• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets

    2016-11-23 01:57:20YngJinlongYngLeYunYunhoGeHongwei
    CHINESE JOURNAL OF AERONAUTICS 2016年6期

    Yng Jinlong,Yng Le,Yun Yunho,Ge Hongwei

    aSchool of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China

    bKey Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Wuxi 214122,China

    Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets

    Yang Jinlonga,b,*,Yang Lea,Yuan Yunhaoa,Ge Hongweia

    aSchool of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China

    bKey Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Wuxi 214122,China

    The probability hypothesis density(PHD)filter has been recognized as a promising technique for tracking an unknown number of targets.The performance of the PHD filter,however,is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories.If these parameters are unknown in advance,the tracking performance may degrade greatly.To address this aspect,this paper proposes to incorporate the adaptive parameter estimation(APE)method in the PHD filter so that the model parameters,which may be static and/or time-varying,can be estimated jointly with target states.The resulting APE-PHD algorithm is implemented using the particle filter(PF),which leads to the PF-APE-PHD filter.Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances,and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner,compared to the multi-model approaches.

    1.Introduction

    Multiple target tracking(MTT)has gained wide attentions due to its theoretical and practical importance.Conventionally,the MTT problem was tackled from the perspective of data association.A number of tracking algorithms were developed in the literature on the basis of techniques including the joint probabilistic data association (JPDA),1jointintegrated probabilistic data association (JIPDA)2and multiple hypothesis tracking(MHT).3These methods are generally computationally intensive and some of them even have exponentially growing complexityas the targetnumber increases.Reduced-complexity techniques were proposed in Refs.4–6.They are better for real-time applications at the cost of degraded estimation accuracy.

    Recently,the use of the random finite set(RFS)theory7–11attracted great interests,because it provides an elegant formulation of the MTT problem.But the obtained multi-target Bayesian filter is intractable in most practical scenarios due to the inherent combinatorial nature of multi-target state densities and the need for evaluating set integrals over high dimensional spaces.To deal with the intractability,the probability hypothesis density(PHD)filter7and the cardinalized PHD(CPHD)filter8were developed using the first-order moment and cardinality distributions.Existing closed-form realizations of PHD filters include the particle filter PHD(PF-PHD),9,10Gaussian mixture PHD(GM-PHD)filter11and various modified versions.12–15Different from the PHD and CPHD filters,the cardinality-balanced multi-target multi-Bernoulli(CBMeMBer)filter was proposed in Ref.16for MTT by directly propagating the approximate posterior density of the targets.These algorithms exhibit good performance only when the model parameters,such as the measurement noise variances,are known precisely.In the presence of unknown time-varying measurement noise variances,the variational Bayesian(VB)approximation method17–19can be employed to recursively estimate the joint PHDs of the multi-target states and the measurement noise variance.20,21However,these methods may suffer from performance degradation if targets manoeuver with unknown abruptly changing parameters.

    For maneuvering target tracking,the use of the jump Markov system(JMS)that switches among a set of candidate models in a Markovian fashion has proved to be effective.22,23Pasha et al.24introduced the linear JMS into PHD filters and derived a closed-form solution for the PHD recursion.Furthermore,the unscented transform(UT)and the linear fractional transformation(LFT)were combined with the closed-form solution for the nonlinear jump Markov multitarget models in Refs.25,26.In Ref.27,a GM-PHD filter for jump Markov models was developed by employing the bestfitting Gaussian(BFG)approximation approach.These algorithms assume the Gaussianity of the PHD distribution,which may limit their application scope.The multiple-model particle PHD(MMP-PHD) filter,the MMP-CPHD filter and MMPCBMeMBer filter are implemented by using the sequential Monte Carlo(SMC)method and their improved versions were presented in Refs.28–30.Most of the MM-based filters track multiple maneuvering targets through the interaction of multiple models,which is realized via combining estimates from different models according to their respective model likelihoods.The difficulty of applying them in tracking targets with abruptly changing maneuvering parameters comes from the need to specify a prior set of candidate models.In other words,they may suffer from the curse of dimensionality:if we wish to account for multiple unknown parameters,the number of models needed would increase exponentially with the number of parameters.

    In this work,we incorporate the adaptive parameter estimation(APE)technique into the PHD filter for addressing the problem of multiple maneuvering target tracking,where both static and time varying unknown parameters,namely the measurement noise variance and the parameters associated with abrupt target maneuvers,are presented and need to be estimated.The inverse Gamma(IG)distribution is used to approximate the posterior distribution of the measurement noise variances while the adaptive Liu and West(LW)filter is adopted to propagate the posterior marginal of the timevarying parameters as a mixture of multivariate Gaussian distributions.31–33The obtained APE-PHD filter is realized using the particle filter(PF),which leads to the PF-APE-PHD algorithm for tracking multiple maneuvering targets in the presence of unknown model parameters.Simulation results show that the proposed algorithm exhibits better robustness and improved tracking performance over the MM-PHD and MM-CPHD algorithms.

    The remainder of this paper is organized as follows.Section 2 formulates the problem of tracking a target in the presence of unknown model parameters.It also briefly reviews the APE technique and the PHD filter.Section 3 develops the APE-PHD algorithm and presents the closed-form solution,the PF-APE-PHD algorithm.Simulation results are given in Section 4.Finally,conclusions are provided in Section 5.

    2.Preliminary

    2.1.Problem formulation

    The state-space model for tracking a single target moving on a two-dimensional plane is given by

    where xk=[xk,vxk,yk,vyk]Tdenotes the target state at time k,(xk,yk)and (vxk,vyk)denote its position and velocity.F and G are the state transition matrix and the process noise gain matrix.ykis the measurement vector.vkand wkdenote the process noise and the measurement noise.They are independent of each other and modeled as zero-mean Gaussian random processes with covariance Qkand Rk.

    In many practical applications,the state-space model in Eqs.(1)and(2)may contain unknown parameters.For example,if the target conducts a coordinated turn(CT),28the state transition matrix would become

    The turn rate ω may be unknown and time-varying.Besides,the measurement noise covariance Rkmay also be unknown.In these scenarios,we need to jointly estimate the posterior distribution of the target states and the unknown parameters from the measurements.

    Let Φkbe a column vector that collects the static and timevarying parameters in the state-space model.The posterior probability density function(PDF)of the target state vector xkand Φkconditioned on the measurements up to time k is,according to Bayes’rule,

    where p(xk,Φk|y1:k-1)is the predicted PDF given by

    Deriving exact recursive solutions for the posterior distribution p(xk,Φk|y1:k)from Eqs.(4)and(5)is in general intractable and as a result,approximate solutions are usually resorted to.One such approach is the SMC method,also referred to as the particle filter(PF).9,11,14

    2.2.Adaptive parameter estimation(APE)

    In Refs.31,32,the Liu and West(LW)filter was proposed for the joint identification of static parameters and target states.In particular,the marginal posterior distribution of the unknown parameters is approximated and propagated using a mixture of multivariate Gaussian distributions.In Ref.33,the particle learning technique was introduced into the LW filter.The obtained APE filter can handle both static and timevarying parameters.

    The development of the APE method starts with factorizing p(xk,Φk|y1:k-1)into

    Let Φk=[θk,ξk],where θkand ξkcollect static and timevarying parameter vectors.The marginal predicting distribution of Φkcan be expressed as

    The predicted distribution p(θk|y1:k-1,ξk)of the static parameter vector θkis characterized using sufficient statistics sk,i.e.,θk~ p(θ|sk).32The predicted distribution of the time-varying parameter vector ξkis approximated via

    In the case that the time instant k is a changepoint,and the predicting distribution of the time-varying vector ξkwill be reset to pξ(ξ0),its prior distribution.With the predicted PDF given in Eq.(8),the APE filter utilizes the PF to produce an approximation of the posterior distribution)in Eq.(4).Suppose at time k-1,the posterior distribution is represented by N particleswith weightsAt time k,each particle is given two weights33

    which essentially leads to 2N particles.correspond to the probability of the current measurement ykwhen there is no changepoint and when there is a changepoint,respectively.In the former case,the value of time-varying parameter vectoris drawn from the Gaussian componentwhile for the latter case,its valueis produced using the prior distribution pξ(ξ0)(see also Eq.(8)).A resampling is then performed on the basis of the weightsto select N particles out of 2N particles and propagate them to generate the approximation of the posterior p(xk,Φk|y1:k)at time k.For more details on the APE filter for tracking a single maneuvering target,please refer to Ref.33.

    2.3.PHD filter

    Under the RFS framework,we denote the multiple target state set and the measurement set at time k as Xk={xk,1,xk,2,...,xk,Nk}and Yk={yk,1,yk,2,...,yk,Mk}.Both Nkand Mkare random integers and they are the number of targets and measurements,respectively.Suppose Xk-1is the multiple target state set at time k-1,then Xkand Ykcan be expressed as

    where Sk|k-1(x)is the RFS of targets surviving from time k-1 to k,Bk|k-1(x)is the RFS of targets spawned from Xk-1and Γkis the RFS of targets that appear spontaneously at time k.Θk(x)and Kkare the RFSs of measurements originating from the targets in Xkand the clutters.

    The optimal Bayesian recursions for propagating the multitarget posterior PDF are7

    where μsdenotes the approximate state space Lebesgue measure,pk|k-1(Xk|Y1:k-1)and pk|k(Xk|Y1:k)are the predicted PDF and the posterior PDF,respectively.fk|k-1(·)is the state transition PDF and gk(·)is the measurement likelihood function.

    The PHD filter proposed by Mahler7yields an approximation of the optimal Bayesian filter given in Eqs.(15)and(16)via propagating only the first-order moment of pk|k(Xk|Y1:k),i.e.,the PHD.It is capable of tracking a variable number of targets and estimating both the number of targets and their states without utilizing data association techniques.The PHD is a multi-peak function in the state space.The number of peaks is often(but not necessarily)approximately equal to the number of targets,and the peak positions correspond to the expected values of target states,which can be extracted through the use of the expectation-maximum(EM)algorithm35,36or clustering techniques.9,37

    Let vk|k-1(x)and vk|k(x)denote the predicted and posterior intensity functions of pk|k(Xk|Y1:k).Their prediction and update equations are

    where βk|k-1(x)and γk(x)are the intensities of the RFSs of the spawned targets and spontaneous births.pS,k|k-1(x)denotes the survival probability and pD,k(x)is the detection probability.κk(y)= λkck(y)is the intensity of the clutter RFS,which is assumed to be Poisson distributed with mean rate λk,and ck(y)is the distribution of the clutter.

    3.Tracking multiple maneuvering targets

    3.1.APE-PHD recursions

    We shall first generalize the PHD recursions in Eqs.(17)and(18)to take into account the presence of unknown model parameters.To simplify the presentation,it is assumed that the survival and the detection probabilities are independent of both the target state vector and the unknown parameter vector Φk.They will thus be denoted by pS,k|k-1and pD,k.Further drop the subscript k in Φkfor notation simplicity and let vk-1(x,Φ)be the joint posterior PHD at time k-1.According to Eq.(17),Eq.(18)and the Chapman-Kolmogorov equation,the predicted PHD vk|k-1(x,Φ)can then be described as

    When the latest measurements become available at time k,the joint posterior PHD becomes

    where

    Note that in Eqs.(19)–(21),because Φ is unknown,the measurement likelihood gk(y|x,Φ)and vk|k-1(x,Φ)are hard to be obtained,this makes it difficult to calculate the analytic solution of the joint intensity function vD,k(x,Φ|y).However,its approximation solution can be obtained through the use of the APE technique combined with the PF.The proposed algorithm is therefore referred to as PF-APE-PHD algorithm,which will be presented in the following subsection.

    3.2.PF-APE-PHD algorithm

    In this subsection,the PF is utilized to derive an approximation of the closed-form solution to the extended PHD recursions in Eqs.(19)and(20).The obtained PF-APE-PHD algorithm consists of two stages,namely the prediction and update stages.

    We assume that initially,there are N0targets and N particles are produced for each target.The total number of particles is therefore L0=N×N0.Let X0be the initial multiple target state set and p0(X0,θ0,ξ0)be the prior joint PDF.The initial particlesare drawn from p0(X0,θ0,ξ0),and the weight is set to beAPE-PHD recursions are as follows.

    3.2.1.Prediction stage

    In this work,we consider the case that the static unknown parameter θkis the variance of the measurement noise.Its conjugate prior is approximated by an inverse-gamma(IG)distribution IG(a,b)with parameters a and b,i.e.,IG(θ;a,b)=method for estimating a and b is similar to the method20used to identify the unknown measurement noise covariance R.Therefore,the details are omitted here.

    To account for the possible abrupt changes in the timevarying parameters,we evaluate Eqs.(9)and(10)to obtain the estimate of the meansand covariancefor the time-varying parameter particleItis noted thatof Eqs.(9)and(10)in this algorithm is the Monte Carlo posterior mean of allwhich belong to the same target cluster.The particle clusters are formed in the stage of state extraction presented later in this subsection.

    We then generate 2Lk-1particles as in the APE filter.For this purpose, the proposal distributions)used to produce predicted particles as in Refs.7,14are employed here.The first Lk-1particles are generated under the condition that the time-varying parameters do not change abruptly.They are obtained via

    The remaining Lk-1particles are produced under the assumption that abrupt changes occurred.As in the APE technique,the values of the time-varying parameters are now drawn from their prior distributions,i.e.,.The predicted particles and their weights are obtained via, for i=Lk-1+1,Lk-1+2,...,2Lk-1,

    At time k,each particle is also given another weight proportional to the predictive likelihood corresponding to changepoint parameteri.e.,

    We select Lk-1out of the 2Lk-1obtained particles.Denote their indices as li∈ {1,2,...,2Lk-1},where i=1,2,...,Lk-1,the selection process is as follows.

    (1)For i=1,2,...,Lk-1,select indices liwith probability(1- β)ω(

    1li)from[1,2,...,Lk-1]andβω(2li)from[Lk-1+1,...,2Lk-1],where β is the probability that an abrupt change occurred and it is assumed to be known(see also Section 2.2).

    (2)If li∈ {1,2,...,Lk-1},then update the time-varying parameter particles using

    i

    where Vk-1is given in Eq.(10).Set the composite parameter particle asand the sufficient statistics for the static parameters as

    3.2.2.Update stage

    After receiving the measurement at time k,the Lk-1+Jkparticle weights can be updated by

    3.2.3.Computation of the total mass

    3.2.4.Resampling

    3.2.5.Extraction of target states

    Target states can be obtained by clustering the particles and the cluster centers are the estimated states,where N^k=round(Nk)is the estimate of the target number,and round(·)denotes the rounding operator.

    4.Simulations

    In order to illustrate the performance of the proposed PFAPE-PHD algorithm,a two-dimensional tracking scenario is simulated.The benchmark techniques are the MMP-PHD,28MMP-CPHD and MMP-CBMeMBer filters.29In the considered scenario,the measurements are obtained at four stationary sensors located at (0,0)m,(0,1 × 104)m,(1 × 104,0)m,and (1 × 104,1 × 104)m.At time k,each sensor outputs the measured bearing of the received signal,which is given by

    where (xSi,ySi) denotes the location of the ith sensor,i=1,2,3,4.wkis the zero-mean Gaussian noise with variance σ2w=1×10-4rad2.

    There are three maneuvering targets.Targets 1 and 2 remain active throughout the whole simulation process and theirinitialpositionsare at (-3 × 103,5 × 103)m and(1.4 × 104,8 × 103)m,as in Ref.28.Target 3 is a spontaneous birth at 10th min with initial position (2×103,10.5 × 103)m and disappears at 50th min.The true tracks of the three targets are depicted in Fig.1.

    When realizing the MMP-PHD and MMP-CPHD algorithms,we set that they both consist of a constant velocity(CV)model and two CT models.The transition probability matrix is assumed to be

    where the sampling interval is T=1 min,and the sojourn durations are τ1=200 min and τ2=100 min.The initial model probabilities for the three models are all equal to 1/3.The state evolution for CV and CT models is

    where σ2v=1 × 10-4m2s-3.

    Fig.1 True target tracks.

    For the three algorithms in consideration,we model the birth process using a Poisson RFS with intensity

    To verify the effectiveness of the proposed algorithm,simulations are performed on a Lenovo T430 desktop with Intel(R)Core(TM)CPU i5-3210 M,2.50 GHz and 8 GB RAM.Two performance metrics are used.One is the statistics of the target number estimate.The other is the optimal subpattern assignment(OSPA)38distance defined as

    Three simulation experiments are performed and the results shown are obtained from Monte Carlo simulations of 200 ensemble runs.The first experiment is to evaluate the performance for multiple abruptly maneuvering target tracking,where only the maneuvering parameters(e.g.,turn rates)are unknown.The second experiment is to compare the performance of the proposed algorithm in the presence of unknown maneuvering parameters as well as unknown measurement noise variances.The last experiment is conducted using different measurement noise variances to evaluate the robustness of the proposed algorithm.

    4.1.Multiple abruptly maneuvering target tracking

    In this experiment,the standard deviation of the measurement noise is set to be σ=0.01 rad and it is assumed known for the considered PF-APE-PHD,MMP-PHD,MMP-CPHD and MMP-CBMeMBer algorithms.The turn rate ω is considered as an unknown and time-varying parameter for the proposed PF-APE-PHD algorithm.The MMP-PHD,MMP-CPHD and MMP-CBMeMBer algorithms use one CV and two CT models of Eqs.(35)and(36)as the target motion models.Although in practice,the true turn rates are unavailable for the IMM-based filters,we realize the CT models with the real turn rates ω =9°/min and ω =-9°/min so that the MMP-based methods would have the ‘optimal’performance.Simulation results for this experiment are shown in Figs.2–4.

    Fig.2 shows the average target number estimates obtained by the PF-APE-PHD,MMP-PHD,MMP-CPHD and MMPCBMeMBer filters.It can be seen that the proposed PF-APEPHD algorithm can even provide more accurate target number estimates than the benchmark techniques.The reason is that the proposed algorithm can effectively estimate jointly the unknown model parameter ω which can be well matched with the motion model of each target.While for the MMP-PHD,MMP-CPHD and MMP-CBMeMBer algorithms,the tracking accuracy is affected by the model interference due to the interaction of multiple models,an inevitable phenomenon of IMM-based techniques,which renders their performance under‘optimal’parameter settings still inferior to the proposed technique.Moreover,it is noticed that the MMP-CPHD and MMP-CBMeMBer algorithms have better performance in terms of more precise target number estimates than the MMP-PHDalgorithm.ThereasonisthattheMMPCBMeMBer method propagates the parameterized approximation of the posterior cardinality distribution,and the MMP-CPHD method jointly propagates the cardinality distribution and the intensity function,whereas the MMP-PHD method propagates the cardinality mean only with a single Poisson parameter.

    Fig.3 compares the OSPA distances of the four simulated algorithms,and it is clear that the proposed algorithm again outperformstheMMP-PHD,MMP-CPHDandMMPCBMeMBer algorithms.This is also due to the fact that the proposed method can adapt to the temporal evolution of the target maneuvering parameters.It is worth noting that when the third target disappears at 50th min,the OSPA distance of the MMP-CPHD algorithm increases suddenly,which indicates that the ‘spooky action’problem steps in,i.e.,it is beneficial when missed detection occurs in MMP-PHD but is harmful when targets really disappear.

    Fig.2 Target number estimates.

    Fig.3 OSPA distance statistics.

    Fig.4 Average run time.

    Fig.4 shows the average run time of the four algorithms in consideration.It can be seen that the average run time of the proposed PF-APE-PHD algorithm is slightly larger than that of the MMP-PHD algorithm.The reason is that with the APE technique,the proposed algorithm generates twice more particles with different parameter predictions in the predicted step and has an additional particle selection step.It is noted that the complexity of the MMP-CBMeMBer is slightly lower than that of the MMP-PHD algorithm,because this method allows reliable and inexpensive extraction of state estimates without particle clustering.

    4.2.Multiple abruptly maneuvering target tracking with unknown measurement noise variance

    In this experiment,the true standard deviation of the measurement noise is fixed at σ=0.01 rad,but it is unknown for the proposed algorithm.We then apply the PF-APE-PHD algorithm to identifying it together with the time-varying turn rate ω and the target states.For comparison purposes,we also simulate the PF-APE-PHD filters with other assumed values of the measurement noise variance(i.e.,σ=0.005,0.01,0.015,0.03,0.06,0.1).The simulation results are summarized in Figs.5 and 6.

    It is clear that when the measurement noise variance is estimated jointly with the target states,the performance of the PFAPE-PHD algorithm is very close to that when the measurementnoise variance isaccurately known in advance(σ=0.01 rad).This indicates that the proposed PF-APEPHD algorithm can achieve accurate joint parameter and target state estimations.On the other hand,if PF-APE-PHD simply operates with an incorrect setting of the measurement noise variance,it would suffer from significant performance degradation,mainly due to model mismatch.

    4.3.Performance with different measurement noise variance settings

    In this experiment,we realize two versions of the PF-APEPHD filter,one filter with unknown measurement noise variance and another filter with true measurement noise variance.The simulation results with different measurement noise standard deviations(i.e.,σ=0.01,0.02,0.03,0.04,0.05,0.06,0.07)are shown in Fig.7.As can be seen the estimation accuracy of the PF-APE-PHD algorithm with unknown σ is close to that of the PF-APE-PHD algorithm with the true value of σ known in advance.It is shown that the proposed algorithm has a good performance for multiple target tracking with unknownmeasurementnoiseparametersandthetimevarying abruptly changing maneuver parameters.

    Fig.5 Target number estimates with different measurement noise standard deviations.

    Fig.6 OSPA distance statistics with different measurement noise standard deviations.

    Fig.7 Average OSPA distance statistics with different measurement noise standard deviations.

    5.Conclusions

    In this paper,we developed a new MTT algorithm,the PFAPE-PHD filter,to handle the presence of unknown model parameters including e.g.,the measurement noise variance that is static and the parameters in accordance with the target maneuvers that may be time-varying and subject to abrupt changes.The development started with extending the PHD filter to take into account the unknown parameters and the APE technique was incorporated to achieve online parameter estimation.The SMC approach was utilized to derive the approximate closed-form solution.Simulations showed that the newly proposed PF-APE-PHD filter can offer higher tracking accuracy in the case of multiple maneuvering targets over the existingMMP-PHD,MMP-CPHD andMMP-CBMeMBer algorithms.It is also applicable to the case with unknown measurement noise parameters for multiple maneuvering target tracking.

    In future works,we shall consider introducing the APE technique into the spline PHD filter,39the CPHD filter8and the CBMeMBer filter40,41to obtain good algorithms for tracking multiple targets with unknown abrupt changing parameters.

    Acknowledgments

    This paper was supported by the National Natural Science Foundation of China(Nos.61305017,61304264)and the NaturalScienceFoundation ofJiangsu Province(No.BK20130154).

    1.Fortmann T,Bar-Shalom Y,Scheffe M.Sonar tracking of multiple targets using joint probabilistic data association.IEEE J Ocean Eng 1983;8(3):173–84.

    2.Musicki D,Evans R.Joint integrated probabilistic data association:JIPD..IEEE Trans Aerosp Electron Syst 2004;40(3):1093–9.

    3.Blackman S.Multiple hypothesis tracking for multiple target tracking.IEEE Aerosp Electron Syst Mag 2004;19(1):5–18.

    4.Roecker J,Pillis G.Suboptimal joint probabilistic data association.IEEE Trans Aerosp Electron Syst 1993;29(2):504–10.

    5.Roecker J.A class of near optimal JPDA algorithms.IEEE Trans Aerosp Electron Syst 1994;30(2):504–10.

    6.Purank S,Tugnait JK.Tracking of multiple maneuvering targets using multiscan JPDA and IMM filter.IEEE Trans Aerosp Electron Syst 2007;43(1):23–34.

    7.Mahler R.Multitarget Bayes filtering via first-order multitarget moments.IEEE Trans Aerosp Electron Syst 2003;29(4):1152–78.

    8.Vo BT,Vo BN,Cantoni A.Analytic implementations of the cardinalized probability hypothesis density filter.IEEE Trans Signal Process 2007;55(7):3553–67.

    9.Vo BN,Singh S,Doucet A.Sequential Monte Carlo methods for multi-target filtering with random finite sets.IEEE Trans Aerosp Electron Syst 2005;41(4):1224–45.

    10.Whiteley N,Singh S,Godsil S.Auxiliary particle implementation of probability hypothesis density filter.IEEE Trans Aerosp Electron Syst 2010;46(3):1437–54.

    11.Vo BN,Ma WK.The Gaussian mixture probability hypothesis density filter.IEEE Trans Signal Process 2006;54(11):4091–104.

    12.Clark D,Vo BT,Vo BN.Gaussian particle implementations of probability hypothesis density filters.Proceedings of IEEE aerospace conference;2007 March 3-10;Big Sky,MT,USA.Piscataway(NJ):IEEE Press;2007.p.1–11.

    13.Braca P,Marano S,Matta V.Asymptotic efficiency of the PHD in multitarget/multisensor estimation.IEEE J Sel Top Signal Process 2013;7(3):553–64.

    14.Yang JL,Ji HB.A novel track maintenance algorithm for PHD/CPHD filter.Signal Process 2012;92(10):2371–80.

    15.Beard M,Vo BT,Vo BN,Arulampalam S.A partially uniform target birth model for Gaussian mixture PHD/CPHD filtering.IEEE Trans Aerosp Electron Syst 2013;49(4):2835–44.

    16.Vo BT,Vo BN,Cantoni A.The Cardinality balanced multi-target multi-Bernoulli filter and its implementations.IEEE Trans Signal Process 2009;57(2):409–23.

    17.Sa¨rkka¨S,Nummenmaa A.Recursive noise adaptive Kalman filtering by variational Bayesian approximations.IEEE Trans Autom Control 2009;54(3):596–600.

    18.Li WL,Jia YM.State estimation for jump Markov linear systems by variational Bayesian approximation.IET Control Theory Appl 2012;6(2):319–26.

    19.Gao XB,Chen JG,Tao DC.Multi-sensor centralized fusion without measurement noise covariance by variational Bayesian approximation.IEEE TransAerospElectronSysts2011;47(1):718–27.

    20.Yang JL,Ge HW.Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking.IET Radar,Sonar Navigat 2013;7(9):959–67.

    21.Zhang GH,Lian F,Han CZ,Han SY.An improved PHD filter based on variational Bayesian method for multi-target tracking.Proceedings of the 17th international conference information fusion;2014 July 7–10;Salamanca,Spain.Piscataway(NJ):IEEE Press;2014.p.1–6.

    22.Hernandez ML,Ristic B,Farina A.Performance measure for Markovian switching systems using best- fitting Gaussian distributions.IEEE Trans Aerosp Electron Syst 2008;44(2):724–47.

    23.Li XR,Jilikov VP.Survey of maneuvering target tracking.Part V:multiple-model methods.IEEE Trans Aerosp Electron Syst 2005;41(4):1255–321.

    24.Pasha A,Vo BN,Tuan HD.Closed-form PHD filtering for linear jump Markov models.Proceedings of the int.conf.on information fusion;2016 July 10–13;Florence,Italy.Piscataway(NJ):IEEE Press;2006.p.1–8.

    25.Pasha SA,Vo BN,Tuan HD.A,Gaussian mixture PHD filter for jump Markov system models.IEEE Trans Aerosp Electron Syst 2009;45(3):919–36.

    26.Pasha SA,Tuan HD,Apkarian P.The LFT based PHD filter for nonlinear jump Markov models in multi-target tracking.Proceedings of the IEEE conference on decision and control;2009 December 15–18;Shanghai,China.Piscataway(NJ):IEEE Press;2009.p.5478–83.

    27.Li WL,Jia YM.Gaussian mixture PHD filter for jump Markov models based on best-fitting Gaussian approximation.Signal Process 2011;91(4):1036–42.

    28.Punithakumar K,Kirubarajan T,Sinha A.Multiple-model probability hypothesis density filter for tracking maneuvering targets.IEEE Trans Aerosp Electron Syst 2008;44(1):87–98.

    29.Yang JL,Ji HB,Ge HW.Multi-model particle cardinalitybalanced multi-target multi-Bernoulli algorithm for multiple manoeuvring target tracking.IET Radar,Sonar Navigat 2013;7(2):101–12.

    30.Ouyang C,Ji HB,Guo ZQ.Extensions of the SMC-PHD filters for jump Markov systems.Signal Process 2012;92(6):1422–30.

    31.Liu J,West M.Combined parameter and state estimation in simulation-based filtering.In:Doucet A,Freitas N,Gordon N,editors.SequentialMonteCarlomethodsinpractice.New York:Springer;2001.p.197–223.

    32.Carvalho C,Johannes M,Lopes H,Polson N.Particle learning and smoothing.Stat Sci 2010;25(1):88–106.

    33.Nemeth C,Fearnhead P,Mihaylova L.Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments.IEEE Trans Signal Process 2014;62(5):1245–55.

    34.West M.Approximating posterior distributions by mixture.J Roy Stat Soc 1993;55(2):409–22.

    35.Tobias M,Lanterman AD.Probability hypothesis density-based multi-target tracking with bistatic range and Doppler observation.IET Radar,Sonar Navigat 2005;152(3):195–205.

    36.Lian F,Han CZ,Liu WF.Estimating Unknown clutter intensity for PHD filter.IEEE Trans Aerosp Electron Syst 2010;46(4):2066–78.

    37.Xu BL,Xu HG,Zhu JH.Ant clustering PHD filter for multipletarget tracking.Appl Soft Comput 2011;11:1074–86.

    38.Schuhmacher D,Vo BT,Vo BN.A consistent metric for performance evaluation of multi-object filters.IEEE Trans Signal Process 2008;56(8):3447–57.

    39.Sithiravel R,Chen X,Tharmarasa R.The spline probability hypothesis density filter.IEEE Trans Signal Process 2013;61(24):6188–203.

    40.Vo BT,Vo BN,Cantoni A.The cardinality balanced multi-target multi-Bernoulli filter and its implementations.IEEE Trans Signal Process 2009;57(2):409–23.

    41.Beard MA,Vo BT,Vo BN.Bayesian multi-target tracking with merged measurements using labelled random finite sets.IEEE Trans Signal Process 2015;63(6):1433–47.

    Yang Jinlong is an associate professor in Jiangnan University.He received his M.S.degree in circuit and system from Northwest Normal University,China in 2009,and his Ph.D.degree in Pattern Recognition and Intelligent System from Xidian University,China,in 2012.His research interests include target tracking,information fusion and signal processing.

    31 December 2015;revised 26 March 2016;accepted 22 September 2016

    Available online 21 October 2016

    Adaptive parameter estimation;

    Multiple target tracking;

    Multivariate Gaussian distribution;

    Particle filter;

    Probability hypothesis density

    ?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.This is anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *Corresponding author.Tel.:+86 0510 85912085.

    E-mail address:yjlgedeng@163.com(J.Yang).

    Peer review under responsibility of Editorial Committee of CJA.

    Production and hosting by Elsevier

    http://dx.doi.org/10.1016/j.cja.2016.09.010

    1000-9361?2016 Chinese Society of Aeronautics and Astronautics.Production and hosting by Elsevier Ltd.

    This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    免费黄色在线免费观看| 国产永久视频网站| 麻豆乱淫一区二区| 青春草国产在线视频| 中文字幕亚洲精品专区| 又爽又黄a免费视频| 精品视频人人做人人爽| 久久这里有精品视频免费| kizo精华| 久热这里只有精品99| 欧美潮喷喷水| 91狼人影院| 十八禁网站网址无遮挡 | 深爱激情五月婷婷| 男女国产视频网站| 97热精品久久久久久| 久久6这里有精品| 啦啦啦在线观看免费高清www| 成人黄色视频免费在线看| 日本黄大片高清| 人妻制服诱惑在线中文字幕| 青春草视频在线免费观看| 成人无遮挡网站| 六月丁香七月| 国产av国产精品国产| 69人妻影院| 亚洲丝袜综合中文字幕| 狂野欧美激情性bbbbbb| 18禁在线无遮挡免费观看视频| 激情 狠狠 欧美| 在线观看三级黄色| 国产成人91sexporn| 街头女战士在线观看网站| av.在线天堂| 国产精品一区二区在线观看99| 18+在线观看网站| 成人亚洲精品av一区二区| 99热全是精品| 一本一本综合久久| 日韩亚洲欧美综合| 久久国内精品自在自线图片| 免费大片18禁| 美女xxoo啪啪120秒动态图| 高清日韩中文字幕在线| 久久久国产一区二区| 国产精品秋霞免费鲁丝片| 搡女人真爽免费视频火全软件| 国产成人免费观看mmmm| av免费观看日本| 亚洲激情五月婷婷啪啪| 亚洲av欧美aⅴ国产| 国产精品偷伦视频观看了| 97人妻精品一区二区三区麻豆| 亚洲精品成人久久久久久| 国产精品成人在线| 国产精品av视频在线免费观看| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 亚洲精品影视一区二区三区av| 免费看日本二区| 国产精品不卡视频一区二区| 欧美日韩视频精品一区| 青青草视频在线视频观看| a级毛色黄片| 日韩在线高清观看一区二区三区| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 成人美女网站在线观看视频| 日韩av不卡免费在线播放| 夫妻午夜视频| 热re99久久精品国产66热6| 日韩电影二区| 边亲边吃奶的免费视频| 偷拍熟女少妇极品色| 国产精品一二三区在线看| 中文资源天堂在线| 少妇人妻 视频| 欧美zozozo另类| 亚洲人成网站在线播| 成人亚洲精品一区在线观看 | av免费在线看不卡| 日本欧美国产在线视频| kizo精华| 日本wwww免费看| 美女内射精品一级片tv| 午夜精品一区二区三区免费看| 亚洲欧美精品自产自拍| 国产视频首页在线观看| 如何舔出高潮| 免费观看在线日韩| 亚洲精品国产色婷婷电影| 免费在线观看成人毛片| 网址你懂的国产日韩在线| 菩萨蛮人人尽说江南好唐韦庄| 能在线免费看毛片的网站| av在线老鸭窝| 国产精品国产三级专区第一集| 嫩草影院精品99| 国产精品伦人一区二区| 波野结衣二区三区在线| 精品久久久久久久久av| 又爽又黄无遮挡网站| 亚洲最大成人中文| 在线观看一区二区三区| 一本一本综合久久| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 插阴视频在线观看视频| 午夜视频国产福利| 久久精品久久久久久噜噜老黄| 久久韩国三级中文字幕| 亚洲av成人精品一区久久| 亚洲第一区二区三区不卡| 麻豆国产97在线/欧美| 亚洲欧美日韩另类电影网站 | av天堂中文字幕网| 国产男人的电影天堂91| 水蜜桃什么品种好| 少妇高潮的动态图| 777米奇影视久久| 少妇人妻精品综合一区二区| 三级经典国产精品| 精品午夜福利在线看| 日韩 亚洲 欧美在线| 国产精品不卡视频一区二区| 99热网站在线观看| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 国产精品一及| 国产精品一二三区在线看| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 久久久久精品性色| 成人免费观看视频高清| 久久精品综合一区二区三区| 九九爱精品视频在线观看| 大陆偷拍与自拍| 国产成人福利小说| 久久久久久久国产电影| 日韩人妻高清精品专区| 亚洲婷婷狠狠爱综合网| 男人添女人高潮全过程视频| 日本午夜av视频| 性色avwww在线观看| 男女无遮挡免费网站观看| 亚洲精品日韩在线中文字幕| 97热精品久久久久久| 久久精品熟女亚洲av麻豆精品| 2022亚洲国产成人精品| 亚洲国产精品成人综合色| 亚洲人成网站高清观看| 亚洲精品久久久久久婷婷小说| 亚洲欧美精品自产自拍| 美女xxoo啪啪120秒动态图| 午夜精品国产一区二区电影 | 免费观看无遮挡的男女| 午夜免费观看性视频| 亚洲欧美日韩无卡精品| av女优亚洲男人天堂| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄| 国产亚洲精品久久久com| 看黄色毛片网站| av国产免费在线观看| 能在线免费看毛片的网站| 午夜免费观看性视频| av国产免费在线观看| 午夜福利视频1000在线观看| 国产一区二区三区综合在线观看 | 禁无遮挡网站| kizo精华| 最新中文字幕久久久久| 成人漫画全彩无遮挡| 久久久久九九精品影院| 春色校园在线视频观看| 色视频www国产| 国产爽快片一区二区三区| 成人美女网站在线观看视频| 亚洲最大成人中文| 搞女人的毛片| av在线亚洲专区| .国产精品久久| 国产成人精品福利久久| 成人毛片a级毛片在线播放| 亚洲伊人久久精品综合| 91在线精品国自产拍蜜月| 亚洲欧美一区二区三区国产| 熟妇人妻不卡中文字幕| 天天一区二区日本电影三级| av免费在线看不卡| 麻豆乱淫一区二区| 大话2 男鬼变身卡| 嫩草影院新地址| 国产高清三级在线| 久久久久精品久久久久真实原创| 97精品久久久久久久久久精品| 99久久九九国产精品国产免费| 各种免费的搞黄视频| 性色av一级| 精品国产一区二区三区久久久樱花 | 看黄色毛片网站| 3wmmmm亚洲av在线观看| 亚洲av免费高清在线观看| 99re6热这里在线精品视频| 国产成年人精品一区二区| 国产视频内射| 三级国产精品欧美在线观看| 毛片一级片免费看久久久久| 午夜免费观看性视频| 亚洲av成人精品一二三区| 日韩 亚洲 欧美在线| 网址你懂的国产日韩在线| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| freevideosex欧美| 中文乱码字字幕精品一区二区三区| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 麻豆精品久久久久久蜜桃| 夫妻性生交免费视频一级片| 少妇裸体淫交视频免费看高清| 久久久a久久爽久久v久久| 国产一区二区三区av在线| 一本一本综合久久| 大陆偷拍与自拍| 深爱激情五月婷婷| 欧美变态另类bdsm刘玥| 五月玫瑰六月丁香| 高清在线视频一区二区三区| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| av.在线天堂| 啦啦啦在线观看免费高清www| 如何舔出高潮| 久久久久久久久久人人人人人人| 黄色怎么调成土黄色| 国产精品麻豆人妻色哟哟久久| 亚洲av中文av极速乱| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 精品久久久久久电影网| 18禁动态无遮挡网站| 国产乱人视频| 精品一区二区三区视频在线| 日本免费在线观看一区| 色播亚洲综合网| 国产成人午夜福利电影在线观看| 国产黄a三级三级三级人| 在线亚洲精品国产二区图片欧美 | 国产精品久久久久久久久免| 国产乱人视频| 国产淫片久久久久久久久| 欧美+日韩+精品| 少妇的逼好多水| 啦啦啦啦在线视频资源| 亚洲av国产av综合av卡| 成年人午夜在线观看视频| 免费大片黄手机在线观看| 一级a做视频免费观看| 亚洲美女搞黄在线观看| 3wmmmm亚洲av在线观看| 女人被狂操c到高潮| 亚洲欧美一区二区三区黑人 | 观看美女的网站| 男女无遮挡免费网站观看| 亚洲精品成人久久久久久| 欧美xxxx性猛交bbbb| 老司机影院毛片| 日韩成人av中文字幕在线观看| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| 在线免费十八禁| 白带黄色成豆腐渣| 久久97久久精品| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 亚洲天堂国产精品一区在线| 亚洲怡红院男人天堂| 久久久久性生活片| 成人毛片60女人毛片免费| 午夜福利视频精品| 黄色配什么色好看| 观看美女的网站| 少妇的逼水好多| 久久久久精品久久久久真实原创| 香蕉精品网在线| 午夜日本视频在线| 乱系列少妇在线播放| 肉色欧美久久久久久久蜜桃 | 纵有疾风起免费观看全集完整版| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 免费观看性生交大片5| 国产一区二区在线观看日韩| 美女视频免费永久观看网站| 91aial.com中文字幕在线观看| 亚洲成人久久爱视频| 高清午夜精品一区二区三区| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 国产精品不卡视频一区二区| 中国国产av一级| 国产探花在线观看一区二区| 久久人人爽人人爽人人片va| 国产色婷婷99| 亚洲av福利一区| av在线app专区| 亚洲欧美成人综合另类久久久| 免费看日本二区| 免费高清在线观看视频在线观看| 久久久久国产精品人妻一区二区| 亚洲激情五月婷婷啪啪| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 日韩欧美精品免费久久| 99精国产麻豆久久婷婷| 一个人观看的视频www高清免费观看| 一个人看视频在线观看www免费| 嫩草影院精品99| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 一本久久精品| 午夜视频国产福利| 久久久午夜欧美精品| av一本久久久久| 少妇人妻精品综合一区二区| 男女无遮挡免费网站观看| 神马国产精品三级电影在线观看| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看 | 免费观看a级毛片全部| videossex国产| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 97在线视频观看| 国产一级毛片在线| 人人妻人人爽人人添夜夜欢视频 | 亚洲成人一二三区av| 男女边摸边吃奶| 日韩欧美精品免费久久| 肉色欧美久久久久久久蜜桃 | 亚洲av国产av综合av卡| 麻豆乱淫一区二区| 街头女战士在线观看网站| 久久久久性生活片| 国产一区二区三区av在线| 日本黄色片子视频| 日日啪夜夜撸| 免费看av在线观看网站| 欧美日韩精品成人综合77777| 国产一级毛片在线| 又大又黄又爽视频免费| 亚洲精品乱码久久久v下载方式| 久久久久精品久久久久真实原创| 国产久久久一区二区三区| eeuss影院久久| 中文字幕制服av| eeuss影院久久| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 如何舔出高潮| 国产伦精品一区二区三区视频9| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 久久精品国产鲁丝片午夜精品| 精品一区二区免费观看| 免费黄频网站在线观看国产| 国产成人精品婷婷| 少妇的逼水好多| 激情 狠狠 欧美| 中国美白少妇内射xxxbb| 国产精品精品国产色婷婷| 国产精品不卡视频一区二区| 久久久久久久精品精品| h日本视频在线播放| 久久韩国三级中文字幕| 熟女电影av网| 亚洲国产色片| 久久久午夜欧美精品| 久久精品国产亚洲网站| 日本色播在线视频| 国产爽快片一区二区三区| 日本wwww免费看| 97在线人人人人妻| 亚洲精品色激情综合| 欧美一级a爱片免费观看看| 2018国产大陆天天弄谢| 赤兔流量卡办理| 激情 狠狠 欧美| 人妻一区二区av| 久久人人爽av亚洲精品天堂 | 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 视频区图区小说| 亚洲精品一区蜜桃| 国产男人的电影天堂91| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区 | 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 久久精品综合一区二区三区| 亚洲性久久影院| 免费观看性生交大片5| 伦理电影大哥的女人| 欧美zozozo另类| av福利片在线观看| 在线 av 中文字幕| 国产极品天堂在线| 亚洲国产成人一精品久久久| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 深爱激情五月婷婷| 国产黄片美女视频| 日本欧美国产在线视频| 久久久亚洲精品成人影院| 少妇 在线观看| 亚洲成人精品中文字幕电影| 国产久久久一区二区三区| 最近最新中文字幕免费大全7| 夜夜爽夜夜爽视频| 青春草亚洲视频在线观看| 尾随美女入室| 天天躁日日操中文字幕| 一级毛片黄色毛片免费观看视频| 黄色视频在线播放观看不卡| 国产黄频视频在线观看| 成年av动漫网址| 成人国产av品久久久| 九色成人免费人妻av| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 色网站视频免费| 一本一本综合久久| 国产亚洲5aaaaa淫片| 国产v大片淫在线免费观看| 亚洲av成人精品一二三区| tube8黄色片| 国产一区二区亚洲精品在线观看| 搞女人的毛片| 精品久久久精品久久久| 交换朋友夫妻互换小说| 成人二区视频| 七月丁香在线播放| 一级毛片aaaaaa免费看小| 国产精品精品国产色婷婷| 九草在线视频观看| 嫩草影院入口| 欧美精品一区二区大全| 又爽又黄无遮挡网站| 日本wwww免费看| 国产免费又黄又爽又色| 偷拍熟女少妇极品色| 成年版毛片免费区| 国产精品嫩草影院av在线观看| 久久热精品热| 18禁动态无遮挡网站| 高清日韩中文字幕在线| 国产午夜精品一二区理论片| 亚洲欧美日韩卡通动漫| 免费观看在线日韩| 青春草国产在线视频| 久久久久精品久久久久真实原创| 成人美女网站在线观看视频| 欧美性猛交╳xxx乱大交人| 女人久久www免费人成看片| 国产亚洲av嫩草精品影院| 亚洲精品视频女| 国产精品久久久久久精品古装| www.色视频.com| 日韩一区二区视频免费看| 天美传媒精品一区二区| 三级男女做爰猛烈吃奶摸视频| av女优亚洲男人天堂| 九九久久精品国产亚洲av麻豆| 王馨瑶露胸无遮挡在线观看| 久久久久久九九精品二区国产| 又爽又黄无遮挡网站| 免费av毛片视频| 久久精品熟女亚洲av麻豆精品| 777米奇影视久久| 日日摸夜夜添夜夜添av毛片| 男男h啪啪无遮挡| 成人毛片60女人毛片免费| 啦啦啦啦在线视频资源| 99久久精品热视频| 日本一本二区三区精品| 深爱激情五月婷婷| 国产熟女欧美一区二区| 日韩一区二区三区影片| 一区二区av电影网| 一个人看的www免费观看视频| 国产黄片美女视频| 久久久色成人| 男人舔奶头视频| 成人亚洲精品av一区二区| 大码成人一级视频| 欧美人与善性xxx| av国产久精品久网站免费入址| 我的老师免费观看完整版| 久久精品久久久久久久性| 少妇人妻 视频| 美女被艹到高潮喷水动态| 精品少妇久久久久久888优播| 插逼视频在线观看| 日韩一区二区三区影片| 美女国产视频在线观看| 免费看不卡的av| 六月丁香七月| 日韩av在线免费看完整版不卡| 国产爽快片一区二区三区| 久久人人爽人人爽人人片va| 成人高潮视频无遮挡免费网站| 国产在视频线精品| 国产精品福利在线免费观看| 观看免费一级毛片| 深爱激情五月婷婷| av.在线天堂| 啦啦啦啦在线视频资源| 免费不卡的大黄色大毛片视频在线观看| 熟女av电影| 丰满少妇做爰视频| 亚洲精品久久久久久婷婷小说| 亚洲av在线观看美女高潮| 国产精品三级大全| 网址你懂的国产日韩在线| 黄色视频在线播放观看不卡| 免费播放大片免费观看视频在线观看| 99久久精品一区二区三区| 国产免费视频播放在线视频| 久久热精品热| 别揉我奶头 嗯啊视频| 亚洲精品国产成人久久av| 亚洲色图av天堂| 日韩 亚洲 欧美在线| 99热国产这里只有精品6| 亚洲丝袜综合中文字幕| 一个人观看的视频www高清免费观看| 日韩欧美 国产精品| 极品教师在线视频| 大片电影免费在线观看免费| 黄色一级大片看看| 国产精品一区www在线观看| 免费播放大片免费观看视频在线观看| 亚洲av中文字字幕乱码综合| 亚洲婷婷狠狠爱综合网| 蜜臀久久99精品久久宅男| 尤物成人国产欧美一区二区三区| 国产视频首页在线观看| 欧美区成人在线视频| 国产亚洲一区二区精品| 国产一区亚洲一区在线观看| 久久久久久久久久成人| 亚洲精品日本国产第一区| 欧美bdsm另类| 亚洲av中文字字幕乱码综合| videossex国产| 国产精品偷伦视频观看了| 日本一本二区三区精品| 免费观看性生交大片5| 纵有疾风起免费观看全集完整版| 国产爽快片一区二区三区| 亚洲精品国产成人久久av| 精品国产一区二区三区久久久樱花 | 国产精品女同一区二区软件| 大话2 男鬼变身卡| 亚洲久久久久久中文字幕| 国产亚洲最大av| 大陆偷拍与自拍| 啦啦啦啦在线视频资源| 啦啦啦在线观看免费高清www| 少妇高潮的动态图| 少妇熟女欧美另类| 黑人高潮一二区| 欧美激情久久久久久爽电影| 少妇 在线观看| 丰满人妻一区二区三区视频av| 在线精品无人区一区二区三 | a级一级毛片免费在线观看| 毛片一级片免费看久久久久| 国产亚洲5aaaaa淫片| 天堂网av新在线| 少妇猛男粗大的猛烈进出视频 | 亚洲av在线观看美女高潮| 欧美性猛交╳xxx乱大交人| 亚洲欧美一区二区三区黑人 | 男人狂女人下面高潮的视频| 亚洲av福利一区| 看十八女毛片水多多多| 亚洲精品成人av观看孕妇| 亚州av有码| 白带黄色成豆腐渣| 久久99热6这里只有精品| 啦啦啦在线观看免费高清www| 国产黄片美女视频| 国产69精品久久久久777片| 少妇的逼好多水| 大陆偷拍与自拍| 美女视频免费永久观看网站| 久久久久久国产a免费观看| 熟女电影av网| 在线亚洲精品国产二区图片欧美 | 国产男女超爽视频在线观看| 干丝袜人妻中文字幕| 日韩av免费高清视频| 人人妻人人澡人人爽人人夜夜| 国产69精品久久久久777片| 麻豆国产97在线/欧美| 国产有黄有色有爽视频| 午夜精品国产一区二区电影 | 秋霞伦理黄片| 国产在视频线精品|