人成视频在线观看免费观看| 90打野战视频偷拍视频| 一级毛片电影观看| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| www.自偷自拍.com| 99久久国产精品久久久| 三上悠亚av全集在线观看| 国产一区二区三区av在线| 99热全是精品| 国产精品久久久久久人妻精品电影 | 人妻 亚洲 视频| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 国产亚洲欧美在线一区二区| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 91国产中文字幕| 超碰成人久久| 中文字幕另类日韩欧美亚洲嫩草| 精品高清国产在线一区| 国产精品九九99| 午夜免费鲁丝| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| 久久天堂一区二区三区四区| 国产一区二区在线观看av| 飞空精品影院首页| 如日韩欧美国产精品一区二区三区| av免费在线观看网站| 大型av网站在线播放| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 国产精品欧美亚洲77777| 在线观看免费视频网站a站| 欧美中文综合在线视频| av在线老鸭窝| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产看品久久| 国产男人的电影天堂91| 青春草视频在线免费观看| 亚洲天堂av无毛| 国产视频一区二区在线看| 欧美xxⅹ黑人| 亚洲欧洲精品一区二区精品久久久| 日韩电影二区| 午夜激情久久久久久久| 国产淫语在线视频| 两人在一起打扑克的视频| 99国产极品粉嫩在线观看| 亚洲色图 男人天堂 中文字幕| av免费在线观看网站| 国产成人精品无人区| 精品国产国语对白av| 久久国产精品大桥未久av| 91九色精品人成在线观看| 国产精品一区二区在线观看99| 亚洲国产欧美网| 90打野战视频偷拍视频| 丝袜美足系列| 老司机影院毛片| 国产亚洲精品一区二区www | 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 欧美日韩视频精品一区| 欧美 日韩 精品 国产| 亚洲黑人精品在线| 一级黄色大片毛片| 久久性视频一级片| 亚洲精品成人av观看孕妇| 国产深夜福利视频在线观看| 亚洲人成电影观看| 国产日韩欧美视频二区| 久久精品成人免费网站| 少妇 在线观看| 日韩视频一区二区在线观看| 人妻人人澡人人爽人人| 性高湖久久久久久久久免费观看| 一区二区三区四区激情视频| 蜜桃在线观看..| 50天的宝宝边吃奶边哭怎么回事| 国产不卡av网站在线观看| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 国产成人av教育| 另类精品久久| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 视频区图区小说| 精品亚洲成a人片在线观看| 亚洲综合色网址| 日韩电影二区| 精品一区在线观看国产| 日韩电影二区| 伦理电影免费视频| av欧美777| 黄色a级毛片大全视频| 另类亚洲欧美激情| 国产片内射在线| 18禁国产床啪视频网站| 青青草视频在线视频观看| 久久精品国产亚洲av香蕉五月 | 美女高潮到喷水免费观看| 久久久久精品国产欧美久久久 | 国产一卡二卡三卡精品| 中文字幕色久视频| 欧美亚洲日本最大视频资源| 国产一区二区在线观看av| 纯流量卡能插随身wifi吗| 久久性视频一级片| 蜜桃国产av成人99| 最黄视频免费看| 亚洲 国产 在线| 操出白浆在线播放| 97在线人人人人妻| 最近最新免费中文字幕在线| 97精品久久久久久久久久精品| av超薄肉色丝袜交足视频| 男人爽女人下面视频在线观看| 中国美女看黄片| 另类精品久久| 午夜福利在线观看吧| 国产成人欧美| 免费观看人在逋| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 水蜜桃什么品种好| 国产色视频综合| 丝袜在线中文字幕| 黄色片一级片一级黄色片| www.自偷自拍.com| 精品一区二区三区四区五区乱码| 精品国产一区二区三区四区第35| 精品国产乱码久久久久久小说| 亚洲专区中文字幕在线| 日本wwww免费看| 嫩草影视91久久| tocl精华| av天堂在线播放| 国产成人av教育| 欧美97在线视频| svipshipincom国产片| 十八禁网站免费在线| 在线观看舔阴道视频| 国产成人精品在线电影| 岛国在线观看网站| 一区二区三区精品91| 黄色 视频免费看| 久久久久久亚洲精品国产蜜桃av| 精品国产一区二区三区四区第35| av一本久久久久| 国产欧美日韩精品亚洲av| 国产1区2区3区精品| 黄频高清免费视频| 亚洲精品一卡2卡三卡4卡5卡 | cao死你这个sao货| 精品国产国语对白av| av网站免费在线观看视频| 午夜久久久在线观看| 日韩中文字幕欧美一区二区| 久久狼人影院| 夫妻午夜视频| 日本av手机在线免费观看| a级片在线免费高清观看视频| 国产一区二区 视频在线| 黄色视频不卡| 搡老熟女国产l中国老女人| 国产精品国产av在线观看| 精品第一国产精品| 三上悠亚av全集在线观看| 亚洲欧美一区二区三区黑人| 成年人午夜在线观看视频| 18在线观看网站| 午夜精品国产一区二区电影| 成人国语在线视频| 考比视频在线观看| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品| 久久天躁狠狠躁夜夜2o2o| 性色av一级| 亚洲色图 男人天堂 中文字幕|