• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Relationship between the Winter Eurasian Teleconnection Pattern and the Following Summer Precipitation over China

    2016-11-14 05:56:08JunhuZHAOLiuYANGBohuiGUJieYANGandGuolinFENG
    Advances in Atmospheric Sciences 2016年6期

    Junhu ZHAO,Liu YANG,Bohui GU,Jie YANG,and Guolin FENG,,3

    1Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081

    2Department of Physical Science and Technology,Yangzhou University,Yangzhou 225002

    3College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    4Jiangsu Provincial Climate Center,Nanjing 210008

    On the Relationship between the Winter Eurasian Teleconnection Pattern and the Following Summer Precipitation over China

    Junhu ZHAO1,Liu YANG2,Bohui GU*3,Jie YANG4,and Guolin FENG1,2,3

    1Laboratory for Climate Studies,National Climate Center,China Meteorological Administration,Beijing 100081

    2Department of Physical Science and Technology,Yangzhou University,Yangzhou 225002

    3College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    4Jiangsu Provincial Climate Center,Nanjing 210008

    The Eurasian teleconnection pattern(EU)is an important low-frequency pattern with well-known impacts on climate anomalies in Eurasia.The difference of low-level v-winds in several regions in the Eurasian mid–high latitudes is defined as the EU index(EUIV).In this study,the relationship between the winter EUIVand precipitation in the following summer over China is investigated.Results show that there is a significant positive(negative)correlation between the winter EUIVand the following summer precipitation over North China(the Yangtze River–Huaihe River basins).Meanwhile,an interdecadal variability exists in the interannual relationship,and the correlation has become significantly enhanced since the early 1980s. Thus,the proposed EUIVmay have implications for the prediction of summer precipitation anomalies over China.In positive winter EUIVyears,three cyclonic circulation anomalies are observed—over the Ural Mountains,the Okhotsk Sea,and the subtropical western North Pacific.That is,the Ural blocking and Okhotsk blocking are inactive,zonal circulation prevails in the mid–high latitudes,and the western Pacific subtropical high tends to be weaker and locates to the north of its normal position in the following summer.This leads to above-normal moisture penetrating into the northern part of East China,and significant positive(negative)precipitation anomalies over North China(the Yangtze River–Huaihe River basins),and vice versa.Further examination shows that the SST anomalies over the Northwest Pacific and subtropical central North Pacific may both contribute to the formation of EUIV-related circulation anomalies over the western North Pacific.

    Eurasian teleconnection,summer precipitation,North China,Yangtze River–Huaihe River basins

    1.Introduction

    Many studies have been conducted regarding the influences of monsoon circulation on the weather and climate of East Asia andChinasincethe 20thcentury(Guo,1983;Ding, 1994;Shi and Zhu,1996;Wang,2001;Li and Zeng,2002; Zhang et al.,2003;Zhang and Guo,2005).However,the weatherandclimateofChina arenotonlyaffectedbytropical andsubtropicalsystems,but arealso closelyrelated to the extratropicalatmosphericcirculationintheNH(ZhangandTao, 1998).The East Asian summer monsoon system clearly reveals the locations and intensities of the interactions between the cold air activities from the mid–high latitude systems and the warm and moist air flows brought by the subtropical system(Tao and Chen,1987),which are the main reasons for the location and intensity variation of the summer rain belt inChina.

    In fact,in an early study of the mid–high latitude circulations in the NH by Wallace and Gutzler(1981),it was suggested that there are five significant teleconnection patterns in the 500 hPa geopotential height field in the NH winter: the Pacific–North American(PNA)pattern,the eastern Atlantic pattern,the western Atlantic pattern,the western Pacific pattern,and the Eurasian(EU)pattern.Barnston and Livezey(1987)furtherconfirmedthe existenceofthe EU pattern based on rotated EOF analysis(REOF)of the monthly mean 700 hPa geopotential height field.Hoskins and Karoly (1981)demonstrated the great-circle theory to interpret the dynamics mechanism of the teleconnection patterns.

    Among these five significant patterns,the EU pattern is an important low-frequency pattern with well-known impacts on the atmospheric circulation and climate anomalies in the Eurasian region(Hsu and Wallace,1985;Barnston and Livezey,1987).Li and Chou(1990)demonstrated that the EU pattern is a major factor influencing the winter precipita-tion over the middle and lower reaches of the Yangtze River. In a study on the relationship between the Arctic Oscillation and the East Asian winter monsoon(EAWM)(Gong et al., 2001),it was determined that the EU pattern makes a significant contribution to the EAWM system,and its contribution to the Siberian high was found to be 36%.In addition,it was also pointed out that when the EU index is positive,the East Asian air temperatureis lower.Shi andZhu(1996)foundthat in cases of strong EAWM,China tends to be cold and dry in winter,and the atmospheric circulation is characterized by a strong western Pacific pattern and weak EU pattern.Several studies have pointed out that the daily variation of the EU pattern is responsible for climate anomalies over China and Korea,where abnormal cold/warm events are often dependent on the different phases of the EU pattern(Sung et al.,2009;Liu and Chen,2012;Zuo and Xiao,2013;Wang and Zhang,2015).Positive EU phases are accompanied by strong northerly wind and a sudden descent of temperaturein South China and Korea,while the probability distribution of cold/warmeventsis dependenton the phaseof the EU pattern (Sung et al.,2009).Wang et al.(2010)confirmed that the atmospheric circulation anomalies related to the Ural blocking (UB)are associated with the Eurasian wave train from west to east,and exhibit an enhancing influence on the East Asian winter climate anomalies.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    Moreover,the pre-winter EU pattern also has great impactsonthefollowingsummerclimateanomaliesoverChina. Sun and He(2004)used the SVD method to reveal the influencesofpre-winterEurasiancirculationanomaliesonthefollowing summer precipitation over China.The pre-winter circulationof the Eurasian mid–highlatitudes bears a veryclose coupling relationship with the following summer precipitation over China.It was also determined that the pre-winter circulation anomalies may influence the Eurasian summer circulation,as well as the precipitationanomaliesoverChina, through a half-year rhythm relationship.Recently,when the“Conceptual Prediction Model for the Three Rainfall Patterns”in the summer of eastern China was reconstructed by Zhao and Feng(2014),the winter EU index(EUIV)was defined according to the difference of the 850 hPa v-wind anomalies in several key regions over the Eurasian mid–high latitudes.It was found that EUIVcan be used effectively to judge whether or not the main following summer rainbelt would locate in northern China;namely,a north rainbelt pattern.However,the relationship between the winter EU pattern and the following summer precipitation has not been comprehensively examined.In addition,obvious interdecadal variability took place in the global oceans and atmospheric circulations in the late 1970s with global warming(Wang,1995;Guilderson and Schrag,1998;Li et al., 2004;IPCC,2013),and the relationship between regional climates and their major factors of influence has changed (Wang,2002;Gao et al.,2006;Wang and He,2012).So, has the relationship between the winter EU pattern and the following summer precipitation undergone change?

    Understanding the impact of the EU pattern on climate anomalies over East Asia is important both for accurate weather forecasts and short-term climate forecasts.As mentioned above,the winter EU pattern can impact upon the concurrent weather and climate in East Asia.Plus,it also has“climate effects”on the subsequent climate over China. However,the relationship between the winter EU pattern and precipitation in the following summer over China is still not clear.The primary objectives of this study,therefore,are to discuss the relationship between the winter EU pattern and the following summer precipitation over China.

    The remainder of this paper is organized as follows:Section 2 describes the data and methods used in this study.The calculation,temporalevolutionofdifferentdefinedEUIs,and vertical structure of the EU pattern are shown in section 3. The relationship between the winter EUIVand the following summer precipitation over China is illustrated in section 4, followed in section 5 by a discussion of the summer atmospheric circulation and SST associated with the winter EUIV. A summary and conclusions are given in section 6.

    2.Data and methodology

    The main datasets employed in this study are:(1) monthly average precipitation data of 160 stations from the China Meteorological Administration for the period 1968–2013,and monthly global precipitation data—gridded at a resolution of 2.5°×2.5°—from the GPCP for the period 1979–2013(Huffman et al.,1997;Adler et al.,2003);(2) monthly mean circulation data,gridded at a resolution of 2.5°×2.5°,fromthe NCEP–NCAR reanalysis(Kalnayet al., 1996)[note,however,that because the quality of the NCEP–NCAR reanalysis data over Asia may be low prior to 1968 (Yang et al.,2002;Wu et al.,2005),only the information since 1968 is analyzedin this study];(3)SST data,griddedat a resolution of 2°×2°,from ERSST.v3b(Smith et al.,2008); (4)the Ni?o3.4 SST index from the CPC.

    The time period analyzed in this study is 46 winters from 1967/1968 to 2012/2013.Wintertime means are constructed from the monthly means by averagingthe data of December–January–February(DJF).Here,the winter of 1968 refers to the 1967/1968 winter.Springtime means are constructed from the monthly means by averaging the data of March–April–May(MAM),and summertime means are constructed from the monthly means by averaging the data of June–July–August(JJA).

    Correlation analysis,composite analysis,and linear regression are used to investigate the relationship between the winter EU pattern and the following summer precipitation over China.

    3.Definition and climate characteristics of the EU index

    In previous studies,the definitions and calculation methods of the EUI are different.In brief,they include two types. The first method uses the differences of the 500 hPa geopotential height anomaly field at a few key points(Wallace and

    whereZ*representsthe normalizedseasonal average500hPa geopotential height anomaly.

    The EUI is defined by Zhao and Feng(2014)according to the significant area of the anomalies in the 850 hPa v-wind anomalyfield in a north-typerain year overChina.In Eq.(2), V′represents the 850 hPa v-wind anomaly: Gutzler,1981;Sung et al.,2009).The second method uses the corresponding time coefficients after the REOF on the Eurasian mainlandheightfield of the NH troposphere(Horel, 1981;Hsu and Wallace,1985;Barnston and Livezey,1987). In addition,the difference of low-level(850 hPa)v-winds in several regions in the Eurasian mid–high latitudes is defined as the EU index(EUIV)by Zhao and Feng(2014).In order to compare the research results,the three types of definition methods proposed by Wallace and Gutzler(1981),Barnston and Livezey(1987)and Zhao and Feng(2014)are adopted to calculate the winter EUI from 1968 to 2013,and these calculation methods are shown as follows:

    The definitionof the EUI introducedby Wallace and Gutzler(1981)is shown in Eq.(1),and denoted as EUIWG:

    A REOF decomposition was carried out by Barnston and Livezey(1987)on the 700 hPa geopotential height anomaly field in the extratropical NH(20°–90°N,0°–360°).For unification,the seasonal average 500 hPa geopotential height anomaly fields are used here for the REOF decomposition, and the time coefficient corresponding to the sixth mode is defined as the EUI(denoted as EUIBL).The variance contribution of the sixth mode was 6.1%,and the accumulative variance contribution of the leading six modes reached 76.3%.The spatial distribution types of the leading five modes are similar to the PNA,North Atlantic Oscillation, and other teleconnection patterns.The mode with the first east–west wave trains is the sixth mode over Eurasia,which is similar to the EU pattern defined by Wallace and Gutzler (1981).

    Figure 1 shows the temporal evolution of the three winter EUIs during 1968–2013.The interannual variability of the three indices is relatively consistent.The correlation coefficient between EUIWGand EUIBLis 0.77,that between EUIWGand EUIVis 0.76,and that between EUIBLand EUIVis 0.72,all abovethe 99.9%confidencelevel.Throughpower spectrum analysis of the three indices(figure not presented), it is found that the quasi-three-year interannual variation period only exists in EUIBL,while the interdecadal variation period is not significant in the three indices.

    From the spatial distribution of the correlation coefficient between the three winter EUIs and the simultaneous 500 hPa geopotential height field(Fig.2),it can be seen that all three indicesshowan obviouszonalteleconnectionpatternofwave trains over Eurasia,of which the 500 hPa geopotential height anomaly fields in Western Europe,the Urals,and the coast of East Asia present significant negative–positive–negative correlation areas.The three activity centers of the winter EU pattern defined by Wallace and Gutzler(1981)are located at(55°N,20°E),(55°N,75°E)and(40°N,145°E),respectively.The three activity centers are all located in the centers of the three high correlation regions in the EUIWG’s correlation diagram(Fig.2a).Moreover,there are another two positive correlation centers in eastern North America and the northern North Atlantic.In the EUIBLcorrelation diagram (Fig.2b),there are two larger positive correlation areas in eastern North America and the northern North Atlantic,of which the positive correlation is very significant.However, the negative correlation area is smaller in Western Europe, where the significance of the negative correlation is weaker than the EUIWG.In the EUIVcorrelation diagram(Fig.2c),therearetwo largerpositivecorrelationareasin easternNorth America and the northern North Atlantic,of which the positive correlation is very significant.The negative correlation area in Western Europeis largerand more significantthan the EUIBL.The spatiotemporalcharacteristics of the three winter EUIs are highly consistent,and the EUIVshows the best relationship with the following summer precipitation over China among the three indexes from our calculation and analysis. Therefore,we choose the EUIVto analyze the relationship betweenthewinterEUpatternandthefollowingsummerprecipitation over China.

    Fig.1.The winter EUI(bars)and cumulative index(lines)from 1968 to 2013: (a)EUIWG;(b)EUIBL;(c)EUIV.

    Fig.2.Correlation between the EUI and 500 hPa height field (20°–90°N,0°–360°)in winter(DJF-averaged)from 1968 to 2013:(a)EUIWG;(b)EUIBL;(c)EUIV.The shading from light to dark exceed the 95%,99%and 99.9%confidence level,respectively.The contour interval is 0.2.The black dots are the three activity centers of the EU teleconnection pattern defined by Wallace and Gutzler(1981).

    4.Winter EU pattern and summer precipitation over China

    Figure 3 shows the distributions of the correlation coefficient between the EUIVand the following summer precipitation over China.There is a positive correlation in North ChinaandanegativecorrelationintheYangtzeRiver–Huaihe River basins during 1968–2013(Fig.3a).Plus,the areas and stationsabovethe95%confidencelevelincreasesignificantly during 1981–2013(Fig.3b)compared with during 1968–2013.According to Fig.3b,two areas with a high density of stations above the 95%confidencelevel are selected.They are:eastern Xinjiang–western North China[hereinafter referred to simply as“North China”;(37°–47°N,85°–110°E); 14 stations],and the Yangtze River–Huaihe River basins [(30°–34°N,110°–125°E);15 stations].The area-averaged summer precipitation of the above two regions is represented by RNCand RYH,respectively.EUIVhas a weak positive correlation(correlation coefficient of 0.18)with RNC,and a weak negativecorrelation(-0.10)with RYHduring1968–81. Whereas,EUIVhas a significant positive correlation(0.42, exceeding the 99%confidence level)with RNC,and a significant negative correlation(-0.56,exceeding the 99.9%confidence level)with RYHduring 1981–2013.To further confirm that the relationshipbetween EUIVand summer precipitation has changed,Fig.4 shows the 21-year moving correlation between the RNC,RYH,and EUIV.The EUIVand RNCshow positive correlation,with the correlation slowly weakening after the mid-1980s,and strengthening recently(Fig.4a). The correlation coefficient between the EUIVand RYHis relatively weak before the early 1980s,but it increases significantly after the mid-1980s(Fig.4b).

    In the early 1980s,Liao et al.(1981)classified the summer rain-belt of eastern China into three patterns(“Three Rainfall Patterns”),which are respectively described as follows:Pattern I is the northern pattern,of which the main rain-beltis locatedin the YellowRiver basinandthe regionto the north;Pattern II is the central pattern,of which the main rain-belt is located between the Yellow River and Yangtze River;and Pattern III is the southern pattern,of which the main rain-beltis locatedin the YangtzeRiverbasin or regions south of the Yangtze River.Figure 5 shows the relationship between the winter EUIVand the“Three Rainfall Patterns”in the summer of eastern China during 1981–2013.There arenine years in which the EUIVis greater than 2.With the exception of 2000 and 2002,all of the other seven years belong to Pattern I.Also,there are 17 years with an EUIVless than 0,and only one year belongs to Pattern I(1994).There are nine years for which the EUIVis less than-2,all of which are PatternII or III,andnoneis Pattern I.Generallyspeaking, the EUIVcould be used to effectively predict Pattern I years. The years for which the EUIVis greater than 2(1981,1985, 1988,1992,1995,2000,2002,2004,2012)and less than-2 (1982,1989,1991,1996,1997,1998,2003,2007,2008)are selected for composite analysis.

    Fig.3.Correlation between the winter EUIVand the following summer(JJA-averaged)precipitation over China during (a)1968–2013 and(b)1981–2013.The black dots indicate the 95%confidence level.

    Fig.4.21-year moving correlation between the EUIVand(a)RNCand(b)RJH.The solid(dotted)line in(b)indicates the 95%(90%)confidence level.

    Fig.5.The winter EUIVand“Three Rainfall Patterns”in the summer of eastern China from 1981 to 2013.The black(green)dotted line indicates EUIVgreater than 2(lesser than-2).

    Figure 6 shows the composite anomalies of precipitation insummerfor+EUIVand-EUIVyears,andtheirdifference. For the+EUIVcomposite,a“plus–minus–plus–minus–plus”anomaly wave train is apparent from eastern Kazakhstan–western Xinjiang,northeastern Xinjiang–western Mongolia,and North China and the Yangtze River–Huaihe River basins to the Philippine Sea basin,of which the anomaly is significantly positive in North China,but significantly negative in the Yangtze-Huaihe River basin(Fig.6a).For the-EUIVcomposite,a“minus–plus–minus–plus–minus”anomaly wave train is apparent from eastern Kazakhstan–western Xinjiang,western Inner Mongolia,and North China and the Yangtze River–Huaihe River basins to the Philippine Sea basin.Significantly positive anomalies are present in the Yangtze–Huaihe River basin(Fig.6b).From the difference distribution between+EUIVand-EUIVyears,the differences among the above five areas are very significant.Therefore,the winter EU pattern has an extra-seasonal connection withthe followingsummerprecipitationinChinaandthesurrounding areas.

    5.Summer atmospheric circulation and SST anomalies in association with the winter EUIV

    To explain the above-mentioned relationships between the winter EUIVand the following summer precipitation anomalies,we first show theanomaliesofgeopotentialheight at 500 hPa and winds at 850 hPa in the summer,obtained as regression upon the winter EUIV(Fig.7).Significantly negative geopotential height(Fig.7a)and cyclonic circulation (Fig.7b)anomalies exist over the Ural Mountains,Okhotsk Sea and the subtropical western North Pacific in the following summer.That is,in positive winter EUIVyears,the UB and Okhotsk blocking(OB)are inactive,zonal circulation prevails in the mid–high latitudes,and the western Pacific subtropical high(WPSH)tends to be weaker and locates to the north of its normal position in the following summer. This leads to above-normal moisture penetrating into the northern part of East China.As a result,there are significant positive(negative)precipitation anomalies over North China (the Yangtze River–Huaihe River basins).In negative winter EUIVyears,theUB andOB are active,meridionalcirculation prevails in the mid–high latitudes,and the WPSH tends to be stronger and locates to the south of its normal position in the following summer.As a result,there are significant positive precipitationanomaliesoverthe YangtzeRiver–HuaiheRiver basins.Theseresultsareapparentviacompositeanomaliesof 500 hPa geopotential height and 850 hPa wind in summer for winter+EUIVand-EUIVyears,and their differences(figure not presented).

    Fig.6.Composite of the following summer(JJA-averaged)precipitation anomaly percentage in East Asia under the(a)positive and(b)negative winter EUIV,and the(c)composite difference between(a)and(b).The black dots indicate the 95% confidence level.

    Fig.7.Anomalies of the following summer(JJA-averaged)(a)500 hPa geopotential height (gpm)and(b)850 hPa winds(m s-1)regressed upon the winter EUIV.The dark and light shading in(a)indicates that the anomalies are significantly different from zero at the 5% and 10%level,respectively.The dark and light shading in(b)indicates that the u-wind anomalies are significant at the 95%and 90%confidence level,respectively.The contour interval in(a)is 2 gpm.

    To help explain the summer circulation anomalies in association with the winter EUIV,the correlations between the winter EUIVand SST are shown in Fig.8.There are significant negative(weak positive)correlations in the western North Pacific and subtropical central North Pacific(western Pacific)between the DJF EUIVand DJF SST(Fig.8a).Furthermore,the correlation distribution is very much like a La Ni?a pattern.The correlation between the DJF EUIVand MAM SST(Fig.8b)is similar to that of Fig.8a,but there is a significant positive correlation in the western Pacific warm pool(WPWP)region,and the negative correlations in the western North Pacific become more significant.We define the SST anomaly(SSTA)difference in the MAM WPWP region(5°–20°N,115°–130°E)and northwestern North Pacific (45°–55°N,150°E–165°W)as the West Pacific SST zonal difference index(WPZDI).The correlation coefficient between the EUIVand WPZDI is 0.55,exceeding the 99%confidence level,and the correlation between the DJF EUIVand JJA SST(Fig.8c)is insignificant.

    We further discuss the atmospheric circulation anomalies in association with the MAM SSTA.Figure 9 displays the JJA 850 hPa wind anomalies obtained by regression on the MAM Ni?o3.4(multiplied by-1.0)(Fig.9a)and WPZDI (Fig.9b).A significantly cyclonic circulation anomaly is observed to control the subtropical western North Pacific,and an anticyclonic circulation anomaly exists over the Japanese islands and surrounding ocean(Fig.9a).That is,in negative MAM Ni?o3.4 years(like La Ni?a years),the WPSH tends to be weaker and locates to the north of its normal position in the following summer.From the MAM WPZDI-related circulation anomalies(Fig.9b),a cyclonic circulation anomaly is also observed to control the subtropical western North Pacific,and an anticyclonic circulation anomaly exists over the Japanese islands and surrounding ocean.Also,these circulation anomalies are very similar to the EUIV-related circulation anomalies(Fig.7b).Therefore,SSTAs over the north-western Pacific and subtropical central North Pacific may both contribute to the formation of EUIV-related circulation anomalies over the western North Pacific.

    Fig.8.Correlation between the DJF EUIVand(a)DJF SST,(b)MAM SST,and (c)JJA SST during 1981–2013.The dark and light shading indicates the 95% and 90%confidence level,respectively.And the solid(dotted)lines indicate the positive(negative)values.The contour interval is 0.1.

    6.Discussion and conclusion

    This paper examines the relationship between the winter EU pattern and the following summer precipitation over China using NCEP–NCAR,GPCP,and Chinese 160-station data for the period 1968–2013.The difference of low-level (850 hPa)v-winds in several regions in the Eurasian mid–high latitudes is defined as the EUIVby Zhao and Feng (2014).The results show that there is a significant positive (negative)correlation between the winter EUIVand the following summer precipitation over North China(the Yangtze River–Huaihe River basins).Meanwhile,an interdecadal variability exists in the interannual relationship,and the correlation has become significantly enhanced since the early 1980s.Thus,the proposed EUIVmay have implications for thepredictionofsummerprecipitationanomaliesintheabove regions.

    In positive winter EUIVyears,the UB and OB are inactive,zonal circulation prevails in the mid–high latitudes, and the WPSH tends to be weaker and locates to the north of its normal position in the following summer.This leads to above-normal moisture penetrating into the northern part of East China.As a result,there are significant positive(negative)precipitation anomalies over North China(the Yangtze River–Huaihe River basins),and vice versa.Our present study shows that the winter EU pattern bears a close association with the following summer precipitation over China via key components of the East Asian summer monsoon system,such as the UB,OB and WPSH.Previous studies have demonstrated that atmospheric internal dynamic processes, including the Pacific–Japan or East Asia–Pacific wave train from the tropics(Nitta,1987;Huang and Sun,1992)and the“silk road”wave train from the mid–high latitudes in the NH (Enomoto et al.,2003;Enomoto,2004),can exert substantial influence the interannualvariability of WPSH.Further examination shows that the SSTA over the northwestern Pacific and subtropical central North Pacific may both contribute to the formation of EUIV-related circulation anomalies over the western North Pacific.Hence,the EUIVcould be usedas an effective predictor of summer precipitation anomalies in North China and the Yangtze River–Huaihe River basins. However,the extra-seasonal mechanism of influence of the winter EU on the following summer precipitation over China requires further study.

    Fig.9.Anomalies of the following summer 850 hPa winds(m s-1)regressed upon the MAM(a)-1.0×Ni?o3.4 and(b)West Pacific SSTzonal difference index(WPZDI)during 1981–2013.The dark and light shading indicates that the u-wind anomalies are significant at the 95%and 90%confidence level,respectively.

    Acknowledgements.We thank the two anonymous reviewers for their valuable comments and suggestions,which helped to improve the paper.This study was jointly supported by the National Natural Science Foundation of China(Grant Nos.41505061, 41530531 and 41405092)and the National Basic Research Program of China(Grant Nos.2012CB955902 and 2013CB430204)

    REFERENCES

    Adler,R.F.,and Coauthors,2003:The Version-2 Global Precipitation Climatology Project(GPCP)monthly precipitation analysis(1979–present).J.Hydrometeor.,4,1147–1167.

    Barnston,A.G.,and R.E.Livezey,1987:Classification,seasonality and persistence of low-frequency atmospheric circulation patterns.Mon.Wea.Rev.,115,1083–1126.

    Ding,Y.H.,1994:Summer monsoon rainfall and its regional characteristics in China.Asian Monsoon.China Meteorological Press,76–83.(in Chinese)

    Enomoto,T.,2004:Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet.J.Meteor.Soc.Japan,82,1019–1034.

    Enomoto,T.,B.J.Hoskins,and Y.Matsuda,2003:The formation mechanism of the Bonin high in August.Quart.J.Roy. Meteor.Soc.,129,157–178.

    Gao,H.,Y.G.Wang,and J.H.He,2006:Weakening significance of ENSO as a predictor of summer precipitation in China. Geophys.Res.Lett.,33,L09807.

    Gong,D.Y.,S.W.Wang,and J.H.Zhu,2001:East Asian winter monsoon and Arctic oscillation.Geophys.Res.Lett.,28, 2073–2076.

    Guilderson,T.P.,D.P.Schrag,1998:Abrupt shift in subsurface temperatures in the tropical Pacific associated with changesin El Ni?o.Science,281,240–243.

    Guo,Q.Y.,1983:The summer monsoon intensity index in East Asia and its variation.Acta Geographica Sinica,3,207–217. (in Chinese)

    Horel,J.D.,1981:A rotated principal component analysis of the interannual variability of the northern hemisphere 500 mb height field.Mon.Wea.Rev.,109,2080–2092.

    Hoskins,B.J.,and D.J.Karoly,1981:The steady linear response of a spherical atmosphere to thermal and orographic forcing. J.Atmos.Sci.,38,1179–1196.

    Hsu,H.H.,and J.M.Wallace,1985:Vertical structure of wintertime teleconnection patterns.J.Atmos.Sci.,42,1693–1710.

    Huang,R.H.,and F.Y.Sun,1992:Impacts of the tropical Western Pacific on the East Asian summer monsoon.J.Meteor.Soc. Japan,70,243–256.

    Huffman,G.J.,and Coauthors,1997:The Global Precipitation Climatology Project(GPCP)combined precipitation dataset. Bull.Amer.Meteor.Soc.,78,5–20.

    IPCC,2013:Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Boschung et al.,Eds.,Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,1535 pp.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471.

    Li,C.Y.,J.H.He,and J.H.Zhu,2004:A review of decadal/interdecadal climate variation studies in China.Adv. Atmos.Sci.,21,425–436,doi:10.1007/BF02915569.

    Li,J.P.,and Q.C.Zeng,2002:A unified monsoon index.Geophys. Res.Lett.,29,115-1–115-4,doi:10.1029/2001GL013874.

    Li,W.J.,and J.F.Chou,1990:Relation between monthly mean circulation in the Northern Hemisphere and the summer precipitation in the middle and lower reaches of Changjiang River.Scientia Meteorologica Sinica,10,139–146.(in Chinese)

    Liao,Q.S.,G.Y.Chen,and G.Z.Chen,1981:Collection of Long Time Weather Forecast.China Meteorological Press,103–114.(in Chinese)

    Liu,Y.Y.,and W.Chen,2012:Variability of the Eurasian teleconnection pattern in the northern hemisphere winter and its influences on the climate in China.Chinese J.Atmos.Sci.,36, 423–432.(in Chinese)

    Nitta,T.,1987:Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation.J.Meteor.Soc.Japan.,65,373–390.

    Shi.,N.,and Q.G.Zhu,1996:An abrupt change in the intensity of the east Asian summer monsoon index and its relationship with temperature and precipitation over east China.Int.J.Climatol.,16,757–764.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore,2008:Improvements to NOAA’s historical merged land-ocean surface temperature analysis(1880–2006).J.Climate,21,2283–2297,doi:10.1175/2007JCLI2100.1.

    Sun,L.H.,and M.He,2004:The relationship between summer precipitation in China and circulation anomaly in Euroasia and its application in precipitation prediction.Acta Meteorologica Sinica,62,355–364.(in Chinese)

    Sung,M.K.,G.H.Lim,W.T.Kwon,K.O.Boo,and J.S.Kug, 2009:Short-term variation of Eurasian pattern and its relation to winter weather over East Asia.Int.J.Climatol.,29, 771–775.

    Tao,S.Y.,and L.X.Chen,1987:A review of recent research on the East Asian summer monsoon in China.Review of Monsoon Meteorology,C.P.Chang and T.N.Krishnamurti,Eds., Oxford University Press,353 pp.

    Wallace,J.M.,and D.S.Gutzler,1981:Teleconnections in the geopotential height field during the Northern Hemisphere winter.Mon.Wea.Rev.,109,784–812.

    Wang,B.,1995:Interdecadal changes in El Ni?o onset in the last four decades.J Climate,8,267–285.

    Wang,H.J.,2001:The weakening of the Asian monsoon circulation after the end of 1970’s.Adv.Atmos.Sci.,18,376–386, doi:10.1007/BF02919316.

    Wang,H.J.,2002:The instability of the East Asian summer monsoon–ENSO relations.Adv.Atmos.Sci.,19,1–11,doi: 10.1007/s00376-002-0029-5.

    Wang,H.J.,and S.P.He,2012:Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s.Chinese Science Bulletin,57,3535–3540.

    Wang,L.,W.Chen,W.Zhou,J.C.L.Chan,D.Barriopedro,and R.H.Huang,2010:Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate.Int.J.Climatol.,30,153–158.

    Wang,N.,and Y.C.Zhang,2015:Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China.Climate Dyn.,44,1017–1208,doi:10.1007/s00382-014-2171-z.

    Wu,R.G.,J.L.Kinter III,and B.P.Kirtman,2005:Discrepancy of interdecadal changes in the Asian region among the NCEP–NCAR reanalysis,objective analyses,and observations.J.Climate,18,3048–3067.doi:10.1175/JCLI3465.1.

    Yang,S.,K.-M.Lau,and K.-M.Kim,2002:Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies.J.Climate,15,306–325.

    Zhang,Q.Y.,and S.Y.Tao,1998:Influence of Asian mid-high latitude circulation on East Asian summer rainfall.Acta Meteorologica Sinica,56,199–211.(in Chinese)

    Zhang,Q.Y.,S.Y.Tao,and L.T.Chen,2003:The inter-annual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia.Acta Meteorologica Sinica,61,559–568.(in Chinese)

    Zhang,Y.C.,and L.L.Guo,2005:Relationship between the simulated East Asian westerly jet biases and seasonal evolution of rainbelt over eastern China.Chinese Science Bulletin,50, 1503–1508.

    Zhao,J.H.,and G.L.Feng,2014:Reconstruction of conceptual prediction model for the three rainfall patterns in the summer of eastern China under global warming.Science China:Earth Sciences,57,3047–3061,doi:10.1007/s11430-014-4930-4.

    Zuo,X.,and Z.N.Xiao,2013:Abnormal characteristics of Eurasian teleconnection in winter at pentad time scale and its impact on the weather in China.Meteorological Monthly,39, 1096–1102.(in Chinese)

    Zhao,J.H.,L.Yang,B.H.Gu,J.Yang,and G.L.Feng,2016:On the relationship between the winter Eurasian teleconnection patternand the following summer precipitation overChina.Adv.Atmos.Sci.,33(6),743–752,

    10.1007/s00376-015-5195-3.

    2 September 2015;revised 23 November 2015;accepted 13 December 2015)

    Bohui GU

    Email:gubohui@mail2.sysu.edu.cn

    狠狠精品人妻久久久久久综合| 精华霜和精华液先用哪个| 久久久久久久久久久丰满| 日韩成人av中文字幕在线观看| 亚洲精品自拍成人| 亚洲在久久综合| 韩国高清视频一区二区三区| 一区二区三区乱码不卡18| 中文欧美无线码| 国产黄片美女视频| 又爽又黄a免费视频| 亚洲精品第二区| 国产亚洲av嫩草精品影院| 各种免费的搞黄视频| 天堂中文最新版在线下载 | 亚洲精品456在线播放app| 亚洲av一区综合| 中文字幕av成人在线电影| 日日摸夜夜添夜夜添av毛片| 中文字幕免费在线视频6| 免费黄色在线免费观看| 国产免费视频播放在线视频| 少妇人妻一区二区三区视频| h日本视频在线播放| 晚上一个人看的免费电影| 一级二级三级毛片免费看| 亚洲成人中文字幕在线播放| av网站免费在线观看视频| 亚洲国产日韩一区二区| 久久久久久久国产电影| 好男人在线观看高清免费视频| 欧美另类一区| 2021天堂中文幕一二区在线观| 一级毛片黄色毛片免费观看视频| 国产高清三级在线| 久久午夜福利片| 神马国产精品三级电影在线观看| 男女无遮挡免费网站观看| 亚洲美女搞黄在线观看| 深爱激情五月婷婷| 哪个播放器可以免费观看大片| 国产伦在线观看视频一区| 国产色爽女视频免费观看| 51国产日韩欧美| xxx大片免费视频| 亚洲精品aⅴ在线观看| 波多野结衣巨乳人妻| 欧美极品一区二区三区四区| 一区二区三区免费毛片| 日韩强制内射视频| av免费观看日本| 一个人观看的视频www高清免费观看| 日韩人妻高清精品专区| 国产伦精品一区二区三区四那| av女优亚洲男人天堂| 欧美少妇被猛烈插入视频| 日本与韩国留学比较| 日韩,欧美,国产一区二区三区| 内地一区二区视频在线| 久久午夜福利片| 黑人高潮一二区| 亚洲av欧美aⅴ国产| 另类亚洲欧美激情| 新久久久久国产一级毛片| 热99国产精品久久久久久7| 黄色怎么调成土黄色| 国产亚洲午夜精品一区二区久久 | 大片免费播放器 马上看| 日日撸夜夜添| 街头女战士在线观看网站| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人爽人人夜夜| 黄色日韩在线| 国产精品人妻久久久久久| 男女无遮挡免费网站观看| 成人综合一区亚洲| 97在线人人人人妻| 亚洲美女搞黄在线观看| 成年免费大片在线观看| 亚洲国产精品成人综合色| 舔av片在线| 色网站视频免费| 高清视频免费观看一区二区| 国产在线男女| 午夜免费男女啪啪视频观看| 亚洲三级黄色毛片| 18禁动态无遮挡网站| 亚洲欧美日韩另类电影网站 | 国产精品国产三级专区第一集| 日本-黄色视频高清免费观看| 亚洲色图av天堂| 国产精品一区二区三区四区免费观看| 成人欧美大片| 丝袜喷水一区| 中文字幕亚洲精品专区| 啦啦啦啦在线视频资源| 最近手机中文字幕大全| 久久午夜福利片| 久久精品综合一区二区三区| 国产免费福利视频在线观看| 最近中文字幕高清免费大全6| 舔av片在线| 亚洲精品亚洲一区二区| 啦啦啦在线观看免费高清www| 国产一区二区三区综合在线观看 | 男女国产视频网站| 亚洲熟女精品中文字幕| 国产男女超爽视频在线观看| 婷婷色综合www| 永久免费av网站大全| 建设人人有责人人尽责人人享有的 | 久久6这里有精品| 只有这里有精品99| 成人欧美大片| 亚洲精品日本国产第一区| 五月玫瑰六月丁香| 亚洲色图av天堂| 亚洲精品一区蜜桃| 91在线精品国自产拍蜜月| 国产黄色免费在线视频| 国产色婷婷99| 天天躁日日操中文字幕| 少妇人妻久久综合中文| 午夜福利高清视频| 特级一级黄色大片| 日日啪夜夜爽| 91久久精品国产一区二区三区| 丝瓜视频免费看黄片| 超碰av人人做人人爽久久| 久久久成人免费电影| 日本黄大片高清| 免费大片黄手机在线观看| 国产乱来视频区| 最后的刺客免费高清国语| 欧美另类一区| 中国三级夫妇交换| 日韩欧美精品v在线| 日本-黄色视频高清免费观看| 全区人妻精品视频| 亚洲人成网站高清观看| 精品亚洲乱码少妇综合久久| 国产探花极品一区二区| 91午夜精品亚洲一区二区三区| 精华霜和精华液先用哪个| 九色成人免费人妻av| 女人十人毛片免费观看3o分钟| 亚洲人与动物交配视频| 日韩电影二区| 日韩,欧美,国产一区二区三区| 女人久久www免费人成看片| 久久久久久久久久久免费av| 国产高潮美女av| 有码 亚洲区| 亚洲国产最新在线播放| 99热这里只有精品一区| 麻豆成人av视频| 我的老师免费观看完整版| 最新中文字幕久久久久| 亚洲av一区综合| 在现免费观看毛片| 亚洲精品乱码久久久v下载方式| 18+在线观看网站| 插逼视频在线观看| 国产伦精品一区二区三区视频9| 亚洲国产欧美人成| 熟妇人妻不卡中文字幕| 丝袜喷水一区| 人体艺术视频欧美日本| 国产成人91sexporn| 在线观看美女被高潮喷水网站| 成年人午夜在线观看视频| 18禁动态无遮挡网站| 午夜免费观看性视频| 久久女婷五月综合色啪小说 | 免费少妇av软件| 国产v大片淫在线免费观看| 久久久久久久大尺度免费视频| 在线亚洲精品国产二区图片欧美 | 亚洲一区二区三区欧美精品 | 亚洲av男天堂| 日日撸夜夜添| 99久久精品热视频| 少妇被粗大猛烈的视频| 国产精品av视频在线免费观看| 视频区图区小说| www.色视频.com| 国产一区亚洲一区在线观看| 少妇的逼好多水| 中国国产av一级| 99热网站在线观看| 日本猛色少妇xxxxx猛交久久| 久久人人爽av亚洲精品天堂 | 狂野欧美白嫩少妇大欣赏| 王馨瑶露胸无遮挡在线观看| 婷婷色综合www| 精品人妻熟女av久视频| 国产亚洲av嫩草精品影院| 久久久久九九精品影院| 日韩欧美精品免费久久| 久久久精品94久久精品| 国产高清国产精品国产三级 | 成人亚洲精品av一区二区| 成年免费大片在线观看| 国产91av在线免费观看| 国产精品蜜桃在线观看| 九九爱精品视频在线观看| 欧美性感艳星| 欧美性感艳星| 亚洲va在线va天堂va国产| 国产日韩欧美亚洲二区| 天堂网av新在线| 精品视频人人做人人爽| 秋霞伦理黄片| 99久久九九国产精品国产免费| av天堂中文字幕网| 亚洲av二区三区四区| 如何舔出高潮| 99久久人妻综合| 国产中年淑女户外野战色| 亚洲av电影在线观看一区二区三区 | 婷婷色综合www| 777米奇影视久久| 国产国拍精品亚洲av在线观看| 欧美另类一区| 一级毛片久久久久久久久女| 大片免费播放器 马上看| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 久热久热在线精品观看| 九九爱精品视频在线观看| 极品少妇高潮喷水抽搐| 美女被艹到高潮喷水动态| 亚洲人成网站在线观看播放| 美女被艹到高潮喷水动态| 精品一区二区三卡| 精品久久久噜噜| 亚洲人成网站在线观看播放| 高清视频免费观看一区二区| 国产成人精品福利久久| 国产男女超爽视频在线观看| 精品熟女少妇av免费看| 亚洲精品aⅴ在线观看| 国产永久视频网站| 久久99热这里只频精品6学生| 中国国产av一级| eeuss影院久久| 少妇人妻一区二区三区视频| 久久久久久伊人网av| 一级二级三级毛片免费看| 亚洲最大成人手机在线| 啦啦啦啦在线视频资源| 欧美97在线视频| 在线天堂最新版资源| 国产亚洲5aaaaa淫片| 五月玫瑰六月丁香| 我的老师免费观看完整版| 亚洲真实伦在线观看| 国产一区亚洲一区在线观看| 久久精品久久精品一区二区三区| 一区二区三区免费毛片| av国产久精品久网站免费入址| 最后的刺客免费高清国语| 精品人妻熟女av久视频| 婷婷色综合www| 国产人妻一区二区三区在| 三级国产精品片| 国产精品久久久久久精品古装| 建设人人有责人人尽责人人享有的 | 五月天丁香电影| 亚洲国产最新在线播放| 日韩免费高清中文字幕av| 插阴视频在线观看视频| 欧美成人一区二区免费高清观看| 国内精品宾馆在线| 男人和女人高潮做爰伦理| 一本久久精品| 国产精品熟女久久久久浪| 欧美zozozo另类| 一区二区三区免费毛片| 一个人观看的视频www高清免费观看| 欧美一区二区亚洲| 精品少妇久久久久久888优播| 国产亚洲91精品色在线| 日韩制服骚丝袜av| 免费不卡的大黄色大毛片视频在线观看| 国产精品一及| 18禁在线播放成人免费| 夫妻午夜视频| 免费电影在线观看免费观看| 欧美bdsm另类| 欧美人与善性xxx| 亚洲精品乱码久久久v下载方式| 人人妻人人澡人人爽人人夜夜| 美女cb高潮喷水在线观看| 久久99热这里只有精品18| 51国产日韩欧美| 亚洲一级一片aⅴ在线观看| 亚洲精品乱码久久久久久按摩| 九九在线视频观看精品| 欧美日韩综合久久久久久| 国产有黄有色有爽视频| 精品少妇黑人巨大在线播放| 精品少妇黑人巨大在线播放| 日本熟妇午夜| 国产成人一区二区在线| av专区在线播放| 欧美+日韩+精品| av网站免费在线观看视频| 神马国产精品三级电影在线观看| 国产精品秋霞免费鲁丝片| 激情五月婷婷亚洲| 久久午夜福利片| 91久久精品国产一区二区成人| 禁无遮挡网站| 人妻系列 视频| 亚洲久久久久久中文字幕| 日韩欧美一区视频在线观看 | 精品99又大又爽又粗少妇毛片| 真实男女啪啪啪动态图| 国产成人精品福利久久| 交换朋友夫妻互换小说| 精品一区二区免费观看| 欧美性感艳星| 男人和女人高潮做爰伦理| 性色av一级| 精品久久久久久久人妻蜜臀av| 欧美日韩在线观看h| 亚洲高清免费不卡视频| 日韩视频在线欧美| av网站免费在线观看视频| 校园人妻丝袜中文字幕| 婷婷色av中文字幕| 国产精品一区二区三区四区免费观看| 亚洲欧美一区二区三区黑人 | 少妇人妻 视频| 国产亚洲精品久久久com| 在线观看一区二区三区激情| 最近最新中文字幕免费大全7| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 日韩精品有码人妻一区| av女优亚洲男人天堂| 国产在线男女| 国内揄拍国产精品人妻在线| 黄色视频在线播放观看不卡| 久久精品国产亚洲av涩爱| 美女国产视频在线观看| 丝袜脚勾引网站| 99re6热这里在线精品视频| 国产精品一及| 国产 精品1| 一个人看视频在线观看www免费| 免费av毛片视频| 精品人妻熟女av久视频| 波野结衣二区三区在线| 国产精品精品国产色婷婷| 亚洲不卡免费看| 国产免费一级a男人的天堂| 精品久久久久久电影网| 久久久久精品性色| 欧美变态另类bdsm刘玥| 日日啪夜夜撸| 亚洲最大成人av| 久久久久国产精品人妻一区二区| 国产毛片a区久久久久| 国产亚洲午夜精品一区二区久久 | 80岁老熟妇乱子伦牲交| av在线蜜桃| 嫩草影院入口| 国产精品99久久久久久久久| 五月玫瑰六月丁香| 99热这里只有精品一区| 交换朋友夫妻互换小说| av卡一久久| 久久99热6这里只有精品| .国产精品久久| 噜噜噜噜噜久久久久久91| 蜜桃久久精品国产亚洲av| 欧美区成人在线视频| 国产精品精品国产色婷婷| 在线观看人妻少妇| 日本与韩国留学比较| 国产亚洲av嫩草精品影院| 人妻一区二区av| 高清日韩中文字幕在线| 如何舔出高潮| 在线观看av片永久免费下载| 嫩草影院入口| 人人妻人人看人人澡| 国产高清国产精品国产三级 | 久久精品国产亚洲网站| 久久久午夜欧美精品| 国内精品宾馆在线| 99久久九九国产精品国产免费| 国产男女内射视频| 熟妇人妻不卡中文字幕| 国产午夜精品久久久久久一区二区三区| 少妇猛男粗大的猛烈进出视频 | 五月玫瑰六月丁香| 免费看日本二区| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| 免费观看a级毛片全部| 狠狠精品人妻久久久久久综合| 国内揄拍国产精品人妻在线| 99热这里只有是精品在线观看| 国产乱人视频| 插阴视频在线观看视频| 一个人看视频在线观看www免费| 国产男女内射视频| 国产综合懂色| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 亚洲欧美日韩东京热| 一级二级三级毛片免费看| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| 亚洲四区av| 99re6热这里在线精品视频| 亚洲av福利一区| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品 | 尾随美女入室| 中文精品一卡2卡3卡4更新| a级一级毛片免费在线观看| av免费在线看不卡| 免费看av在线观看网站| 精品国产三级普通话版| 美女视频免费永久观看网站| 少妇人妻 视频| 国产精品久久久久久精品古装| 三级国产精品欧美在线观看| 男人爽女人下面视频在线观看| 网址你懂的国产日韩在线| 美女国产视频在线观看| 青春草国产在线视频| 深夜a级毛片| 国产 精品1| av.在线天堂| 黄色视频在线播放观看不卡| 欧美xxⅹ黑人| 嫩草影院入口| 麻豆久久精品国产亚洲av| 97热精品久久久久久| 免费观看av网站的网址| 国模一区二区三区四区视频| 久久鲁丝午夜福利片| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 我要看日韩黄色一级片| 国产一区有黄有色的免费视频| 日本色播在线视频| 国产精品一区www在线观看| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 免费少妇av软件| 亚洲国产精品专区欧美| 内地一区二区视频在线| 日日摸夜夜添夜夜爱| 欧美一级a爱片免费观看看| 男女下面进入的视频免费午夜| 人妻系列 视频| 国内少妇人妻偷人精品xxx网站| av卡一久久| 91狼人影院| 一边亲一边摸免费视频| 亚洲图色成人| 亚洲自拍偷在线| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 免费观看性生交大片5| 国产精品国产av在线观看| 五月玫瑰六月丁香| 午夜精品一区二区三区免费看| 天天躁夜夜躁狠狠久久av| 亚洲最大成人av| 99久久精品一区二区三区| 亚洲国产精品专区欧美| 熟妇人妻不卡中文字幕| 日本午夜av视频| 性色av一级| 亚洲激情五月婷婷啪啪| 大香蕉97超碰在线| 亚洲高清免费不卡视频| 在线精品无人区一区二区三 | 久久99热这里只有精品18| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 久久99热6这里只有精品| 日本wwww免费看| 欧美潮喷喷水| 免费观看性生交大片5| 高清午夜精品一区二区三区| 麻豆乱淫一区二区| 亚洲av成人精品一二三区| 大又大粗又爽又黄少妇毛片口| 青青草视频在线视频观看| 亚洲av二区三区四区| av女优亚洲男人天堂| 国产 一区精品| 日日啪夜夜爽| 国产亚洲午夜精品一区二区久久 | 亚洲高清免费不卡视频| 中文字幕av成人在线电影| 中文字幕亚洲精品专区| 国产av不卡久久| 国产成人一区二区在线| 18禁裸乳无遮挡免费网站照片| 国产乱人视频| 久久精品国产亚洲av天美| 一级片'在线观看视频| 亚洲在久久综合| 午夜福利视频1000在线观看| 日日啪夜夜撸| 精品人妻一区二区三区麻豆| 久久久久久久午夜电影| 成人亚洲精品一区在线观看 | 蜜臀久久99精品久久宅男| 国产精品一区www在线观看| 亚洲成人av在线免费| 六月丁香七月| 亚洲最大成人中文| 天美传媒精品一区二区| 色5月婷婷丁香| 精品久久国产蜜桃| 成年女人在线观看亚洲视频 | 日韩欧美精品v在线| av国产久精品久网站免费入址| 欧美日韩一区二区视频在线观看视频在线 | 久久精品久久久久久噜噜老黄| 欧美丝袜亚洲另类| 欧美精品人与动牲交sv欧美| 久久久久网色| 高清视频免费观看一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人成网站高清观看| 亚洲av男天堂| av在线老鸭窝| 亚洲av免费在线观看| 日韩一区二区视频免费看| 大片电影免费在线观看免费| 国产色爽女视频免费观看| 99久久中文字幕三级久久日本| 在线亚洲精品国产二区图片欧美 | 大陆偷拍与自拍| 午夜老司机福利剧场| 老司机影院毛片| 黄色怎么调成土黄色| 日韩在线高清观看一区二区三区| 夫妻午夜视频| 老司机影院毛片| 亚洲综合精品二区| .国产精品久久| 亚洲va在线va天堂va国产| 国产精品.久久久| 精品国产乱码久久久久久小说| 精品人妻熟女av久视频| 日韩制服骚丝袜av| 99久久人妻综合| 一级毛片 在线播放| 久久久久久久国产电影| 国产 一区精品| 特大巨黑吊av在线直播| 日本午夜av视频| 成年免费大片在线观看| 亚洲国产欧美在线一区| 成人综合一区亚洲| 久久久国产一区二区| 男人添女人高潮全过程视频| 国产一区二区亚洲精品在线观看| 免费人成在线观看视频色| 少妇人妻 视频| 午夜激情福利司机影院| 夫妻性生交免费视频一级片| 久久影院123| 国产亚洲av片在线观看秒播厂| 干丝袜人妻中文字幕| 国产精品.久久久| 97在线视频观看| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 亚洲真实伦在线观看| 欧美另类一区| 亚洲天堂国产精品一区在线| 日本与韩国留学比较| 精品一区二区三区视频在线| 免费黄频网站在线观看国产| 国产成人精品久久久久久| 久久97久久精品| 欧美高清成人免费视频www| 亚洲欧美成人综合另类久久久| 春色校园在线视频观看| 蜜桃久久精品国产亚洲av| 只有这里有精品99| 亚洲精品日本国产第一区| 成年版毛片免费区| 舔av片在线| 久久久久国产精品人妻一区二区| av在线亚洲专区| 美女国产视频在线观看| 免费看av在线观看网站| 女人久久www免费人成看片| 啦啦啦在线观看免费高清www| 嫩草影院入口| 日韩电影二区| 免费观看av网站的网址| 亚洲最大成人av| 欧美高清性xxxxhd video| 纵有疾风起免费观看全集完整版| 欧美性感艳星| 亚洲av在线观看美女高潮| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 亚洲不卡免费看| 亚洲精品,欧美精品|