• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison of Constant and Time-variant Optimal Forcing Approaches in El Ni?o Simulations by Using the Zebiak–Cane Model

    2016-11-14 05:55:56BenTIANandWansuoDUAN
    Advances in Atmospheric Sciences 2016年6期

    Ben TIANand Wansuo DUAN

    1Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    Comparison of Constant and Time-variant Optimal Forcing Approaches in El Ni?o Simulations by Using the Zebiak–Cane Model

    Ben TIAN1,2and Wansuo DUAN*2

    1Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    Model errors offset by constant and time-variant optimal forcing vector approaches(termed COF and OFV,respectively) are analyzed within the framework of El Ni?o simulations.Applying the COF and OFV approaches to the well-known Zebiak–Cane model,we re-simulate the 1997 and 2004 El Ni?o events,both of which were poorly degraded by a certain amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean component.It is found that the Zebiak–Cane model with the COF approach roughly reproduced the 1997 El Ni?o,but the 2004 El Ni?o simulated by this approach defied an ENSO classification,i.e.,it was hardly distinguishable as CP-El Ni?o or EP-El Ni?o.In both El Ni?o simulations,substituting the COF with the OFV improved the fit between the simulations and observations because the OFV better manages the time-variant errors in the model.Furthermore,the OFV approach effectively corrected the modeled El Ni?o events even when the observational data(and hence the computational time)were reduced. Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.

    ENSO simulation,model error,optimal forcing vector

    1.Introduction

    The uncertainty in forecast results is an important factor in numerical weather forecasting and climate prediction. This uncertainty usually comprises both initial and model errors.Conventionally,much work has explored the initial errors in predictions(Lorenz,1965;Evensen,1994;Talagrand, 1997;Toth and Kalnay,1997;Morss et al.,2001;Mu et al., 2003).Meanwhile,meteorologists seek to improve model predictability by minimizing model errors.Statistical methods dealing with time-variant model errors have been proposed and applied to numerical predictions with varying success(Leith,1978;Chen et al.,2000;Barreiro and Chang, 2004).Alternatively,D’andrea and Vautard(2000)improved the forecast results by a perturbation approach,where an appropriate constant term is added to the tendency equations (also see Roads,1987;Vannitsem and Toth,2002).The constant forcingsensitivity vector(termedCOF for convenience) proposed by Barkmeijer et al.(2003)potentially achieves the greatest constant error reduction in the model.Meanwhile, Feng and Duan(2013)argued that the COF could be aneffective approach to reducing model error even for the timedependent model error by using a conceptual model.However,the performance of COF in correcting the most realistic models has yet not been shown.On the other side,Duanet al. (2014)developedtheoptimalforcingvector(OFV)approach, which offsets the time-varianttendencyerrors andwas shown to be effective in correcting a realistic ENSO model.Subsequently,we naturally ask:what is the difference between the roles of the two approaches in reducing the effects of the model error,especially when applied to the simulations of two types of El Ni?o[EP-El Ni?o and CP-El Ni?o(Ashok et al.,2007;Kao and Yu,2009;Kug et al.,2009)]by using the most realistic Zebiak–Cane ENSO model(Zebiak and Cane, 1987)?

    According to recent studies,CP-El Ni?o events are more challengingto simulate than their counterparts,and modelerrors seem to be an important factor(Kug et al.,2010;Kim et al.,2012;Ham and Kug,2012;Duan et al.,2014).Duan et al.(2014)noted that the model errors may exert greater influence in CP-El Ni?o simulations than in EP-El Ni?o simulations,and the Zebiak–Canemodel has the potential for reproducing EP-El Ni?o events.Nevertheless,the 1997/98 EP-El Ni?o event involved a poor simulation.For this EP-El Ni?o event,althoughit couldbereproducedtosomeextentinDuanet al.(2014)with the data assimilation initialization scheme, the simulated development and intensity of this event were still considerably different from the observationand reflected some degree of the model uncertainty.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    In this study,to improve El Ni?o simulations by the Zebiak–Cane model,we correct the model errors.We investigate and compare error offset by COF and OFV while simulatingtwo types of El Ni?o eventswith the Zebiak–Cane model.Theuncorrectedmodelcouldnotreplicateall features of the 1997EP-El Ni?o and 2004 CP-El Ni?o,and our depictions will focus on these two events.Section 2 introduces the basic concepts of COF and OFV,and presents the related calculations.Section 3 applies both approaches in El Ni?o simulations and then investigates the time interval of each OFV component in the OFV-based simulations.Specifically, section 3.3 discusses the model uncertainties that influence the El Ni?o simulations by comparing the spatial structures of the COF and OFV results.The paper concludes with a summary and discussion in section 4.

    2.The optimal forcing vector approach

    The motion of the atmosphere or oceans can be predicted from the following nonlinear partial differential equation:

    where u(x,t)=[u1(x,t),u2(x,t),...,un(x,t)]is denoted as the state vector,F represents a nonlinear operator,u0is the initial state,(x,t)∈Ω×[0,τ],Ω is a domain in Rn,τ<+∞, x=(x1,x2,...,xn)and t indicates the time.Several errors are associated with this model.Given an initial field u0,Eq.(1) gives the following solution for the state vector u at time τ:

    Here,Mτis the propagator.Let the observationsat time 0 and τ be uobs,t0and uobs,tτ,respectively;the approximate prediction error introduced by the model is then written as

    Here,‖·‖denotes the norm that measures the magnitudes of the prediction errors.

    When f(x)is taken so as to make the simulation generated by Eq.(4)closest to the observationat the terminal time, it can then be referred to as constant optimal external forcing[also known as COF;see Feng and Duan(2013)].Feng and Duan(2013)showed that the COF can also reduce timedependentmodel errors to a certain extent by using a conceptual model.However,the performance of COF in correcting the most realistic models has not been shown. Duan et al.(2014)reduced the effects of the model errors by superimposing a time-variant external forcing[f(x,t)rather than f(x)in Eq.(4)]that drives the model results toward the observations.The choices of f(x,t)that minimize the differences between the model simulation and the observations constitute an optimization problem.That is,

    where ti,ti+1∈[t0,tk].Here,the time window[t0,tk]is similar to the aforementioned[0,τ]and the time interval[ti,ti+1] is not necessary to be a time step of numerical integration,but could represent several days,a month or others. Mti+1-ti(fti)propagatesin Eq.(5)fromtime tito ti+1,anduti= Mti-ti-1(fmin,ti-1)(uti-1).The OFV(i.e.,the optimal f(x,t)), denoted fmin,tk-t0=(fmin,t0,fmin,t1,fmin,t2,...,fmin,tk-1)is then obtainedfromEq.(5)as the modelsimulationthat best reproduces the observation during the time window[t0,tk].Relevant details of OFV calculations are reported in Duan et al. (2014).

    3.Comparison of the constant and timevariant optimal forcing approaches in El Ni?o simulations

    As mentioned in the introduction,the Zebiak–Cane modelcouldnot replicateall featuresof the 1997and2004El Ni?o events.These kinds of difficulties are manifested from the effects of model errors.Following Duan et al.(2014), here we investigate the COFs of the Zebiak–Cane model and explore the differences between simulations with COFs and OFVs for the observed El Ni?o events.

    3.1.Model and data

    The Zebiak–Cane model is composed of a Gill-type steady-state linear atmospheric model and a reduced-gravity oceanic model,which depict the thermodynamics and dynamics of the tropical Pacific with oceanic and atmospheric anomalies near the mean climatological state specified from observations.The model has been extensively applied in dynamics and predictability studies of EP-El Ni?o events(Blumenthal,1991;Xue et al.,1994;Chen et al.,2004;Tang et al.,2008).However,few studies have simulated CP-El Ni?o eventsusingthis model,largelybecausethe modelerrorspreclude an accurate reproduction of such events.The effects of model errors on the 1997 and 2004 El Ni?o simulations were highlighted in Duan et al.(2014),who modeled several El Ni?o events with a corrected Zebiak–Cane model and emphasized the importance of model error cancellation for ENSO simulation,especially for CP-El Ni?o reproduction.

    Here,we require the observational data used by Duan et al.(2014).Specifically,we adopt the SST data from the HadISSTanalyses datasets(Rayneret al.,2003)andthe wind data from the NCEP–NCAR reanalysis products(Kalnay and Coauthors,1996).The Zebiak–Cane model was initiated using the monthly wind stress anomalies derived from Florida State University analyses(Bourassa et al.,2005).We also borrowed the data of 20°C depth from the NOAA NCEP EMC(Environmental Modeling Center)CMB(Climate Modeling Branch)Pacific(hereafter referred to as the EMC/CMB data)(Behringer et al.,1998).

    3.2.Simulations of El Ni?o events by COF and OFV

    This section analyzes simulations of the El Ni?o years 1997 and 2004,which were poorly degraded by a certain degree of error in the Zebiak–Cane model.For each El Ni?o event,we compute the corresponding COF and OFV,respectively.Prior to simulating the El Ni?o events,the initial anomalies in the Zebiak–Cane model were obtained using the initialization procedure of Chen et al.(1995),where the model was initialized in a coupled manner by nudging the modeled wind to the observations to some extent.Given the initial anomalous fields,we further calculate the OFV and OFV in relation to the tendency equation(namely,the SST equation)of the model.Subsequently,we superimpose the COF and OFV onto the model and attempt to fit the simulated warm events to their corresponding observations.

    As the time window[t0,tk]associated with the optimal terms(including both the OFV and COF)(see section 2), twelve months prior to the peak phase was selected for each El Ni?o event and specified just as the simulation period. For instance,the 1997 El Ni?o event peaked in December 1997;thus,the simulation time window for this event was January–Decemberof 1997.Within the simulation time window,we compute one OFV component per month using the predetermined initial anomaly fields,yielding an OFV with 11 components.In contrast,the COF has a single component because it is time-invariant throughout the time window (see section 2).Considering the COF approach tries to fit the mature phase of the El Ni?o event to its correspondingobservation,it is understandable that the closer to the end of the simulation,the better this approach behaves.

    To acquire the initial fields at the start time t0of the optimization time window[t0,tk],here we adopt the same initialization procedure as Chen et al.(1995).And then,based on the initial anomalies,the modelintegrationswith corresponding COF and OFV are obtained for one year and compared directly to the observed El Ni?o events.

    Figure 1 plots the observed and simulated SST anomaly patterns during the 1997 El Ni?o year.Both the OFV-and COF-based simulations yield an EP-El Ni?o event but differ in their similarities to the observations.In the COF evolution,thereproducedSSTAofthefirsthalf-yearis quiterough, andincludesinconspicuouszonalwarmingalongtheequator; moreover,the intensity of this event in the mature phase is much weaker than in the unique 1997 EP-El Ni?o event.The simulations and observations are further compared in Table 1.The SSTA fields modeled by OFV and COF are directly contrasted.In particular,the fields simulated by OFV are strongly correlated with the observed spatial patterns and fit the data very well.

    The other physical variables in the OFV-based simulation,such as the thermocline depth anomaly and zonal wind field,are also shown in accordance with the related observa-tions(Figs.2 and 3).In practice,the zonal westerly anomalies over the western Pacific present an eastward expansion (see Fig.2),and ultimately cover a large part of the tropical Pacific.The subsurface water warms and cools in the eastern and western regionsof the equatorial Pacific,respectively (see Fig.3).As the thermocline deepens over the equatorial eastern Pacific,it is conducive to surface warming through warm vertical advection via in-situ mean upwelling(An and Jin,2001).All of the aforementioned conditions in the OFV-based simulation were observed in the real 1997 EP-El Ni?o event.In fact,a strong westerly wind burst(WWB)event played an important role in this El Ni?o event,and whether or not this WWB event in spring can be simulated successfully determines the ultimate performance in simulating the 1997 El Ni?o(also see Duan et al.,2014).Both the COF and OFV methods help establish the WWB event to varying degrees(Figs.3b and c),successfully reproducing the sudden occurrence of this event after January–March.In the COF simulation,the relationships between the variables are much weaker.The weakened seesaw pattern is accompanied by weaker basin-scale zonal wind,implying that COF cannot eliminate so much of the time-variant errors in the model.

    Table 1.Correlation coefficients of the observed versus simulated SST anomalies during the 1997 and 2004 El Ni?o years.OFV (COF)denotes the correlation coefficient of the SST anomalies simulated with OFV(COF)versus the observed anomalies.All results simulated with the OFV are statistically significant at the 99%confidence level.

    Next,the OFV and COF(Fig.4)approaches in the simulations of the 2004 CP-El Ni?o event are compared(Fig.5). As pointedoutbyDuanet al.(2014),this El Ni?oeventcould hardly be reproduced without the introduction of OFV.Table 1 lists the spatial correlations of the observed versus simulated SST anomalycomponentsduringthis El Ni?oyear.The SST anomalies inthe spatial patterns simulatedwith OFV are very highly correlated with the observed patterns,whereas those simulated with COF are less correlated with the observations.Moreover,from its appearance,the 2004 event simulated by COF is hardly distinguishable as CP-El Ni?o or EP-El Ni?o,which is a critical factor to justify the simulation appearance.Considering that subsurface feedback may rarely affect the evolution of CP-El Ni?o(Kao and Yu,2009; Kug et al.,2009;Yu and Kim,2010;Duan et al.,2014),the OFV-corrected Zebiak–Cane model may not describe the observed thermocline depth variation,although it reproduces the SSTA component of CP-El Ni?o events well(Duan et al.,2014).This result can also be explained by the accompanying air–sea variables in the 2004 CP-El Ni?o simulated with COF.The seesaw pattern in the thermocline depth fields(Fig.3)and the slight eastward propagationof the zonal wind anomalies(Fig.2)differ from the observations,muddling the classification of the event(which evolves similarly to an EPEl Ni?o).

    Fig.1.The SST anomaly(units:K)component of the seasonal evolutions of the observed 1997 El Ni?o event(a)and its simulations by the Zebiak–Cane model with OFV(b)and with COF(c).Here,a year is divided into four seasons: January to March(JFM),April to June(AMJ),July to September(JAS),and October to December(OND).

    All of these results show that the OFV approach effectively offsets the time-variant model errors,which are better than those handled by COF.Corrected by the OFV method, the Zebiak–Cane model properly reproduces the El Ni?o events and improves the fit between the simulations and observations.In the COF approach,the model better simulated the 1997 El Ni?o than the 2004 El Ni?o.We also tested other El Ni?o events with the two approaches,as in Duan et al.(2014),and the comparison of COF and OFV changed little.That is,the model correction always performed better in EP-El Ni?o simulations than in CP-El Ni?o simulations,regardless of whether OFV or COF was adopted,and both the COF and OFV approach could further improve the simulation of EP-El Ni?o.In contrast,the time-dependent errors in the Zebiak–Cane model are particularly severe in CP-El Ni?o simulations,and the OFV rather than the COF approach could help reproduce a clear classification of the warm events.

    3.3.Difference between COF and OFV

    So why do bothapproacheshelp to reproducethe 1997El Ni?o event,while for the 2004 El Ni?o event the simulation benefits greatly from the OFV approach only?The differences between COF and OFV for the 2004 CP-El Ni?o may help to explain.

    Fig.2.The zonal wind anomalies(units:m s-1)in the 1997 El Ni?o event.The anomalies are averaged from March to July and from August to December.(a)Observed zonal wind,derived from the NCEP–NCAR reanalysis data;(b) zonal wind simulated with OFV;and(c)zonal wind simulated with COF.Panels(d–f)show the corresponding results for the 2004 El Ni?o event.

    Fig.3.As in Fig.2 but showing the thermocline depth anomalies(units:m).The observations are obtained from the EMC/CMB data.

    Fig.4.(a)COF and(b)OFV simulations(units:K month-1)of the 2004 El Ni?o event,and(c)their seasonal differences(OFV minus COF).The OFV includes 11 components in the El Ni?o year,corresponding to 11 time intervals (where one interval ranges from one month to the next).The COF includes a single component that remains constant throughout the year.

    Specifically,in the 2004 El Ni?o,both the COF and OFV corrections yielded large positive values in the eastern tropical Pacific,suggesting that the uncertainties in the Zebiak–Cane model are dominated by SST tendency errors in this zone(Fig.4).On the other hand,seasonal differences between OFV and COF are apparent over the one-year evolution period.Throughout the first season,the uncertainties in the SSTA tendency traverse the entire tropical Pacific(Fig. 4b)in the OFV simulations but are lost in the western Pacific in the COF simulations.During spring(April–June),the differential plots(OFV-COF plots;see Fig.4c)exhibit limited regions of negative values in the eastern Pacific.In this season,it is apparent that the intensity of OFV is much weaker than at other times,while it helps to maintain the zonal gradient of SSTA fields(Fig.5b).In the latter half of the year,the positive values of COF are much smaller and the differences between OFV and COF cluster around the equator,particularly in the central-eastern Pacific(Figs.4b and c).Considering the SSTA growth rates related to OFV are nearly the same in the central and eastern Pacific in the latter half of the year(Fig.4b),the zonal gradient of SSTA evolution(Fig.5b) remains and helps concentrate warm water westward.Consequently,the SSTA increase in the equatorial central-eastern Pacific follows the zonal gradient of the SSTA field in the same area,favoring the westward march of the warm center from the Pacific east coast(Figs.5b and c).

    3.4.Simulations by the OFV approach with different time intervals

    Fig.5.The SST anomaly(units:K)component of the seasonal evolutions of the observed 2004 El Ni?o event(a)and its simulations by the Zebiak–Cane model with OFV(b)and with COF(c).

    As described in section 2,the model error effects are offset by a proper time-variant external forcing f(x,t)that matches the simulations with the observations.To cope with the time-variant errors,the OFV method consists of several components within the time window[t0,tk]of the El Ni?o simulation.Selecting the intervalbetweeneachof these components is largely subjective but is important for reducingthe computationaltime of the simulations.In the simple Zebiak– Cane model,the time interval can be set to one or several months without affecting the computation.However,when the model tendency errors are offset by the OFV approach concerning a much more complicated model,the computational time may become unacceptable under the calculation conditions.On the one hand,extending the time interval of each OFV component reduces the cost of obtaining the OFV. On the other hand,adopting different time intervals for the OFV components and the different amount of observational data required consequently obscures the simulation performance.

    Within the time window[t0,tk]of the OFV(see section 2),we selected time intervals of 1,2 and 3 months prior to the peak phase of the El Ni?o events for the OFV components(the 1-month interval was adopted in section 3.2). Giventhe predeterminedinitial anomalyfields and these simulationtime windows,we computedoneOFV componentevery month,every second month(January,March,May,July, September,November,December),and every third month (January,April,July,October,December),obtaining OFVs with 11 components,6 components and 4 components,respectively.For simplicity,we refer to these El Ni?o simulations as OFV,S-OFV and T-OFV,respectively.

    To compare the SSTA evolutions simulated by OFV,we ran the Zebiak–Cane model forced by the corresponding SOFV and T-OFV for one year,obtained the simulations of both El Ni?o events,and checked their differences.The overall evolution features of the 1997 EP-El Ni?o event(Fig.6) are reproduced in both S-OFV and T-OFV,although the simulations differ slightly fromobservationsin the first season of the year.That is,the overall performances of S-OFV and TOFV are comparable to that of OFV.Similar conclusions can be drawn for the 2004 CP-El Ni?o(Fig.7).Central warming is observed even in the T-OFV simulation(three-month interval),and the SSTA pattern improves during the latter half of the year(see Table 2),indicating that the OFV-correctedZebiak–Cane model can reasonably simulate the 1997 and 2004 El Ni?o events at reduced computational cost.

    Fig.6.The SST anomaly(units:K)components of the seasonal evolutions of the 1997 El Ni?o event simulated by the Zebiak–Cane model with(a)OFV,(b)S-OFV and(c)T-OFV,respectively.

    Table 2.Correlation coefficients of the observed versus OFV-simulated SST anomalies in the 1997 and 2004 El Ni?o years. OFV(S-OFV,T-OFV)denote the correlation coefficients of the SST anomalies simulated with OFV(S-OFV,T-OFV)versus the observed anomalies.All results simulated with the OFV are statistically significant at the 99%confidence level.

    Typically,as the model becomes more complicated,the integrations consume increasing amounts of time,regardless of finding the optimal forcing(OFV)for the tendency equation.We found that reducing the input of observational data(and hence the computational time)improved the costeffectiveness of the Zebiak–Cane simulations.Such cost reductions would benefit the OFV approach in more complicated CGCMs.

    4.Conclusion and discussion

    Fig.7.As in Fig.6 but simulating the 2004 El Ni?o.

    Model errors are generally time-dynamic;therefore,an error-cancelation method that treats time-variant errors can potentially improve model simulations and predictions.In this study,ENSO simulations by the Zebiak–Cane model were corrected by COF and OFV,and the performances of the corrections were compared.The 1997 and 2004 El Ni?o events,which were badly reproduced by the uncorrected Zebiak–Canemodel to some extent,were better simulated by OFV and COF.But,nonetheless,it was found that the COF correction yields worse fits to El Ni?o observations comparedwith the OFV results,mainly because the latter handles time-variant model errors better.Specifically,when the initial anomalies were generated by couplingthe observed wind forcingtotheoceancomponent,theZebiak–Canemodelwith COF roughly reproduced the 1997 El Ni?o event;however, the 2004 El Ni?o simulated by COF defied an ENSO classification and the simulated evolution(warm SST concentrating in the central-eastern Pacific)typified an EP-El Ni?o event. Furthermore,the OFV approach effectively corrects the El Ni?o simulation model even when the observational data input(and thus the computational time)is reduced.This costeffective offset of model errors will favor the OFV approach in more complicated CGCMs.

    Regarding the 2004 El Ni?o event,the differences in the SSTA patternsobtainedbyOFV andCOF revealedmanyseasonalvariations.Signalsof positiveSSTA tendencyprevailed in thewesternPacific at thebeginningofthe year;in thelatter half,positive anomalies were concentrated in the equatorial central-eastern Pacific(see Fig.4).Therefore,in this event, the SST tendency errors(which dominate the uncertainties in the Zebiak–Cane model)reflect the time-varying characteristics of the model errors.Furthermore,although the same SSTA growth rate introduced by OFV occurs in the central and eastern Pacific during the latter half-year,the warmer background to the west helps to generate stronger feedbacks between SSTAs and wind fields,and favors westward warming from the east coast of the Pacific.Consequently,the 2004 event appears as a CP-El Ni?o rather than an EP-El Ni?o.

    In ENSO simulations,the multi-model mean state does not significantly change from CMIP3 to CMIP5,highlighting the potential for model error cancelation(Guilyardiet al., 2012).CP-El Ni?o simulations are particularly challenged by new feedback(which amplifies biases in the model),uncertain model parameters,and subjective contact with obser-vational data.The present paper proposes an efficient OFV application for model error treatment.Meanwhile,if we consider additionaltendencyequations of different physical variables including the SSTA equation,the performance of the approach might be further improved.Furthermore,it is necessary to introduce complicated models concerning ENSO simulations,which will properly benefit from the OFV approach.

    Acknowledgements.This work was jointly sponsored by the National Basic Research Program of China(Grant No.2012CB 955202),the National Public Benefit(Meteorology)Research Foundation of China(Grant No.GYHY201306018),and the National Natural Science Foundation of China(Grant Nos.41176013 and 41230420).

    REFERENCES

    An,S.I.,and F.F.Jin,2001:Collective role of thermocline and zonal advective feedbacks in the ENSO mode.J.Climate, 14(16),3421–3432.

    Ashok,K.,S.K.Behera,S.A.Rao,H.Y.Weng,and T.Yamagata,2007:El Ni?o Modoki and its possible teleconnection. J.Geophys.Res.,112,C11007,doi:10.1029/2006JC003798.

    Barkmeijer,J.,T.Iversen,and T.N.Palmer,2003:Forcing singular vectors and other sensitive model structures.Quart.J.Roy. Meteor.Soc.,129(592),2401–2423.

    Barreiro,M.,and P.Chang,2004:A linear tendency correction technique forimproving seasonal prediction ofSST.Geophys. Res.Lett.,31(23),L23209,doi:10.1029/2004gl021148.

    Behringer,D.W.,M.Ji,and A.Leetmaa,1998:An improved coupled model for ENSO prediction and implications for ocean initialization.Part I:The ocean data assimilation system.Mon.Wea.Rev.,126(4),1013–1021.

    Blumenthal,M.B.,1991:Predictability of a coupled oceanatmosphere model.J.Climate,4(8),766–784.

    Bourassa,M.A.,Rosario Romero,Shawn R.Smith,and James J. O’Brien,2005:A new FSU winds climatology.J.Climate, 18,3686–3698,doi:http://dx.doi.org/10.1175/JCLI3487.1.

    Chen,D.K.,S.E.Zebiak,A.J.Busalacchi,and M.A.Cane,1995: An improved procedure for El Ni?o forecasting:Implications for predictability.Science,269,1699–1702.

    Chen,D.K.,C.M.Cane,S.E.Zebiak,R.Ca?izares,and A.Kaplan,2000:Bias correction of an ocean-atmosphere coupled model.Geophys.Res.Lett.,27(16),2585–2588,doi:10.1029/ 1999gl011078.

    Chen,D.K.,M.A.Cane,A.Kaplan,S.E.Zebiak,and D.J.Huang, 2004:Predictability of El Ni?o over the past 148 years.Nature,428(6984),733–736.

    D’andrea,F.,and R.Vautard,2000:Reducing systematic errors by empirically correcting model errors.Tellus A,52(1),21–41.

    Duan,W.S.,B.Tian,and H.Xu,2014:Simulations of two types of El Ni?o events by an optimal forcing vector approach.Climate Dyn.,43,1677–1692,doi:10.1007/s00382-013-1993-4.

    Evensen,G.,1994:Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.J.Geophys.Res.,99(C5),10 143–10 162.

    Feng,F.,and W.S.Duan,2013:The role of constant optimal forcing in correcting forecast models.Science China Earth Sciences,56(3),434–443.

    Guilyardi,E.,H.Bellenger,M.Collins,S.Ferrett,W.J.Cai,and A.T.Wittenberg,2012:A first look at ENSO in CMIP5.CLIVAR Exchange,17,29–32.

    Ham,Y.G.,and J.S.Kug,2012:How well do current climate models simulate two types of El Ni?o?Climate Dyn.,39(1–2),383–398,doi:10.1007/s00382-011-1157-3.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77(3),437–471.

    Kao,H.Y.,and J.Y.Yu,2009:Contrasting eastern-Pacific and central-Pacific types of ENSO.J.Climate,22(3),615–632.

    Kim,S.T.,J.Y.Yu,A.Kumar,and H.Wang,2012:Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations.Mon.Wea.Rev.,140(6),1908–1923.

    Kug,J.S.,F.F.Jin,and S.I.An,2009:Two types of El Ni?o events:Cold tongue El Ni?o and warm pool El Ni?o.J.Climate,22(6),1499–1515.

    Kug,J.S.,J.Choi,S.I.An,F.F.Jin,and A.T.Wittenberg,2010: Warm pool and cold tongue El Ni?o events as simulated by the GFDL 2.1 coupled GCM.J.Climate,23(5),1226–1239.

    Leith,C.E.,1978:Objective methods for weather prediction. Annual Review of Fluid Mechanics,10(1),107–128,doi: 10.1146/annurev.fl.10.010178.000543.

    Lorenz,E.N.,1965:A study of the predictability of a 28-variable atmospheric model.Tellus,17(3),321–333.

    Morss,R.E.,K.A.Emanuel,and C.Snyder,2001:Idealized adaptive observation strategies for improving numerical weather prediction.J.Atmos.Sci.,58(2),210–232.

    Mu,M.,W.S.Duan,and B.Wang,2003:Conditional nonlinear optimal perturbation and its applications.Nonlinear Processes in Geophysics,10(6),493–501.

    Rayner,N.A.,D.E.Parker,E.B.Horton,C.K.Folland,L. V.Alexander,D.P.Rowell,E.C.Kent,and A.Kaplan, 2003:Global analyses of sea surface temperature,sea ice, and night marine airtemperature since the latenineteenth century.J.Geophys.Res.,108(D14),4407,doi:10.1029/2002JD 002670.

    Roads,J.O.,1987:Predictability in the extended range.J.Atmos. Sci.,44(23),3495–3527.

    Talagrand,O.,1997:Assimilation of observations,an introduction.J.Meteor.Soc.Japan,75,191–209.

    Tang,Y.M.,Z.W.Deng,X.B.Zhou,Y.J.Cheng,and D.K.Chen, 2008:Interdecadal variation of ENSO predictability in multiple models.J.Climate,21(18),4811–4833.

    Toth,Z.,and E.Kalnay,1997:Ensemble forecasting at NCEP and the breeding method.Mon.Wea.Rev.,125(12),3297–3319.

    Vannitsem,S.,and Z.Toth,2002:Short-term dynamics of model errors.J.Atmos.Sci.,59(17),2594–2604.

    Xue,Y.,M.A.Cane,S.E.Zebiak,and M.B.Blumenthal,1994: On the prediction of ENSO:A study with a low-order Markov model.Tellus A,46(4),512–528.

    Yu,J.Y.,and S.T.Kim,2010:Three evolution patterns of central-Pacific El Ni?o.Geophys.Res.Lett.,37,L08706,doi: 10.1029/2010GL042810.

    Zebiak,S.E.,and M.A.Cane,1987:A model El Ni?o-southern oscillation.Mon.Wea.Rev.,115(10),2262–2278.

    Tian,B.,and W.S.Duan,2016:Comparison of constant and time-variant optimal forcing approaches in El Ni?o simulations by using the Zebiak–Cane model.Adv.Atmos.Sci.,33(6),685–694,

    10.1007/s00376-015-5174-8.

    29 July 2015;revised 15 November 2015;accepted 21 December 2015)

    Wansuo DUAN

    Email:duanws@lasg.iap.ac.cn

    国模一区二区三区四区视频| 精品少妇久久久久久888优播| 久久精品久久久久久噜噜老黄| 日韩av不卡免费在线播放| 黄色一级大片看看| 色5月婷婷丁香| 国产av一区二区精品久久| 99热这里只有是精品50| 黑人巨大精品欧美一区二区蜜桃 | 我的老师免费观看完整版| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜添av毛片| 在线观看人妻少妇| 美女视频免费永久观看网站| 韩国高清视频一区二区三区| 亚洲欧美一区二区三区国产| 丰满少妇做爰视频| 亚洲欧洲精品一区二区精品久久久 | 丰满少妇做爰视频| 综合色丁香网| 在线观看美女被高潮喷水网站| 夫妻午夜视频| 亚洲一级一片aⅴ在线观看| 亚洲国产精品专区欧美| 99久久精品热视频| 国产亚洲5aaaaa淫片| 两个人的视频大全免费| 高清视频免费观看一区二区| 亚洲国产毛片av蜜桃av| 亚洲精品国产av蜜桃| 久久久久国产精品人妻一区二区| 丰满少妇做爰视频| 欧美日韩视频高清一区二区三区二| 国产一区二区在线观看av| 国产欧美日韩综合在线一区二区 | 精品久久久久久久久亚洲| 三级国产精品欧美在线观看| 日本黄色日本黄色录像| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久v下载方式| a 毛片基地| 亚洲国产色片| 亚洲av免费高清在线观看| 99久久精品国产国产毛片| 一区二区三区免费毛片| 99久久综合免费| 午夜福利视频精品| 一区二区三区四区激情视频| 一级二级三级毛片免费看| 国产综合精华液| 国产国拍精品亚洲av在线观看| 欧美精品国产亚洲| 国产成人精品婷婷| 2018国产大陆天天弄谢| 国产精品人妻久久久影院| 女人精品久久久久毛片| av又黄又爽大尺度在线免费看| 大码成人一级视频| 有码 亚洲区| 国产精品欧美亚洲77777| 青春草亚洲视频在线观看| 久久ye,这里只有精品| 成人特级av手机在线观看| 十分钟在线观看高清视频www | √禁漫天堂资源中文www| 黑人猛操日本美女一级片| 精品一区在线观看国产| 有码 亚洲区| 亚州av有码| 亚洲国产欧美在线一区| 日日撸夜夜添| 爱豆传媒免费全集在线观看| 久久久久久久久大av| 搡女人真爽免费视频火全软件| 一区在线观看完整版| 国产午夜精品久久久久久一区二区三区| 日韩人妻高清精品专区| 日韩av不卡免费在线播放| 免费高清在线观看视频在线观看| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线 | 啦啦啦中文免费视频观看日本| 一级毛片电影观看| 免费av中文字幕在线| 久久午夜综合久久蜜桃| 久久综合国产亚洲精品| 啦啦啦中文免费视频观看日本| 久久国产亚洲av麻豆专区| 国产免费一区二区三区四区乱码| av国产久精品久网站免费入址| 国产高清有码在线观看视频| 久久精品久久精品一区二区三区| 免费观看无遮挡的男女| 精品少妇久久久久久888优播| 久久99热这里只频精品6学生| 久久 成人 亚洲| 老司机亚洲免费影院| 最近的中文字幕免费完整| 免费在线观看成人毛片| 极品教师在线视频| av在线老鸭窝| 久久国产精品男人的天堂亚洲 | 777米奇影视久久| 多毛熟女@视频| 一二三四中文在线观看免费高清| 我要看黄色一级片免费的| 国产精品一二三区在线看| 欧美一级a爱片免费观看看| 亚洲精品国产av蜜桃| 亚洲图色成人| 新久久久久国产一级毛片| 国产色婷婷99| 久久久精品免费免费高清| 中文资源天堂在线| 人人妻人人爽人人添夜夜欢视频 | 中文资源天堂在线| 国产精品不卡视频一区二区| 久久久久久久大尺度免费视频| 老熟女久久久| 赤兔流量卡办理| 久久这里有精品视频免费| 亚洲,欧美,日韩| 大陆偷拍与自拍| 高清黄色对白视频在线免费看 | 大香蕉97超碰在线| 老司机影院成人| 水蜜桃什么品种好| 如何舔出高潮| 亚洲国产毛片av蜜桃av| 久久精品熟女亚洲av麻豆精品| 亚洲国产日韩一区二区| 91久久精品电影网| 亚洲美女黄色视频免费看| 一级,二级,三级黄色视频| 免费观看a级毛片全部| 少妇人妻久久综合中文| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 妹子高潮喷水视频| 色视频www国产| av线在线观看网站| 久久这里有精品视频免费| 久久久久久久久久成人| 成人亚洲欧美一区二区av| 91午夜精品亚洲一区二区三区| 亚洲av成人精品一二三区| 少妇的逼好多水| 卡戴珊不雅视频在线播放| 性色avwww在线观看| 国产精品久久久久久精品电影小说| 久久久久国产精品人妻一区二区| 18禁动态无遮挡网站| 在线观看人妻少妇| 日韩成人伦理影院| 波野结衣二区三区在线| freevideosex欧美| 免费观看a级毛片全部| 中文精品一卡2卡3卡4更新| 91在线精品国自产拍蜜月| 亚洲va在线va天堂va国产| 人妻系列 视频| 高清毛片免费看| 久热这里只有精品99| 99视频精品全部免费 在线| 国产一区二区三区av在线| 国产成人91sexporn| 亚洲欧洲日产国产| 精品国产国语对白av| 久久99热6这里只有精品| 伊人久久国产一区二区| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区 | 久久精品久久久久久久性| 高清在线视频一区二区三区| 国产欧美亚洲国产| 中文天堂在线官网| 色婷婷av一区二区三区视频| 亚洲综合精品二区| 在线 av 中文字幕| 国产无遮挡羞羞视频在线观看| 国产免费又黄又爽又色| 黄色一级大片看看| 久久久久久久久久久久大奶| 亚洲欧美成人综合另类久久久| 激情五月婷婷亚洲| 热99国产精品久久久久久7| 中文字幕亚洲精品专区| 国产在线男女| av福利片在线观看| 国产 一区精品| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 超碰97精品在线观看| 国产精品麻豆人妻色哟哟久久| 欧美日本中文国产一区发布| 人妻夜夜爽99麻豆av| 国产欧美日韩综合在线一区二区 | 一本一本综合久久| 亚洲av不卡在线观看| 久久久欧美国产精品| 日本-黄色视频高清免费观看| 极品人妻少妇av视频| 美女xxoo啪啪120秒动态图| 好男人视频免费观看在线| 在线观看www视频免费| 亚洲第一av免费看| 人人妻人人澡人人爽人人夜夜| 亚洲av欧美aⅴ国产| 国产精品国产三级国产av玫瑰| 亚洲色图综合在线观看| 妹子高潮喷水视频| 欧美成人精品欧美一级黄| 国产色爽女视频免费观看| 国产成人一区二区在线| 久久人妻熟女aⅴ| 日韩伦理黄色片| 黑人猛操日本美女一级片| 免费观看的影片在线观看| 18禁动态无遮挡网站| 国产精品人妻久久久久久| 寂寞人妻少妇视频99o| 亚洲欧洲国产日韩| 天堂8中文在线网| 少妇 在线观看| 午夜免费观看性视频| 最近中文字幕2019免费版| 少妇丰满av| xxx大片免费视频| 美女福利国产在线| 香蕉精品网在线| 久热久热在线精品观看| 美女中出高潮动态图| 在线天堂最新版资源| 精华霜和精华液先用哪个| 成人漫画全彩无遮挡| 亚洲va在线va天堂va国产| 亚洲av综合色区一区| 尾随美女入室| 成人毛片a级毛片在线播放| 久久久久久久久大av| 91精品伊人久久大香线蕉| 欧美成人精品欧美一级黄| 亚洲无线观看免费| 男女边摸边吃奶| 久久久国产一区二区| 大片免费播放器 马上看| 人妻系列 视频| 国产成人午夜福利电影在线观看| 人妻夜夜爽99麻豆av| 亚洲自偷自拍三级| 99久久精品国产国产毛片| 亚洲不卡免费看| 精品人妻熟女毛片av久久网站| 成人毛片60女人毛片免费| 少妇丰满av| 色视频在线一区二区三区| 韩国高清视频一区二区三区| 久久久国产欧美日韩av| 久久国产精品大桥未久av | 久久精品国产亚洲网站| 午夜免费男女啪啪视频观看| 永久免费av网站大全| 色吧在线观看| 美女cb高潮喷水在线观看| 国产精品蜜桃在线观看| 人妻一区二区av| 国产黄色免费在线视频| 久久人人爽人人爽人人片va| 好男人视频免费观看在线| 久久精品国产亚洲av天美| 看免费成人av毛片| 亚洲天堂av无毛| av在线播放精品| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩东京热| 国产熟女午夜一区二区三区 | 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| 男人添女人高潮全过程视频| 亚洲电影在线观看av| 最近最新中文字幕免费大全7| 欧美日韩国产mv在线观看视频| 99热这里只有是精品50| 午夜福利在线观看免费完整高清在| 色婷婷av一区二区三区视频| 午夜91福利影院| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 777米奇影视久久| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 成人毛片60女人毛片免费| 夫妻午夜视频| 午夜激情福利司机影院| a级一级毛片免费在线观看| 天天操日日干夜夜撸| 男女边吃奶边做爰视频| a 毛片基地| 欧美变态另类bdsm刘玥| 日日摸夜夜添夜夜添av毛片| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 观看美女的网站| 内地一区二区视频在线| 久久国产精品大桥未久av | 亚洲成人一二三区av| 人妻一区二区av| 日本av免费视频播放| 美女福利国产在线| 在线观看人妻少妇| 国产免费福利视频在线观看| 国国产精品蜜臀av免费| 人妻系列 视频| 麻豆成人av视频| 国产精品无大码| 黄色毛片三级朝国网站 | 亚洲精品乱码久久久久久按摩| 成人18禁高潮啪啪吃奶动态图 | 久久精品久久精品一区二区三区| 啦啦啦啦在线视频资源| 国产在线免费精品| 26uuu在线亚洲综合色| 毛片一级片免费看久久久久| 丝瓜视频免费看黄片| 久久国产精品大桥未久av | 国产日韩欧美亚洲二区| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 亚洲av免费高清在线观看| 亚洲丝袜综合中文字幕| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 偷拍熟女少妇极品色| 亚洲国产欧美日韩在线播放 | 国产成人精品无人区| 亚洲自偷自拍三级| 最近手机中文字幕大全| 一级毛片aaaaaa免费看小| 男的添女的下面高潮视频| 综合色丁香网| 亚洲av不卡在线观看| 女人久久www免费人成看片| 日韩大片免费观看网站| 国产美女午夜福利| 中国美白少妇内射xxxbb| 视频区图区小说| 久久午夜福利片| 国产免费又黄又爽又色| 日韩av不卡免费在线播放| 人人澡人人妻人| 国产91av在线免费观看| 成人亚洲精品一区在线观看| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 午夜福利,免费看| 亚洲欧美成人综合另类久久久| 一本一本综合久久| 亚洲第一av免费看| 日日啪夜夜撸| 色视频在线一区二区三区| 99久久人妻综合| 99精国产麻豆久久婷婷| 欧美少妇被猛烈插入视频| 久久久久久久大尺度免费视频| 国产av精品麻豆| 欧美精品国产亚洲| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 简卡轻食公司| 岛国毛片在线播放| 亚洲国产av新网站| 国产成人aa在线观看| 麻豆成人av视频| 久久久久久久久大av| 少妇熟女欧美另类| 精品酒店卫生间| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美视频二区| 国产白丝娇喘喷水9色精品| 亚洲av福利一区| 亚洲av综合色区一区| 国产有黄有色有爽视频| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 亚洲电影在线观看av| 亚洲欧洲日产国产| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 狂野欧美激情性xxxx在线观看| 亚洲精品456在线播放app| 午夜福利在线观看免费完整高清在| 18禁在线播放成人免费| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说| 亚洲欧美日韩卡通动漫| 国产色婷婷99| 美女主播在线视频| 丝袜脚勾引网站| 日韩,欧美,国产一区二区三区| 在线观看三级黄色| 久久精品久久久久久久性| 人体艺术视频欧美日本| 搡女人真爽免费视频火全软件| 三级国产精品欧美在线观看| 男人舔奶头视频| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠久久av| 看免费成人av毛片| 中国美白少妇内射xxxbb| 在线看a的网站| 欧美另类一区| 亚洲不卡免费看| 日日啪夜夜撸| 欧美 亚洲 国产 日韩一| 十八禁网站网址无遮挡 | 精品亚洲乱码少妇综合久久| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 久久久精品免费免费高清| 观看av在线不卡| a 毛片基地| 欧美日韩综合久久久久久| 亚洲情色 制服丝袜| 一级爰片在线观看| 美女主播在线视频| 最近2019中文字幕mv第一页| 老司机影院毛片| 黄色怎么调成土黄色| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区| 99九九在线精品视频 | av一本久久久久| av在线老鸭窝| 亚洲熟女精品中文字幕| av女优亚洲男人天堂| 久久久久精品久久久久真实原创| 亚洲四区av| 精品少妇黑人巨大在线播放| 日韩中文字幕视频在线看片| 亚洲av不卡在线观看| 亚洲精品视频女| 国产在视频线精品| 久久鲁丝午夜福利片| 国产精品欧美亚洲77777| 插逼视频在线观看| 26uuu在线亚洲综合色| 亚洲精品第二区| 你懂的网址亚洲精品在线观看| 在线观看国产h片| 亚洲三级黄色毛片| 亚洲美女视频黄频| 日本黄色片子视频| 天天操日日干夜夜撸| 亚洲国产最新在线播放| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 久久精品国产亚洲av天美| 91aial.com中文字幕在线观看| 精品一区二区三区视频在线| .国产精品久久| 青青草视频在线视频观看| 亚洲丝袜综合中文字幕| 自拍偷自拍亚洲精品老妇| 大香蕉97超碰在线| 亚洲成色77777| 久久久久久久精品精品| 欧美97在线视频| 成人国产av品久久久| 精品人妻熟女毛片av久久网站| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 亚洲精品久久久久久婷婷小说| 久久国内精品自在自线图片| .国产精品久久| av在线播放精品| 亚洲无线观看免费| 国产成人精品婷婷| 亚洲精品一区蜜桃| 91aial.com中文字幕在线观看| 久久久久精品性色| 在线天堂最新版资源| 亚洲国产精品一区三区| 大又大粗又爽又黄少妇毛片口| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| 久久久国产精品麻豆| 在线观看美女被高潮喷水网站| 国产日韩欧美在线精品| 色吧在线观看| 亚洲国产成人一精品久久久| 只有这里有精品99| 精品少妇内射三级| 尾随美女入室| 一级a做视频免费观看| 十八禁高潮呻吟视频 | 韩国高清视频一区二区三区| 男女啪啪激烈高潮av片| 春色校园在线视频观看| 国产一区二区三区综合在线观看 | 精品少妇黑人巨大在线播放| 国产男女内射视频| 高清在线视频一区二区三区| 久久国产乱子免费精品| 国产视频内射| 我的老师免费观看完整版| 美女cb高潮喷水在线观看| 久久久国产精品麻豆| 最近中文字幕高清免费大全6| 亚洲人成网站在线观看播放| 亚洲av福利一区| 91成人精品电影| 久久久久精品久久久久真实原创| 国产无遮挡羞羞视频在线观看| 日日啪夜夜撸| av女优亚洲男人天堂| 久久99一区二区三区| 夜夜骑夜夜射夜夜干| 黄色日韩在线| 国产精品久久久久久av不卡| 日韩熟女老妇一区二区性免费视频| 天堂8中文在线网| 另类亚洲欧美激情| 国国产精品蜜臀av免费| 精品一区二区三卡| 精品午夜福利在线看| 日韩电影二区| 97在线视频观看| 国产午夜精品一二区理论片| 国产精品欧美亚洲77777| 成人综合一区亚洲| 亚洲国产欧美在线一区| 日本91视频免费播放| 亚洲一级一片aⅴ在线观看| 乱码一卡2卡4卡精品| 亚洲综合色惰| 亚洲av在线观看美女高潮| 26uuu在线亚洲综合色| 亚洲av综合色区一区| 日本与韩国留学比较| 少妇熟女欧美另类| 男女边摸边吃奶| 免费在线观看成人毛片| 这个男人来自地球电影免费观看 | 久久精品国产自在天天线| 如何舔出高潮| 国产极品天堂在线| 国产中年淑女户外野战色| 精品人妻偷拍中文字幕| 国内精品宾馆在线| 三级国产精品欧美在线观看| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人 | 香蕉精品网在线| 国产欧美日韩综合在线一区二区 | 波野结衣二区三区在线| 精品国产国语对白av| 最近中文字幕2019免费版| 美女cb高潮喷水在线观看| 天堂中文最新版在线下载| 麻豆成人午夜福利视频| 国内少妇人妻偷人精品xxx网站| 亚洲人与动物交配视频| 美女大奶头黄色视频| 国产中年淑女户外野战色| 亚洲欧美精品专区久久| 亚洲精品456在线播放app| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄| 国产乱人偷精品视频| 爱豆传媒免费全集在线观看| 国产欧美日韩一区二区三区在线 | 99热网站在线观看| 亚洲国产毛片av蜜桃av| 在线观看三级黄色| 秋霞伦理黄片| 免费av中文字幕在线| 久久亚洲国产成人精品v| 久久青草综合色| 性高湖久久久久久久久免费观看| videossex国产| 寂寞人妻少妇视频99o| 久久久久国产精品人妻一区二区| 一区二区三区精品91| 欧美成人精品欧美一级黄| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 女人精品久久久久毛片| 欧美一级a爱片免费观看看| 黑人猛操日本美女一级片| 亚洲精华国产精华液的使用体验| 久久综合国产亚洲精品| www.av在线官网国产| 好男人视频免费观看在线| 亚洲欧美一区二区三区黑人 | 亚洲精品456在线播放app| 日韩精品有码人妻一区| 国产一区有黄有色的免费视频| 有码 亚洲区| 亚洲国产精品999| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 亚洲精品日本国产第一区| 亚洲精品乱码久久久久久按摩| 国产无遮挡羞羞视频在线观看| 人人妻人人澡人人看| tube8黄色片| 日韩强制内射视频| 日本黄色日本黄色录像| 性色avwww在线观看|