• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-data assimilation experiment with a joint data assimilation system: assimilating carbon dioxide mole fraction measurements from the Greenhouse gases Observing Satellite

    2016-11-23 01:55:51HANRuiTIANXiangJunFUYuanCAIZhaoNan
    關(guān)鍵詞:方根可行性觀測(cè)

    HAN Rui, TIAN Xiang-Jun, FU Yuan CAI Zhao-Nan

    aInstitute of Atmospheric Sciences, Chengdu University of Information Technology/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu, China;bInternational Center for Climate and Environment Sciences, Chinese Academy of Sciences, Beijing, China;

    cClimate Change Research Center, Chinese Academy of Sciences, Beijing, China;dKey Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China

    Real-data assimilation experiment with a joint data assimilation system: assimilating carbon dioxide mole fraction measurements from the Greenhouse gases Observing Satellite

    HAN Ruia,b, TIAN Xiang-Junb, FU Yucand CAI Zhao-Nand

    aInstitute of Atmospheric Sciences, Chengdu University of Information Technology/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu, China;bInternational Center for Climate and Environment Sciences, Chinese Academy of Sciences, Beijing, China;

    cClimate Change Research Center, Chinese Academy of Sciences, Beijing, China;dKey Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences, Beijing, China

    ARTICLE HISTORY

    Tan-Tracker; GEOS-Chem;GOSAT; PODEn4DVar;

    atmospheric CO2

    concentration

    Tan-Tracker碳衛(wèi)星資料聯(lián)合數(shù)據(jù)同化系統(tǒng)是針對(duì)即將發(fā)射的中國(guó)的碳衛(wèi)星TANSat,并基于先進(jìn)數(shù)據(jù)同化算法PODEn4DVar,同時(shí)采用了聯(lián)合數(shù)據(jù)同化的策略,緊扣碳衛(wèi)星資料同化的這一國(guó)際前沿開(kāi)發(fā)的面向科研和應(yīng)用的碳衛(wèi)星資料同化系統(tǒng)。本文設(shè)計(jì)運(yùn)行了Tan-Tracker碳衛(wèi)星資料聯(lián)合數(shù)據(jù)同化系統(tǒng)同化GOSAT衛(wèi)星CO2濃度觀測(cè)的真實(shí)同化實(shí)驗(yàn),并評(píng)估了Tan-Tracker碳同化系統(tǒng)的可行性和有效性。經(jīng)過(guò)同化后的結(jié)果與模式模擬結(jié)果同觀測(cè)對(duì)比,均方根誤差有了明顯的下降(約30%),特別是在地面觀測(cè)嚴(yán)重缺失的非洲北部、印度半島、南部非洲、美國(guó)南部、澳大利亞西部等地;同時(shí)與觀測(cè)的相關(guān)系數(shù)并無(wú)很大的差異??傮w而言,Tan-Tracker碳同化系統(tǒng)成功完成真實(shí)數(shù)據(jù)同化并有較好的結(jié)果。

    1. Introduction

    Atmospheric carbon dioxide (CO2) is one of the most important greenhouse gases (GHGs) and its increase since pre-industrial times has directly led to global warming (IPCC 2013). The increase in atmospheric CO2is mainly caused by anthropogenic emissions. Moreover, as a long-lived GHG, atmospheric CO2can only be partially removed by natural processes, which in turn also contributes to atmospheric CO2levels. Natural processes, such as the carbon cycle, are sophisticated interactions forming a complicated feedback loop. The key to understanding these interactions is to determine the spatiotemporal distribution of atmospheric CO2concentrations and land CO2fluxes (CFs) (Protocol 1997).

    There are several methods used to study the spatial and temporal distribution of CO2concentrations. Of these,surface observation is one of the most important. In the 1980s, the WMO's Global Atmosphere Watch program was established to monitor the long-lived GHGs that are directly affected by anthropogenic activities. However,there are currently fewer than 200 monitoring stationsaround the world and the records on average are shorter than 30 years. Due to these limitations, it is difficult to analyze spatiotemporal distributions of CO2using only surface observations (Reuter et al. 2011). Recently, satellite data have become more widely used by researchers due to the increased spatial and temporal resolution of satellite observations from the Greenhouse gases Observing SATellite (GOSAT) and the Orbiting Carbon Observatory 2(Yokota et al. 2009; Nassar et al. 2010; Cogan et al. 2012). Previous studies have used global or regional Chemistry Transport Models (CTMs) to obtain continuous simulated spatiotemporal features of global atmospheric CO2concentrations and CFs (Cogan et al. 2012; Chen, Zhu, and Zeng 2013). However, there is still an essential and urgent need to improve model simulation efficiency and accuracy.

    Carbon cycle data assimilation systems are promising new tools for precisely simulating atmospheric CO2concentrations and CFs. These systems tend to yield estimates of CO2surface flux by combining information from both CTM simulations and atmospheric CO2observations (Peters et al. 2005; Tian et al. 2014). Peters et al.(2005) developed the Carbon-Tracker data assimilation system, which was coupled to the Tracer Model, version 5, using an ensemble square root filter to assimilate surface CO2concentration observations. The CF inversion results from the Carbon-Tracker system were consistent with the majority of carbon inventories reported by the first North American State of the Carbon Cycle Report (Peters et al. 2005). Zhang et al. (2014) assimilated CONTRAIL data with the Carbon-Tracker system and dramatically improved the accuracy of simulated concentrations while reducing the uncertainty of CFs in Asia by 20%. However, the accuracy of this simulation was largely dependent on the algorithm,the dynamical model, and surface observations. Due to the limitations of the algorithm, the deficiency of a suitable dynamical model and insufficient surface observations,attempts to construct an efficient and accurate assimilation system still represent a challenging task.

    Tian et al. (2014) reported a new CF data assimilation system (Tan-Tracker) that was developed by incorporating a joint PODEn4DVar (Tian, Xie, and Sun 2011) assimilation framework into the GEOS-Chem model (V9-01-03; Suntharalingam et al. 2004; Nassar et al. 2010). In their study, an identity operator was chosen as the CF dynamical model to describe CF evolution, and then this CF dynamical model was utilized to create an augmented dynamical model using the GEOS-Chem atmospheric transport model. Therefore,the large-scale state vector of both CFs and CO2concentrations is set as the prognostic variable, which is simultaneously constrained by assimilation of atmospheric CO2concentration observations. Using this approach, the Tan-Tracker data assimilation system is expected to be powerful and efficient.

    In this study, we assimilated column average dry-air mole fraction of CO2(XCO2) GOSAT observations from January 2010 to October 2010 into the GEOS-Chem model using the Tan-Tracker system, and compared the results with GOSAT observations. Details of the Tan-Tracker data assimilation system are presented next, in Section 2, followed by a description of the experiment and results in Section 3. Section 4 summarizes the conclusions that can be drawn from this study.

    2. Tan-Tracker data assimilation system

    The Tan-Tracker data assimilation system is a joint assimilation system capable of optimizing model states and parameters simultaneously from noisy measurements through the PODEn4DVar approach developed by Tian et al. (2014).

    We initialized Tan-Tracker by running the GEOS-Chem twice to generate the assimilation inputs. The background run started from the previous best analysis Caforced by the prior CFsFbato determine the backgroundCO2concentration fieldsCb. This was used to prepare the rth background joint vector(λ,C)T, where λis the scaling factor between

    bbb the prior CFs and the updated CFs. The sampling run followed the background run but with a different run length and adopted a 4D moving sampling strategy (Wang et al. 2010) to produce the joint vector ensemble(λm,Cm)T. This is explained in detail in Tian et al. (2014).

    The CF dynamical sub-model, together with the CTM(GEOS-Chem), shapes the Tan-Tracker dynamical model:

    Here, the flux persistence-forecasting model denotes MCF=I (I, identity matrix), which is chosen as the CF evolution dynamical sub-model (based on Peters et al. 2005).

    The Tan-Tracker system assimilates XCO2directly using the following observation operator (Equation (2)), which explains the link between the observational variableXCO2and GEOS-Chem simulated 3D CO2concentrations (Feng et al. 2009; Tian et al. 2014):

    where h is a pressure weighting function, A is the full averaging kernel matrix,Cais the prior CO2profile,XCO2,ais the associated column mole fraction, and Cmis the model-calculated CO2profile. We generated ensemble simulated observations,and background simulatedobservations, by applying the observation operator Hto the ensemble CO2concentration,Cm, and background CO2concentration,Cb, respectively.

    At this point, the background joint vector(λb,Cb)T, the joint vector ensemble(λm,Cm)T, the background simulated observations (Co), the ensemble simulated observations

    b) and the real CO2concentrations (Cobs) have been determined and can be inputted into the PODEn4DVar assimilation processor to yield the best analysis joint vector(λa,Ca)Tand optimized CFs (Fa=λaF?). The best analysis is the initial condition for the next assimilation cycle.

    3. Real-data assimilation experiment with retrieved satellite data (XCO2)

    The efficiency and accuracy of the Tan-Tracker data assimilation system was comprehensively evaluated using a well-designed real-data assimilation experiment applied to data from 2010. The setup of the experiment and results are described below.

    3.1. Experimental setup

    The global 3D chemical transport model GEOS-Chem(version: 9-01-03) was used to simulate the atmospheric CO2concentration. This version of GEOS-Chem has a horizontal resolution of 2° × 2.5° (latitude × longitude) and 47 hybrid eta levels up to 0.01 hPa, which is driven by GEOS-5 meteorological fields. These are assimilated meteorological data from the GEOS of the NASA Global Modeling and Assimilation Office.

    The original GEOS-Chem CO2simulation was designed by Suntharalingam et al. (2004) and updated by Nassar et al. (2010). The prescribed CO2fluxes used in the model include monthly fossil fuel burning and cement production CO2emissions, monthly biomass burning, climatological biofuel burning, monthly ocean exchange,three-hourly biospheric fluxes, annual climatological terrestrial biosphere exchange, chemical production of CO2from the atmospheric oxidation of other carbon species,and monthly emissions from shipping and aviation CO2emissions. A detailed description of the basic model input data can be found in Tian et al. (2014).

    The experiment began with a two-year spin-up from 1 January 2008, with a globally uniform 3D CO2concentration field of 383.76 ppm. This was used since the annual mean CO2concentration in 2007 was 383.76 ppm at Mauna Loa, which is the marine surface site of the NOAA-ESRL(http://www.esrl.noaa.gov/gmd/obop/mlo/). This twoyear spin-up is a key step to maintaining mass and energy balance, while also allowing model transport, sources, and sinks to develop global spatial patterns. After the spin-up,the acquired CO2concentration field is used to drive the real-data assimilation experiment.

    The space-borne observations used in our experiment were retrieved from GOSAT, which was launched in 2009. We chose the GOSAT Level 2 data; that is, the XCO2. This can be found in the Atmospheric CO2Observations from Space (ACOS) data product, version 3.3. We applied the recommended data screening criteria and bias correction technique based on the ‘ACOS Level 2 Standard Product Data User's Guide' (http://disc.sci.gsfc.nasa.gov/acdisc/ documentation/ACOS_v3.3_DataUsersGuide.pdf).

    In order to guarantee high-quality assimilated data, we only retainedXCO2data with standard error deviations of less than 1.0 ppm. We initially performed CO2simulations from 1 January 2010 to 31 October 2010 without assimilation (referred to as ‘Sim'), and then we performed the CO2simulation with the Tan-Tracker assimilation system(referred to as ‘TT') form 1 January 2010 to 31 October 2010. Due to the five-week lag window within the assimilation window, 13 months' worth of data from November 2009 to November 2010 were used to ensure continuity.

    3.2. Results and discussion

    The global distribution of GOSAT-retrieved satellite data,XCO2, after quality control, demonstrated obvious spatiotemporal distribution patterns, such as lower concentrations of CO2at high latitudes in contrast with higher concentrations in equatorial regions. High concentrations of CO2(approximately 388—391 ppm) were found in the NH, while CO2concentrations in the SH were lower(approximately 385—388 ppm). The temporal distribution of CO2concentrations in the NH clearly followed a seasonal cycle, increasing with time and reaching a peak concentration of 388 ppm at the end of April or beginning of May prior to the maturation period that began in June, and then reducing with time to approximately 382 ppm in late autumn before rising again.

    To examine the performance of Tan-Tracker, theXCO2derived from Sim (referred to asXCO2,Sim) and TT (referred to as XCO2,TT) were compared with GOSAT observations. The CO2concentrations obtained from Sim and TT were converted intoXCO2, i.e.,XCO2,Simand XCO2,TT, by first calculating CO2profiles that were the same levels as GOSAT data profiles, and then calculatingXCO2using Equation(2). The distributions of XCO2,Simand XCO2,TTat GOSAT satellite geographic coordinates are illustrated in Figures 1 and 2, respectively, which display data from January,April, July, and October 2010. Both of the distributions had spatiotemporal patterns that were comparable to the observed data. As shown in Figure 3, high deviations between the observations,XCO2,Obs, and the simulations,XCO2,Sim, can be seen in northern Africa (Sahara), the Indian peninsula, southern Africa, southern North America, and western Australia, within the range of 2—6 ppm (Figure

    Figure 1.Monthly distributions of GEOS-Chem simulated XCO2data (XCO2,Sim) at GOSAT satellite geographic coordinates over January,April, July, and October 2010.

    Figure 2.Monthly distributions of Tan-Tracker assimilated XCO2data (XCO2,TT) at GOSAT satellite geographic coordinates over January, April,July, and October 2010.

    Figure 3.Monthly distributions of the difference between retrieved GOSAT satellite XCO2data (observation;XCO2,Obs) and the GEOS-Chem simulatedXCO2data (Sim;XCO2,Sim) , calculated as XCO2,Obs-XCO2,Sim, at GOSAT satellite geographic coordinates over January, April, July, and October 2010.

    Figure 4.Monthly distributions of the difference between retrieved GOSAT satellite XCO2data (observation;XCO2,Obs) and the Tan-Tracker assimilatedXCO2data (TT;XCO2,TT) , calculated as XCO2,Obs-XCO2,TT, at GOSAT satellite geographic coordinates over January, April, July, and October 2010.

    Figure 5.Taylor diagram of Tan-Tracker assimilated XCO2data(XCO2,TT; red circles) and GEOS-Chem simulated data (XCO2,Sim; blue points) compared with the observational data (XCO2,Obs) from January 2010 to December 2010. The y-coordinates are the RMSE and the polar coordinates denote the correlation (CC).

    3). The high levels of uncertainty at these places were predominantly caused by the deficiency of observations and insufficient knowledge of biophysical and physical processes. The biases between GEOS-Chem and GOSAT found in this study are similar to those reported by Cogan et al. (2012). Relative to the differences shown in Figure 3, the biases of XCO2,Obsand XCO2,TTdecrease dramatically to about 1 to 4 ppm, especially in Africa (Sahara) and the Indian peninsula (Figure 4), indicating that assimilating GOSAT observations can effectively eliminate spatial and temporal variation between the model and observations.

    The RMSE and correlation coefficients (CCs) between monthly time series ofXCO2,model(XCO2,Simand XCO2,TT) and XCO2,Obsare shown in Figure 5. The RMSE betweenXCO2,Simand XCO2,TTranged from 1.75 to 3.0 ppm and the CC ranged from 0.25 (November) to 0.85 (April), both having an annual cycle. Relative to only a slight increase in the CC,the RMSE betweenXCO2,TTand XCO2,Obsdecreased sharply by 20% to 40% to about 1.25 to 1.75 ppm. These results illustrate that assimilating GOSAT satellite observations through the Tan-Tracker system tangibly improves the performance of model simulations by reducing spatial error, RMSE and improving the CC to yield more accurate 3D CO2concentrations and CFs.

    4. Conclusions

    This study assessed a Chinese carbon cycle data assimilation system (Tan-Tracker) by evaluating the performance during a real-data assimilation experiment. The Tan-Tracker system was initially developed based on an advanced hybrid assimilation approach (PODEn4DVar), as part of the preparation for the launch of the Chinese CO2observation satellite, TanSat (Liu et al. 2012; Tian et al. 2014). The spatiotemporal distributions of the simulated data,XCO2,model, with and without assimilation,XCO2,TTand XCO2,Sim, were compared with GOSATXCO2data (XCO2,Obs) at each satellite scan position. The results demonstrate that assimilation markedly reduces the RMSE and slightly improves the CC. Overall, our real-data assimilation experiment demonstrated that the Tan-Tracker system performs well when implementing GOSAT data assimilation.

    Acknowledgements

    We would like to thank the two anonymous reviewers for their critical comments and suggestions, which helped to improve the manuscript. Also, we are very grateful to the ACOS and GOSAT teams for the availability of GOSAT observations.

    Funding

    This work was partially supported by the National High Technology Research and Development Program of China [grant number 2013AA122002], the National Natural Science Foundation of China [grant numbers 41575100 and 91437220], the Knowledge Innovation Program of the Chinese Academy of Sciences[grant number KZCX2-EW-QN207], and the Special Fund for Meteorological Scientific Research in Public Interest [grant number GYHY201506002].

    References

    Cogan, A. J., H. Boesch, R. J. Parker, L. Feng, P. I. Palmer, J.-F. L. Blavier, N. M. Deutscher et al. 2012. “Atmospheric Carbon Dioxide Retrieved from the Greenhouse Gases Observing SATellite (GOSAT): Comparison with Ground-Based TCCON Observations and GEOS-Chem Model Calculations.” Journal of Geophysical Research 117 (D21). doi:10.1029/2012JD018087.

    Chen, Z. H., J. Zhu, and N. Zeng. 2013. “Improved Simulation of Regional CO2Surface Concentrations Using GEOS-Chem and Fluxes from VEGAS.” Atmospheric Chemistry and Physics 13(15): 7607—7618.

    Feng, L., P. I. Palmer, H. B?sch and S. Dance. 2009. “Estimating Surface CO2Fluxes from Space-borne CO2Dry Air Mole Fraction Observations Using an Ensemble Kalman Filter.”Atmospheric Chemistry and Physics 9 (8): 2619—2633.

    IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Liu, J., I. Fung, E. Kalnay, J. S. Kang, E. T. Olsen, and L. Chen. 2012.“Simultaneous Assimilation of AIRS XCO2and Meteorological Observations in a Carbon Climate Model with an Ensemble Kalman Filter.” Journal of Geophysical Research 117 (D5). doi:10.1029/2011JD016642.

    Nassar, R., D. B. A. Jones, P. Suntharalingam, J. M. Chen, R. J. Andres, K. J. Wecht, R. M. Yantosca, et al. 2010. “Modeling Global Atmospheric CO2with Improved Emission Inventories and CO2Production from the Oxidation of Other CarbonSpecies.” Geoscientific Model Development Discussions 3 (3): 889—948.

    Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans. 2005. “An Ensemble Data Assimilation System to Estimate CO2Surface Fluxes from Atmospheric Trace Gas Observations.” Journal of Geophysical Research 110 (D24). doi:10.1029/2005JD006157. Protocol, K. 1997. United Nations Framework Convention on Climate Change. Kyoto: Kyoto Protocol.

    Reuter, M., H. Bovensmann, M. Buchwitz, J. P. Burrows, B. J. Connor, N. M. Deutscher, D. W. T. Griffith, et al. 2011.“Retrieval of Atmospheric CO2with Enhanced Accuracy and Precision from SCIAMACHY: Validation with FTS Measurements and Comparison with Model Results.” Journal of Geophysical Research: Atmospheres 1984—2012 116 (D4). doi:10.1029/2010JD015047.

    Suntharalingam, P., D. J. Jacob, P. I. Palmer, J. A. Logan, R. M. Yantosca, Y. Xiao, M. J. Evans, et al. 2004. “Improved Quantification of Chinese Carbon Fluxes Using CO2/CO Correlations in Asian Outflow.” Journal of Geophysical Research 109 (D18). doi:10.1029/2003JD004362.

    Tian, X., Z. Xie, and Q. Sun. 2011. “A POD-based Ensemble Fourdimensional Variational Assimilation Method.” Tellus A 63 (4): 805—816.

    Tian, X., Z. Xie, Y. Liu, Z. Cai, Y. Fu, H. Zhang, and L. Feng. 2014. “A Joint Data Assimilation System (Tan-Tracker)to Simultaneously Estimate Surface CO2Fluxes and 3-D Atmospheric CO2Concentrations from Observations.”Atmospheric Chemistry and Physics 14 (23): 13281—13293.

    Wang, B., J. Liu, S. Wang, W. Cheng, J. Liu, C. Liu, Q. Xiao and Y. Kuo. 2010. “An Economical Approach to Four-dimensional Variational Data Assimilation.” Advances in Atmospheric Sciences 27: 715—727.

    Yokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe,and S. Maksyutov. 2009. “Global Concentrations of CO2and CH4Retrieved from GOSAT: First Preliminary Results.” SOLA 5: 160—163.

    Zhang, H. F., B. Z. Chen, T. Machida, T. Machida, H. Matsueda, Y. Sawa, Y. Fukuyama, et al. 2014. “Estimating Asian Terrestrial Carbon Fluxes from CONTRAIL Aircraft and Surface CO2Observations for the Period 2006—2010.” Atmospheric Chemistry and Physics 14 (11): 5807—5824.

    25 August 2015 Revised 26 October 2015 Accepted 29 October 2015

    CONTACT TIAN Xiang-Jun tianxj@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    方根可行性觀測(cè)
    觀測(cè)到恒星死亡瞬間
    軍事文摘(2023年18期)2023-11-03 09:45:42
    方根拓展探究
    PET/CT配置的可行性分析
    天測(cè)與測(cè)地VLBI 測(cè)地站周?chē)匦斡^測(cè)遮掩的討論
    均方根嵌入式容積粒子PHD 多目標(biāo)跟蹤方法
    可觀測(cè)宇宙
    太空探索(2016年7期)2016-07-10 12:10:15
    揭開(kāi)心算方根之謎
    高分辨率對(duì)地觀測(cè)系統(tǒng)
    太空探索(2015年8期)2015-07-18 11:04:44
    PPP物有所值論證(VFM)的可行性思考
    自由選擇醫(yī)??尚行远啻?
    动漫黄色视频在线观看| 韩国av一区二区三区四区| 国产三级黄色录像| 两个人免费观看高清视频| av中文乱码字幕在线| 亚洲电影在线观看av| 好看av亚洲va欧美ⅴa在| 午夜免费鲁丝| 人人澡人人妻人| www.熟女人妻精品国产| 亚洲第一电影网av| 黄片播放在线免费| 啦啦啦观看免费观看视频高清| 亚洲av中文字字幕乱码综合 | 不卡一级毛片| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 男女做爰动态图高潮gif福利片| 亚洲男人天堂网一区| 日韩欧美一区视频在线观看| 91成人精品电影| 午夜a级毛片| 精华霜和精华液先用哪个| 日韩欧美一区视频在线观看| 日本 av在线| 国产精品综合久久久久久久免费| 嫩草影视91久久| 欧美又色又爽又黄视频| 久久久久久免费高清国产稀缺| 男人舔女人的私密视频| 午夜福利高清视频| 波多野结衣高清无吗| 日韩免费av在线播放| 欧美av亚洲av综合av国产av| 美女免费视频网站| av欧美777| 成人免费观看视频高清| 亚洲精品国产精品久久久不卡| 亚洲精品国产精品久久久不卡| 天天添夜夜摸| 精品国产乱码久久久久久男人| 一级片免费观看大全| 嫩草影院精品99| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 女性生殖器流出的白浆| 91av网站免费观看| 母亲3免费完整高清在线观看| 满18在线观看网站| 母亲3免费完整高清在线观看| 亚洲人成电影免费在线| 可以免费在线观看a视频的电影网站| 高清在线国产一区| 脱女人内裤的视频| 狂野欧美激情性xxxx| 欧美一级毛片孕妇| 成人18禁在线播放| 黄色毛片三级朝国网站| 欧美乱码精品一区二区三区| 老熟妇乱子伦视频在线观看| 国产精品99久久99久久久不卡| 日本黄色视频三级网站网址| 黑人欧美特级aaaaaa片| 可以在线观看毛片的网站| 久久久久久久久免费视频了| 一本精品99久久精品77| bbb黄色大片| 中文字幕人妻熟女乱码| 国产精品美女特级片免费视频播放器 | 成人手机av| 十八禁人妻一区二区| 精品久久久久久久末码| 亚洲精品中文字幕一二三四区| 成人免费观看视频高清| 亚洲狠狠婷婷综合久久图片| 长腿黑丝高跟| АⅤ资源中文在线天堂| videosex国产| 亚洲精品粉嫩美女一区| 淫秽高清视频在线观看| 久久中文字幕一级| 女性生殖器流出的白浆| 久久人妻福利社区极品人妻图片| 叶爱在线成人免费视频播放| 日韩视频一区二区在线观看| 99精品欧美一区二区三区四区| 久久香蕉国产精品| 淫秽高清视频在线观看| 亚洲av日韩精品久久久久久密| 91成年电影在线观看| 成在线人永久免费视频| 久久久国产精品麻豆| 丝袜美腿诱惑在线| 亚洲国产欧美一区二区综合| 麻豆国产av国片精品| 少妇的丰满在线观看| 国产高清videossex| 日本一本二区三区精品| www国产在线视频色| 亚洲欧美激情综合另类| 国产成人精品无人区| 在线视频色国产色| 成人一区二区视频在线观看| 亚洲第一电影网av| 午夜久久久久精精品| svipshipincom国产片| svipshipincom国产片| 女同久久另类99精品国产91| 国产主播在线观看一区二区| 在线观看免费日韩欧美大片| 欧洲精品卡2卡3卡4卡5卡区| 人妻丰满熟妇av一区二区三区| 国产成人av激情在线播放| 国产亚洲欧美精品永久| 国内精品久久久久精免费| 国产成人啪精品午夜网站| 特大巨黑吊av在线直播 | 国产日本99.免费观看| 美女扒开内裤让男人捅视频| 国产成人av激情在线播放| 激情在线观看视频在线高清| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美激情极品国产一区二区三区| 男女视频在线观看网站免费 | 亚洲成a人片在线一区二区| 免费女性裸体啪啪无遮挡网站| 久久天堂一区二区三区四区| 少妇被粗大的猛进出69影院| 日本免费一区二区三区高清不卡| 国产99白浆流出| 久久久久国产精品人妻aⅴ院| 亚洲av成人不卡在线观看播放网| 国产精品九九99| 精品一区二区三区四区五区乱码| 搡老熟女国产l中国老女人| 在线视频色国产色| 亚洲色图 男人天堂 中文字幕| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 我的亚洲天堂| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 亚洲国产欧洲综合997久久, | 禁无遮挡网站| 国产熟女午夜一区二区三区| 亚洲一区高清亚洲精品| 免费观看精品视频网站| 成人18禁在线播放| 不卡av一区二区三区| 亚洲欧美日韩无卡精品| 国产亚洲av嫩草精品影院| 看免费av毛片| 国产野战对白在线观看| www.www免费av| 免费观看精品视频网站| 日本 av在线| 狠狠狠狠99中文字幕| 欧美人与性动交α欧美精品济南到| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| 国产亚洲精品第一综合不卡| 免费高清在线观看日韩| 午夜福利一区二区在线看| 亚洲avbb在线观看| 国产精品久久电影中文字幕| 久久久久久亚洲精品国产蜜桃av| 日韩大尺度精品在线看网址| 亚洲三区欧美一区| 男人的好看免费观看在线视频 | 午夜a级毛片| 精华霜和精华液先用哪个| 亚洲片人在线观看| 哪里可以看免费的av片| 国产私拍福利视频在线观看| 久久久国产精品麻豆| 亚洲九九香蕉| 99在线视频只有这里精品首页| 国产久久久一区二区三区| 亚洲一区二区三区不卡视频| 欧美一区二区精品小视频在线| 午夜a级毛片| 国产高清有码在线观看视频 | 亚洲欧美一区二区三区黑人| 黄色片一级片一级黄色片| 午夜久久久久精精品| 男人舔女人的私密视频| 99久久无色码亚洲精品果冻| 波多野结衣巨乳人妻| av中文乱码字幕在线| 淫秽高清视频在线观看| 首页视频小说图片口味搜索| 欧美国产精品va在线观看不卡| 亚洲国产看品久久| 亚洲av电影在线进入| 一本久久中文字幕| 老司机午夜福利在线观看视频| 99国产精品99久久久久| 午夜激情av网站| www.自偷自拍.com| 欧美黑人欧美精品刺激| 母亲3免费完整高清在线观看| 国产区一区二久久| 中文字幕高清在线视频| 黄色 视频免费看| 欧美激情 高清一区二区三区| 一个人观看的视频www高清免费观看 | 国产亚洲精品一区二区www| avwww免费| 一进一出抽搐动态| 亚洲五月色婷婷综合| 天天添夜夜摸| 久久人妻av系列| 男女午夜视频在线观看| 1024手机看黄色片| 久热爱精品视频在线9| 色综合站精品国产| 黑人欧美特级aaaaaa片| 国产不卡一卡二| 日本一区二区免费在线视频| 一边摸一边做爽爽视频免费| 日韩av在线大香蕉| 黑人操中国人逼视频| 免费电影在线观看免费观看| 久久久国产成人精品二区| 中文亚洲av片在线观看爽| 久久中文字幕人妻熟女| 精品久久久久久久久久免费视频| 在线观看一区二区三区| xxxwww97欧美| 99久久久亚洲精品蜜臀av| 99国产精品一区二区蜜桃av| 精品久久久久久久久久免费视频| 在线观看www视频免费| 美女午夜性视频免费| 制服丝袜大香蕉在线| 老司机午夜十八禁免费视频| 日本三级黄在线观看| 亚洲av五月六月丁香网| 亚洲国产精品sss在线观看| 亚洲人成77777在线视频| 黄片大片在线免费观看| 欧美大码av| 欧美性长视频在线观看| www.自偷自拍.com| 亚洲性夜色夜夜综合| 亚洲成av人片免费观看| 少妇熟女aⅴ在线视频| 在线永久观看黄色视频| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| 日韩欧美免费精品| netflix在线观看网站| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 亚洲成人精品中文字幕电影| 18禁黄网站禁片午夜丰满| 啦啦啦韩国在线观看视频| av天堂在线播放| 国产精品 国内视频| 免费一级毛片在线播放高清视频| 老汉色∧v一级毛片| 香蕉av资源在线| 男人的好看免费观看在线视频 | 俄罗斯特黄特色一大片| 亚洲精品久久国产高清桃花| svipshipincom国产片| 岛国在线观看网站| 亚洲国产毛片av蜜桃av| 男女之事视频高清在线观看| 亚洲欧美激情综合另类| 国产精品电影一区二区三区| 嫩草影视91久久| 亚洲av日韩精品久久久久久密| 国产麻豆成人av免费视频| 精品午夜福利视频在线观看一区| 757午夜福利合集在线观看| 97人妻精品一区二区三区麻豆 | 国产精品永久免费网站| 国产午夜福利久久久久久| 午夜福利在线在线| 成年版毛片免费区| 亚洲成人国产一区在线观看| 无人区码免费观看不卡| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 很黄的视频免费| 一本大道久久a久久精品| 国产精品免费一区二区三区在线| 国产精品美女特级片免费视频播放器 | 老熟妇仑乱视频hdxx| 香蕉丝袜av| 久久久久精品国产欧美久久久| 麻豆久久精品国产亚洲av| 亚洲片人在线观看| 精品一区二区三区四区五区乱码| 黄网站色视频无遮挡免费观看| 亚洲精品粉嫩美女一区| 亚洲男人的天堂狠狠| 少妇粗大呻吟视频| 母亲3免费完整高清在线观看| 波多野结衣巨乳人妻| 日本 av在线| 人人妻人人澡人人看| 国产黄片美女视频| 久久久久久久午夜电影| www国产在线视频色| 亚洲三区欧美一区| 欧美成人性av电影在线观看| www国产在线视频色| 亚洲精品在线美女| 久久久国产精品麻豆| 欧美中文综合在线视频| 丝袜在线中文字幕| cao死你这个sao货| 国产精品电影一区二区三区| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 亚洲最大成人中文| 美女高潮到喷水免费观看| 国产日本99.免费观看| 国产精品亚洲一级av第二区| 久久久精品欧美日韩精品| 九色国产91popny在线| 国产成人系列免费观看| 日韩大码丰满熟妇| 成人一区二区视频在线观看| 99re在线观看精品视频| 欧美成人一区二区免费高清观看 | 在线天堂中文资源库| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 午夜成年电影在线免费观看| 午夜视频精品福利| 亚洲av熟女| 看片在线看免费视频| 日韩 欧美 亚洲 中文字幕| av福利片在线| 一级黄色大片毛片| 欧美性猛交黑人性爽| 亚洲av电影不卡..在线观看| 18禁观看日本| 久久天躁狠狠躁夜夜2o2o| 久久 成人 亚洲| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| 女同久久另类99精品国产91| 99国产综合亚洲精品| 欧美中文综合在线视频| 此物有八面人人有两片| 最近最新中文字幕大全免费视频| 制服人妻中文乱码| 神马国产精品三级电影在线观看 | 亚洲成av人片免费观看| 免费在线观看视频国产中文字幕亚洲| 日韩精品免费视频一区二区三区| 欧美色欧美亚洲另类二区| 欧美日韩瑟瑟在线播放| 亚洲成人国产一区在线观看| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av| 人人妻人人澡欧美一区二区| 1024视频免费在线观看| 午夜精品在线福利| 中文字幕精品免费在线观看视频| 国产av一区二区精品久久| 麻豆成人午夜福利视频| 久久精品国产综合久久久| 男女下面进入的视频免费午夜 | 中文字幕av电影在线播放| 国产野战对白在线观看| 国产精品爽爽va在线观看网站 | 亚洲熟女毛片儿| 久久人人精品亚洲av| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| 久久午夜亚洲精品久久| 国产爱豆传媒在线观看 | 国产激情欧美一区二区| 久久亚洲精品不卡| 精品久久久久久久久久久久久 | 99热这里只有精品一区 | 亚洲专区字幕在线| 成人午夜高清在线视频 | 别揉我奶头~嗯~啊~动态视频| 国产高清视频在线播放一区| 欧美日韩福利视频一区二区| 97碰自拍视频| 欧美中文日本在线观看视频| 美女午夜性视频免费| 国产精品久久电影中文字幕| 国产精品,欧美在线| 高清在线国产一区| 一二三四社区在线视频社区8| 午夜免费鲁丝| or卡值多少钱| 搞女人的毛片| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 后天国语完整版免费观看| 精品少妇一区二区三区视频日本电影| 久久久久九九精品影院| 亚洲三区欧美一区| 可以在线观看的亚洲视频| 国产亚洲精品久久久久久毛片| 国产高清有码在线观看视频 | 国内少妇人妻偷人精品xxx网站 | 黄色片一级片一级黄色片| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 99热6这里只有精品| 日本五十路高清| 黄色片一级片一级黄色片| 亚洲精品一区av在线观看| 老司机午夜福利在线观看视频| 国内揄拍国产精品人妻在线 | 久久国产乱子伦精品免费另类| 国产97色在线日韩免费| 欧美黑人精品巨大| 欧美中文综合在线视频| 欧美激情 高清一区二区三区| 国内精品久久久久精免费| 国产精品日韩av在线免费观看| 看黄色毛片网站| 天天添夜夜摸| 亚洲色图av天堂| 久久精品成人免费网站| 久久久久久人人人人人| 国产精品美女特级片免费视频播放器 | 久久久国产欧美日韩av| 婷婷丁香在线五月| 草草在线视频免费看| 色尼玛亚洲综合影院| 宅男免费午夜| 人妻丰满熟妇av一区二区三区| 久久久国产精品麻豆| 熟妇人妻久久中文字幕3abv| 欧美成人一区二区免费高清观看 | 久久国产精品影院| av福利片在线| 美女大奶头视频| 俺也久久电影网| 午夜激情av网站| 国产亚洲av嫩草精品影院| 国产片内射在线| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 一级黄色大片毛片| 久99久视频精品免费| 色在线成人网| 国产人伦9x9x在线观看| 国产亚洲欧美在线一区二区| 亚洲最大成人中文| 国产精华一区二区三区| 夜夜看夜夜爽夜夜摸| 黄色片一级片一级黄色片| 在线视频色国产色| 日本三级黄在线观看| 亚洲久久久国产精品| 色播在线永久视频| 免费搜索国产男女视频| 精品国产超薄肉色丝袜足j| 国产成人一区二区三区免费视频网站| 国产真人三级小视频在线观看| 中文字幕最新亚洲高清| 久久久国产精品麻豆| 少妇熟女aⅴ在线视频| 国产精品 国内视频| 麻豆久久精品国产亚洲av| 国产视频内射| 国产精品久久久人人做人人爽| 国产精品一区二区免费欧美| 国产精品自产拍在线观看55亚洲| 色婷婷久久久亚洲欧美| 成年人黄色毛片网站| av中文乱码字幕在线| 日韩欧美在线二视频| 免费高清视频大片| 男男h啪啪无遮挡| 满18在线观看网站| 一边摸一边做爽爽视频免费| 久久这里只有精品19| 欧美在线黄色| 怎么达到女性高潮| 男女之事视频高清在线观看| 一区二区三区激情视频| 亚洲成a人片在线一区二区| 午夜免费成人在线视频| 大香蕉久久成人网| 欧美日本亚洲视频在线播放| 级片在线观看| 一个人免费在线观看的高清视频| 婷婷精品国产亚洲av| 精品熟女少妇八av免费久了| 99re在线观看精品视频| 免费在线观看日本一区| 久久精品影院6| 中文字幕精品免费在线观看视频| 一边摸一边抽搐一进一小说| 少妇粗大呻吟视频| 老司机午夜福利在线观看视频| 国产精品免费一区二区三区在线| 久久精品国产综合久久久| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡| 午夜福利成人在线免费观看| 久久久水蜜桃国产精品网| 老司机深夜福利视频在线观看| 久久久久九九精品影院| 午夜福利高清视频| www.精华液| 国产成年人精品一区二区| 9191精品国产免费久久| 日韩欧美免费精品| 黑人巨大精品欧美一区二区mp4| 国产成人av教育| 一区二区日韩欧美中文字幕| 真人做人爱边吃奶动态| 欧美黑人巨大hd| 99久久久亚洲精品蜜臀av| 色综合欧美亚洲国产小说| 国产精品,欧美在线| 中文资源天堂在线| 中亚洲国语对白在线视频| 久久精品人妻少妇| 精品久久久久久成人av| 国产av不卡久久| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区精品| 精品国产一区二区三区四区第35| 国产精品一区二区免费欧美| 男女之事视频高清在线观看| 丝袜在线中文字幕| 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人av激情在线播放| 18禁美女被吸乳视频| 国产精品亚洲一级av第二区| 老司机午夜十八禁免费视频| 欧美激情 高清一区二区三区| 国产亚洲精品一区二区www| 午夜福利视频1000在线观看| 在线视频色国产色| 脱女人内裤的视频| 夜夜爽天天搞| 大型黄色视频在线免费观看| 黄色丝袜av网址大全| 极品教师在线免费播放| 久久久久久免费高清国产稀缺| 国产亚洲欧美98| 国产免费av片在线观看野外av| netflix在线观看网站| 俺也久久电影网| 亚洲国产精品sss在线观看| 看免费av毛片| 母亲3免费完整高清在线观看| www.自偷自拍.com| 中文在线观看免费www的网站 | 狂野欧美激情性xxxx| 日本精品一区二区三区蜜桃| 一级毛片精品| 一个人免费在线观看的高清视频| 国产精品乱码一区二三区的特点| 日韩精品青青久久久久久| 这个男人来自地球电影免费观看| 日韩欧美 国产精品| 母亲3免费完整高清在线观看| 亚洲欧美精品综合一区二区三区| 日本 欧美在线| 国产精品一区二区精品视频观看| 18禁裸乳无遮挡免费网站照片 | 神马国产精品三级电影在线观看 | 久久香蕉激情| 自线自在国产av| 久久久久国产一级毛片高清牌| 日韩欧美一区二区三区在线观看| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 日本在线视频免费播放| 男女床上黄色一级片免费看| 亚洲av片天天在线观看| av视频在线观看入口| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频 | 啦啦啦免费观看视频1| 日韩欧美国产在线观看| 国产成年人精品一区二区| 久久久久久久久中文| 两个人视频免费观看高清| 精品国产亚洲在线| 午夜激情福利司机影院| 色在线成人网| 精品久久久久久久久久久久久 | e午夜精品久久久久久久| 99re在线观看精品视频| 日本一本二区三区精品| a级毛片a级免费在线| 欧美精品啪啪一区二区三区| 黄片大片在线免费观看| 久久欧美精品欧美久久欧美| 精品久久久久久成人av| 久久国产精品人妻蜜桃| 精品乱码久久久久久99久播| 成人精品一区二区免费| 一个人观看的视频www高清免费观看 | 亚洲成av片中文字幕在线观看| 91九色精品人成在线观看| 亚洲aⅴ乱码一区二区在线播放 | 色在线成人网| 九色国产91popny在线|