• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Internal Decadal Variability on the Summer Rainfall in Eastern China as Simulated by CCSM4

    2016-11-14 05:56:01YaliZHUTaoWANG1andJiehuaMA2
    Advances in Atmospheric Sciences 2016年6期

    Yali ZHU*1,2,Tao WANG1,2,and Jiehua MA2

    1Nansen-Zhu International Research Centre,Chinese Academy of Sciences,Beijing 100029

    2Climate Change Research Centre,Chinese Academy of Sciences,Beijing 100029

    Influence of Internal Decadal Variability on the Summer Rainfall in Eastern China as Simulated by CCSM4

    Yali ZHU*1,2,Tao WANG1,2,and Jiehua MA2

    1Nansen-Zhu International Research Centre,Chinese Academy of Sciences,Beijing 100029

    2Climate Change Research Centre,Chinese Academy of Sciences,Beijing 100029

    The combined impact of the Pacific Decadal Oscillation(PDO)and Atlantic Multidecadal Oscillation(AMO)on the summer rainfall in eastern China was investigated using CCSM4.The strongest signals occur with the combination of a positive PDO and a negative AMO(+PDO-AMO),as well as a negative PDO and a positive AMO(-PDO+AMO).For the+PDO-AMO set,significant positive rainfall anomalies occur over the lower reaches of the Yangtze River valley(YR), when the East Asian summer monsoon becomes weaker,while the East Asian westerly jet stream becomes stronger,and ascending motion over the YR becomes enhanced due to the jet-related secondary circulation.Contrary anomalies occur over East Asia for the-PDO+AMO set.The influence of these two combinations of PDO and AMO on the summer rainfall in eastern China can also be observed in the two interdecadal rainfall changes in eastern China in the late 1970s and late 1990s.

    Pacific Decadal Oscillation,Atlantic Multidecadal Oscillation,eastern China,summer rainfall,CCSM4

    1.Introduction

    Recent studies on the global warming hiatus since the beginning of the 21st century note the important contribution of internal decadal variability on global climate changes (Kosaka and Xie,2013;Meehl et al.,2013;Trenberth and Fasullo,2013;Dai et al.,2015).The Pacific Decadal Oscillation(PDO)(e.g.,Trenberth and Hurrell,1994;Mantua et al.,1997)and Atlantic Multidecadal Oscillation(AMO) (e.g.,Enfield et al.,2001)are the two dominant modes at the decadal timescale.These oscillations can exert significant influences on regional climate in Europe,Asia,and North America(e.g.,Barlow et al.,2001;Yeh and Kirtman,2004; Knight et al.,2006;Zhang and Delworth,2006;Ma,2007; Sun et al.,2008;Chylek et al.,2014;Qian and Zhou,2014).

    Interdecadalclimate change is an important feature of the East Asian climate.Two prominent interdecadal changes occurred in the eastern China summer rainfall in the late 1970s (Wang,2001;Ding et al.,2008;Wang et al.,2013)and the late 1990s(Zhu et al.,2011,2015;Si and Ding,2013).After the late 1970s,summer rainfall over the lower reaches of the Yangtze River valley(YR)increased significantly,while it decreased over North China.After the late 1990s,summer rainfall decreased in the lower reaches of the YR,while itincreased in the Huanghe River-Huaihe River valleys.Previous studies proposed either the PDO or AMO as the major modulator for these two interdecadal changes in the eastern China summer climate(e.g.,Zhu and Yang,2003;Ma,2007; Xu and Zhu,2010;Zhu et al.,2011;Li and Luo,2013;Qian and Zhou,2014;Hao et al.,2015;Yu et al.,2015;Zhu et al., 2015).

    However,thePDO andAMO arenot isolated;rather,they interact with each other(Wu et al.,2011).Our decadal-scale climate is not only modulated by either the PDO or AMO, but also by a combination of them,with distinct phase combinations in different periods.In the present study,we used a control multi-century simulation from CCSM4 to investigate the modulation impacts of the PDO and AMO on the summer rainfall and its associated circulation in eastern China from intrinsic variability only.The complex external forcing agents were not considered.In section 2,the model and numerical experiment are introduced.Section 3 summarizes the results,and section 4 concludes the findings and presents further discussion.

    2.Model and numerical experiment

    TheoutputdataofthecontrolsimulationbyCCSM4were analyzed in this study.CCSM4 is a global coupled climate model with a 1°,26-level atmosphere coupled to a 1°(down to 1/48 in the equatorial tropics),60-level ocean and state-of-the-art sea-ice and land surface schemes(Gent et al.,2011). The 501-year control simulation was conducted with no interannual variations in the external forcing agents and with greenhouse gases and the tropospheric sulfate aerosol concentration fixed at pre-industrial(1850)levels.Therefore, only the internal variability of the climate system was manifested and no long-term trend existed in this simulation.

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2016

    The atmospheric variables used included precipitation, geopotential height,and wind field.The SST was used to calculate the PDO and AMO indices.The PDO index was defined as the leading principal component of annual SST anomalies in the North Pacific(20°–60°N,110°E–110°W). The AMO index was defined as the average annual SST in the North Atlantic(0°–60°N,75°–7.5°W).The 11-point running mean was used on the indices to highlight their decadal signals.The observed AMO and PDO indices were obtained from http://www.esrl.noaa.gov/psd/data/timeseries/ AMO/and http://research.jisao.washington.edu/pdo/,respectively.

    3.Results

    The simulated PDO and AMO indices are shown in Fig. 1.To identify the connections between the PDO/AMO and summer rainfall in eastern China,we first divided the 501 model years into eight different sets:+PDO(i.e.,PDO index>0);-PDO(i.e.,PDO index<0);+AMO(i.e.,AMO index>0);-AMO(i.e.,AMO index<0);+PDO+AMO; +PDO-AMO;-PDO+AMO;and-PDO-AMO.There were 297,204,273,228,169,128,104,and 100 model years for the eight sets,respectively.The composite analysis was conducted by subtracting the long-term mean of the whole period from the average of each set.

    The+PDO(Fig.2a)and-PDO(Fig.2b)caninducemore and less rainfall over the lower reaches of the Yangtze River–HuaiheRiver valleys(centeredoverthe Huaihe River valley), respectively,though the+PDO signals are not statistically significant.Incontrast,the+AMO(Fig.2c)and-AMO(Fig. 2d)are related to decreased and increased rainfall centered over the lower reaches of the YR.It seems that the-AMO (Fig.2d)can induce significantly increased Mei-yu rainfall over eastern Asia.The anomalies are weak and insignificant in eastern China in the+PDO+AMO set(Fig.2e).However, significant increased rainfall is evident over the western subtropical Pacific,which is a mutual reinforcing effect between the+PDO(Fig.2a)and+AMO(Fig.2c).Differently,in the +PDO-AMO set,these two decadal signals reinforce each otherovereasternChina(Figs.2a,dandf),leadingtopositive rainfall anomalies over the lower reaches of the YR,centered near(30°N,120°E).The-PDO and+AMO can strengthen each other and induce a band of significant negative rainfall anomalies covering the YR and southern Japan(Figs. 2b,c and g).The-PDO and-AMO reinforce each other in thePacificOcean,withanegative–positive–negative–positive pattern from the western tropical to subtropical Pacific(not shown).However,their effects counteract each other and no significant signals occur over eastern China(Figs.2b,d and h).

    The connection between the combined PDO and AMO and summer rainfall in eastern China can be observed in the two recent interdecadal changes in the late 1970s and the late 1990s.Accompanying+PDO-AMO(Fig.3),summer rainfall increases over the YR and decreases over North China after the late 1970s(e.g.,Wang,2001;Ding et al.,2008; Wang et al.,2013),while summer rainfall decreases over the YR and increases over the Huanghe River–Huaihe River valleys when accompanying+PDO-AMO after the late 1990s (e.g.,Zhu et al.,2011;Si and Ding,2013;Zhu et al.,2015). This observed consistency between the interdecadal changes ofsummerprecipitationandthe phasesof thePDO andAMO are consistent with the model results.

    The+PDO corresponds to decreased SLP centered over East Asia and the adjacent ocean(Fig.4a),while the-PDO corresponds to positive SLP anomalies there(Fig.4b).In contrast,the+AMO is relatedto positiveSLP anomaliesover East Asia and oppositeanomalies overthe ocean to the south, showing a strengthened zonal land–sea thermal contrast(Fig. 4c),while the-AMO is related to negative SLP anomalies over East Asia and opposite anomalies over the ocean to the south,showing a weakened zonal land–sea thermal contrast (Fig.4d).However,the impact of a single PDO or AMO on SLP inEastAsiais weak.The-PDO+AMOsetis connected with strong positive SLP centered over East Asia,and thus the land–sea thermal contrast there is significantly strengthened(Fig.4g).In the other three sets,the land–sea thermal contrast becomes somewhat reduced,though the signals are relatively weak.

    In the lower-level wind and geopotential height field,the effect of the PDO and AMO in their opposite phases can enhanceeachotherovereasternChina(Fig.5),asinthesummer rainfall field.For example,boththe-PDO and+AMO(Figs. 5b and c)are related to positive height anomalies over East Asia and negative height anomalies over the Okhotsk Sea, which resembles an East Asia–Pacific(EAP)teleconnection pattern.This combinationof-PDO+AMO exhibits stronger significant anomalies over East Asia and the Okhotsk Sea (Fig.5g).Southerly anomalies occur over eastern China north of 30°N,showing a strengthened East Asian summer monsoon.Compared with Fig.5g,opposite changes occur in the+PDO-AMO composite(Fig.5f),but the amplitude and area with significant values are smaller.The anomalies in the monsoon circulation are consistent with the SLP anomalies reflecting the land–sea thermal contrast.

    Fig.1.The PDO and AMO indices in the 501-year control experiment.

    Fig.2.The composite summer precipitation rate(units:kg m-2s-1)between different sets of the PDO and AMO combinations and the entire period.Dotted areas show the significant difference at the 90%confidence level.

    Fig.3.The standardized observed AMO(red)and PDO(blue)indices during 1948–2014.

    Fig.5.As in Fig.4 but for the 850 hPa wind field(vectors)and geopotential height(color shading).The maximum zonal wind in(g)is 0.65 m s-1.Dotted areas show the significant geopotential height difference at the 90%confidence level.The missing values are shown in white.

    In addition,we also studied the upper-level circulation over a larger area to examine the related large-scale features. The anomalies are stronger and better organized than those in the lower level.The PDO can induce significant anomalies over the subtropical North Pacific,close to the Kuroshio extension region(Figs.6a and b).Significant anomalies also appear over western and eastern Eurasia,forming a wavetrain pattern in the northern high latitudes.The most prominent anomalies induced by the AMO locate over the high latitudes of North America(Figs.6c and d).Besides,significant anomalies also occur over East Asia in a small area.The effect of the+PDO and+AMO can reinforce each other in the low latitudes and northwestern Eurasia,but counteract each other over East Asia(Fig.6e).The-PDO+AMO set is related to the wave-train pattern in the northern high latitudes (Fig.6g),as well as significant cyclonic anomalies over East Asia and the North Pacific.The-PDO+AMO combination also has the strongest anomalies(Fig.6g).Significant positive geopotential height anomalies occur over Europe and NorthAmerica,implyingthepresencethereofsignificantclimate anomalies.These significant large-scale anomalies imply that the PDO and AMO can not only influence the summer rainfall in eastern China,but also have an impact on climate in other regions,such as India and West Africa(Li et al.,2012).The strong anticyclonic anomalies over East Asia, which are associated with the EAP-like pattern,can induce significant easterly anomalies related to the southern branch of these anticyclonic anomalies.Therefore,the East Asian westerly jet stream(EAWJS)is weakened and moves northward.

    Moreover,the weakened EAWJS is related to the decreased rainfall over the YR(Fig.2g)by suppressing the jet-related secondary circulation(Ding,2008).A weakened EAWJS is connected to a weaker jet-related secondary circulation,and the ascending branch centered over the YR is reduced,thereby decreasing the rainfall.Figure 7 shows the vertical velocity:robust signals occur in the+PDOAMO(Fig.7f)and-PDO+AMO(Fig.7g)sets.Both the -PDO and+AMO can induce somewhat descending anomalies over the YR(Figs.7b and c).However,their combination is related to much stronger descending anomalies over the YR than their individual counterparts(Fig.7g).Therefore,the rainfall over the YR is decreased.Conversely,forthe+PDO-AMO set,significant ascending anomalies occur over the YR(Fig.7f),and the rainfall there increases.

    Fig.7.As in Fig.4 but for the latitude-geopotential height cross-section of mean vertical velocity over 110°–120°E. Shading shows the significant difference in vertical velocity at the 90%confidence level.The contour interval is 10-3Pa s-1.Red(blue)contours represent descending(ascending)anomalies.Black contours show the contours of zero.

    4.Conclusion and discussion

    Using the pre-industrial control simulation of CCSM4, weanalyzedtheimpactofdifferentcombinationsofPDO and AMOphasesonsummerrainfallineasternChina.Theresults indicatedthatcombinationsofthePDOandAMOinopposite phases have the most robust impact on eastern China summerrainfallandrelatedcirculations:-PDO+AMO(+PDOAMO)is related with decreased(increased)rainfall over the YR;the land–sea thermal contrast is somewhat stronger;the East Asian summermonsoonis strengthened(weakened);the EAWJS is weaker(stronger);and ascending motion related with the EAWJS over YR is inhibited(enhanced).In our recent decadal climate changes,the situation was consistent with that simulated in CCSM4:+PDO-AMO corresponded to more rainfall over the YR from the late 1970s to the late 1990s,while-PDO+AMOcorrespondedtoless rainfallover the YR after the late 1990s.However,the decreased rainfall in North China after the late 1970s,as well as the in-creased rainfall in the lower reaches of the Huanghe River-Huaihe River valleys after the late 1990s,were not presented in CCSM4.One of the possible causes may be the model’s insufficiency in simulating the East Asian climate,which is a common disadvantage for state-of-the-art climate models. Another may be that the impact of anthropogenic forcing,to which the interdecadal changes in East Asian summer rainfall could be partly attributed,is not represented in the preindustrial simulation of CCSM used in this study.

    Fig.8.The running correlation coefficient between the PDO and AMO in the first,second,third,fourth and fifth 100 years (a–e)and the whole period of the control simulation.Dashed lines denote the values at the 95%confidence level.

    Although combinations of the PDO and AMO are good indicators for summer rainfall variation in eastern China at the decadal time scale,correlations between them were inconsistent in CCSM4.For the 501-year time series used in this study,their relationship varied(Fig.8):sometimes positive,sometimes negative,sometimes PDO leading the AMO, and sometimes the other way round.Although Wu et al. (2011)revealed that,based on observational data for the period 1870–2002,significant correlations show up when the PDO leads the AMO by 1 year and when the AMO leads the PDO by11–12years,whenbasedonourlongermodeloutput dataset the correlations are probably unstable.In addition,to predict either the PDO or AMO is difficult for numerical and statistical models at present.Therefore,to predict the combinations of the PDO and AMO and decadal changes of summer rainfall in eastern China are more challenging issues.

    Acknowledgements.We want to thank Dr.Dong GUO and Jun WANG for their help with the figures.This work was jointly supported by the National Natural Science Foundation of China (Grant Nos.41205054,41205051 and 41210007),and the CASPKU Pioneer Cooperation Program.

    REFERENCES

    Barlow,M.,S.Nigam,and E.H.Berbery,2001:ENSO,Pacific decadal variability,and U.S.summertime precipitation, drought,and stream flow.J.Climate,14(9),2105–2128.

    Chylek,P.,M.K.Dubey,G.Lesins,J.N.Li,and N.Hengartner, 2014:Imprint of the Atlantic multi-decadal oscillation and Pacific decadal oscillation on southwestern US climate:Past, present,and future.Climate Dyn.,43(1–2),119–129.

    Dai,A.G.,J.C.Fyfe,S.P.Xie,and X.G.Dai,2015:Decadal modulation of global surface temperature by internal climate variability.Nature ClimateChange,5,555–559,doi:10.1038/ nclimate2605.

    Ding,Y.H.,2008:Upper tropospheric jet stream and the related secondary circulation.Advanced Synoptic Meteorology,Y.H. Ding,Ed.,China Meteorological Press,138–149.

    Ding,Y.H.,Z.Y.Wang,and Y.Sun,2008:Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon.Part I:Observed evidences.Int.J.Climatol.,28(9),1139–1161.

    Enfield,D.B.,A.M.Mestas-Nu?ez,and P.J.Trimble,2001:The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S.Geophys.Res.Lett., 28(10),2077–2080.

    Gent,P.R.,and Coauthors,2011:The community climate system model version 4.J.Climate,24,4973–4991.

    Hao,X.,F.Li,J.Q.Sun,H.J.Wang,and S.P.He,2015:Assessment of the response of the East Asian winter monsoon to ENSO-like SSTAs in three U.S.CLIVAR Project models.Int. J.Climatol.,doi:10.1002/joc.4388.

    Knight,J.R.,C.K.Folland,and A.A.Scaife,2006:Climate impacts of the Atlantic Multidecadal Oscillation.Geophys.Res. Lett.,33(17),L17706.

    Kosaka,Y.,and S.-P.Xie,2013:Recent global-warming hiatustied to equatorial Pacific surface cooling.Nature,501,403–407,doi:10.1038/nature12534.

    Li,H.L.,H.J.Wang,and Y.Z.Yin,2012:Interdecadal variation of the West African summer monsoon during 1979–2010 and associated variability.Climate Dyn.,39(12),2883–2894.

    Li,S.L.,and F.-F.Luo,2013:Lead-Lag connection of the Atlantic Multidecadal Oscillation(AMO)with East Asian surface air temperatures in instrumental records.Atmos.Oceanic Sci.Lett.,6(3),138–143.

    Ma,Z.G.,2007:The interdecadal trend and shift of dry/wet over the central part of North China and their relationship to the PacificDecadal Oscillation(PDO).Chinese Sci.Bull.,52(15), 2130–2139.

    Mantua,N.J.,S.R.Hare,Y.Zhang,J.M.Wallace,and R.C.Francis,1997:A Pacific interdecadal climate oscillation with impacts on salmon production.Bull.Amer.Meteor.Soc.,78(6), 1069–1079.

    Meehl,G.A.,A.X.Hu,J.M.Arblaster,J.Fasullo,and K. E.Trenberth,2013:Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation.J.Climate,26(18),7298–7310, doi:10.1175/JCLI-D-12-00548.1

    Qian,C.,and T.J.Zhou,2014:Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J.Climate,27(3),1210–1222.

    Si,D.,and Y.H.Ding,2013:Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979–2011.J.Climate, 26(19),7622–7634.

    Sun,J.Q.,H.J.Wang,W.Yuan,2008:Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature.J.Geophys.Res.,113, D15107.

    Trenberth,K.E.,and J.T.Fasullo,2013:An apparent hiatus in global warming?Earth’s Future,1(1),19–32,doi:10.1002/ 2013EF000165.

    Trenberth,K.E.,and J.W.Hurrell,1994:Decadal atmosphereocean variations in the Pacific.Climate Dyn.,9(6),303–319.

    Wang,H.J.,2001:The weakening of the Asian monsoon circulation after the end of 1970’s.Adv.Atmos.Sci.,18(3),376–386, doi:10.1007/BF02919316.

    Wang,T.,H.J.Wang,O.H.Otter?,Y.Q.Gao,L.L.Suo,T.Furevik,and L.Yu,2013:Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s.Atmos.Chem.Phys.,13(5),11997–12032.

    Wu,S.,Z.Y.Liu,R.Zhang,and T.L.Delworth,2011:On the observed relationship between the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation.Journal of Oceanography,67(1),27–35.

    Xu,K.,and C.W.Zhu,2010:Tropical Pacific decadal oscillation in subsurface ocean temperature.Atmos.Oceanic Sci.Lett., 3(2),106–110.

    Yeh,S.,and B.Kirtman,2004:Decadal North Pacific sea surface temperature variability and the associated global climate anomalies in a coupled general circulation model.J.Geophys. Res.,109(D20),D20113.

    Yu,L.,T.Furevik,O.H.Otter?,and Y.Q.Gao,2015:Modulation of thePacificDecadal Oscillation on the summer precipitation over East China:A comparison of observations to 600-years control run of Bergen Climate Model.Climate Dyn.,44(1–2), 475–494.

    Zhang,R.,and T.L.Delworth,2006:Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes.Geophys.Res.Lett.,33(17),L17712.

    Zhu,Y.L.,H.J.Wang,W.Zhou,and J.H.Ma,2011:Recent changes in the summer precipitation pattern in East China and the background circulation.Climate Dyn.,36(7–8),1463–1473.

    Zhu,Y.L.,H.J.Wang,J.H.Ma,T.Wang,and J.Q.Sun,2015: Contribution of the phase transition of Pacific decadal oscillation to the late 1990s’shift in East China summer rainfall.J.Geophys.Res.,120(17),8817–8827,doi:10.1002/ 2015JD023545.

    Zhu,Y.M.,and X.Q.Yang,2003:Relationships between Pacific Decadal Oscillation(PDO)and climate variabilities in China. Acta Meteorologica Sinica,61(6),641–654.(in Chinese)

    Zhu,Y.L.,T.Wang,and J.H.Ma,2016:Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4.Adv.Atmos.Sci.,33(6),706–714,

    10.1007/s00376-016-5269-x.

    17 December 2015;revised 1 January 2016;accepted 7 January 2016)

    Yali ZHU

    Email:zhuyl@mail.iap.ac.cn

    男女下面插进去视频免费观看| 丝袜美腿诱惑在线| 乱人伦中国视频| 黄色毛片三级朝国网站| 黑人猛操日本美女一级片| 中文字幕av电影在线播放| 国产精品免费视频内射| 99国产极品粉嫩在线观看| 免费少妇av软件| www.999成人在线观看| 国产亚洲欧美在线一区二区| 亚洲精品自拍成人| 欧美大码av| 欧美日韩国产mv在线观看视频| 欧美少妇被猛烈插入视频| 不卡av一区二区三区| 国产精品99久久99久久久不卡| 男人舔女人的私密视频| 男人添女人高潮全过程视频| 美女脱内裤让男人舔精品视频| 老鸭窝网址在线观看| 久久久久久亚洲精品国产蜜桃av| 国产免费视频播放在线视频| 精品福利观看| 国产日韩欧美亚洲二区| 日韩一区二区三区影片| 亚洲五月色婷婷综合| 99久久人妻综合| kizo精华| 狠狠婷婷综合久久久久久88av| 亚洲五月婷婷丁香| 男女高潮啪啪啪动态图| 一本综合久久免费| 久久精品国产a三级三级三级| 日本五十路高清| av有码第一页| 后天国语完整版免费观看| av又黄又爽大尺度在线免费看| 看免费av毛片| 精品少妇一区二区三区视频日本电影| 蜜桃在线观看..| 国产精品自产拍在线观看55亚洲 | 自线自在国产av| 成年动漫av网址| 亚洲免费av在线视频| 亚洲欧美激情在线| 人人妻人人澡人人爽人人夜夜| 91精品伊人久久大香线蕉| 欧美亚洲 丝袜 人妻 在线| 中亚洲国语对白在线视频| 免费观看av网站的网址| 黄频高清免费视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成av片中文字幕在线观看| 人妻一区二区av| 国产欧美日韩一区二区三 | 亚洲精品国产区一区二| 亚洲五月色婷婷综合| 手机成人av网站| 伊人久久大香线蕉亚洲五| 考比视频在线观看| 免费观看人在逋| 母亲3免费完整高清在线观看| 国产成人av教育| 91大片在线观看| 中文字幕精品免费在线观看视频| 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av电影在线观看一区二区三区| 一本大道久久a久久精品| 成人av一区二区三区在线看 | 欧美日韩亚洲国产一区二区在线观看 | 国产激情久久老熟女| 色播在线永久视频| 男女午夜视频在线观看| 美女高潮喷水抽搐中文字幕| 大香蕉久久成人网| 窝窝影院91人妻| 亚洲精品第二区| 精品人妻一区二区三区麻豆| 成在线人永久免费视频| 777米奇影视久久| 国产av国产精品国产| 国产成+人综合+亚洲专区| 午夜两性在线视频| 国产91精品成人一区二区三区 | 视频区图区小说| 精品一区在线观看国产| 水蜜桃什么品种好| kizo精华| 亚洲精品久久久久久婷婷小说| 色综合欧美亚洲国产小说| a级毛片黄视频| videos熟女内射| 久久久水蜜桃国产精品网| 最新的欧美精品一区二区| 国产97色在线日韩免费| 精品福利观看| 午夜福利乱码中文字幕| 叶爱在线成人免费视频播放| 十分钟在线观看高清视频www| netflix在线观看网站| 12—13女人毛片做爰片一| kizo精华| 国产精品av久久久久免费| 中文字幕人妻熟女乱码| 黄色a级毛片大全视频| 日韩一区二区三区影片| 国产欧美日韩一区二区三区在线| 999久久久精品免费观看国产| 高清欧美精品videossex| 国产成人啪精品午夜网站| 日韩电影二区| 日韩 亚洲 欧美在线| a在线观看视频网站| 老鸭窝网址在线观看| 十八禁人妻一区二区| 一区二区av电影网| 成年女人毛片免费观看观看9 | 在线观看免费高清a一片| 日日摸夜夜添夜夜添小说| a级毛片黄视频| 亚洲精品在线美女| 建设人人有责人人尽责人人享有的| 飞空精品影院首页| 午夜福利视频在线观看免费| 考比视频在线观看| 日韩三级视频一区二区三区| 天天添夜夜摸| 人成视频在线观看免费观看| 9色porny在线观看| 欧美日韩视频精品一区| 1024视频免费在线观看| 日本av免费视频播放| 国产欧美日韩综合在线一区二区| 99热网站在线观看| 国产男女内射视频| 亚洲免费av在线视频| 老司机午夜福利在线观看视频 | 新久久久久国产一级毛片| 国产野战对白在线观看| 欧美97在线视频| 一区二区日韩欧美中文字幕| 美女高潮喷水抽搐中文字幕| 成人免费观看视频高清| 久久人妻熟女aⅴ| 亚洲精品自拍成人| 亚洲av欧美aⅴ国产| 如日韩欧美国产精品一区二区三区| 操出白浆在线播放| 18禁裸乳无遮挡动漫免费视频| 91老司机精品| 欧美激情久久久久久爽电影 | 宅男免费午夜| 亚洲久久久国产精品| 人人妻人人爽人人添夜夜欢视频| 女人久久www免费人成看片| 免费观看人在逋| 十八禁人妻一区二区| 一进一出抽搐动态| 国产成人欧美在线观看 | 久久精品国产a三级三级三级| 精品亚洲成国产av| 国产精品久久久人人做人人爽| av欧美777| 中文字幕人妻丝袜一区二区| 国产免费现黄频在线看| 日本a在线网址| 亚洲五月婷婷丁香| 人人妻人人澡人人看| 操出白浆在线播放| 久久久久视频综合| 高清在线国产一区| 日日摸夜夜添夜夜添小说| 欧美 亚洲 国产 日韩一| 欧美精品啪啪一区二区三区 | 午夜福利视频在线观看免费| 久热这里只有精品99| 黄片小视频在线播放| 成年动漫av网址| 国产在线免费精品| 99国产精品免费福利视频| 亚洲国产日韩一区二区| www.av在线官网国产| 国内毛片毛片毛片毛片毛片| 黄频高清免费视频| 国产免费福利视频在线观看| 老汉色∧v一级毛片| 国产成人a∨麻豆精品| 国产精品欧美亚洲77777| 菩萨蛮人人尽说江南好唐韦庄| 久久狼人影院| 国产亚洲精品第一综合不卡| 日韩一区二区三区影片| 热re99久久精品国产66热6| 亚洲精品一卡2卡三卡4卡5卡 | 国产真人三级小视频在线观看| 欧美成狂野欧美在线观看| 国产色视频综合| av片东京热男人的天堂| 久久精品久久久久久噜噜老黄| 丝袜人妻中文字幕| 久久精品久久久久久噜噜老黄| 男男h啪啪无遮挡| 18禁观看日本| 免费观看人在逋| 国产麻豆69| 青青草视频在线视频观看| 一区二区三区激情视频| 美女脱内裤让男人舔精品视频| 日韩大片免费观看网站| 老熟妇乱子伦视频在线观看 | 免费少妇av软件| 精品一区二区三卡| tocl精华| 黄色毛片三级朝国网站| 亚洲精品一二三| 亚洲天堂av无毛| 少妇猛男粗大的猛烈进出视频| 日韩制服丝袜自拍偷拍| 亚洲av日韩在线播放| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区mp4| 91麻豆精品激情在线观看国产 | 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看 | 欧美午夜高清在线| 如日韩欧美国产精品一区二区三区| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 免费少妇av软件| 麻豆av在线久日| 国产一区二区 视频在线| 久久久久久人人人人人| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 久热这里只有精品99| 91国产中文字幕| 久久久国产一区二区| 婷婷成人精品国产| 久久人妻福利社区极品人妻图片| 久久久久久久精品精品| 国产免费av片在线观看野外av| 热99re8久久精品国产| 水蜜桃什么品种好| 欧美xxⅹ黑人| 亚洲av成人一区二区三| 亚洲av美国av| 免费av中文字幕在线| 成人国产一区最新在线观看| 国产一区二区三区av在线| 两性午夜刺激爽爽歪歪视频在线观看 | 免费高清在线观看视频在线观看| 男人爽女人下面视频在线观看| 国产一区二区三区综合在线观看| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产一区二区入口| 免费高清在线观看视频在线观看| 免费日韩欧美在线观看| 国产精品.久久久| 免费av中文字幕在线| 纯流量卡能插随身wifi吗| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 亚洲专区中文字幕在线| 纵有疾风起免费观看全集完整版| 中文字幕高清在线视频| 精品人妻在线不人妻| 亚洲欧美成人综合另类久久久| www日本在线高清视频| 亚洲成人国产一区在线观看| 女人精品久久久久毛片| 水蜜桃什么品种好| 99国产精品免费福利视频| 一本色道久久久久久精品综合| 国产无遮挡羞羞视频在线观看| 大香蕉久久网| 国产成人影院久久av| 国产成人精品久久二区二区免费| 国产免费福利视频在线观看| www.av在线官网国产| 国产精品国产三级国产专区5o| a 毛片基地| 纯流量卡能插随身wifi吗| 在线观看免费视频网站a站| 免费高清在线观看日韩| 久久精品久久久久久噜噜老黄| 亚洲欧洲精品一区二区精品久久久| 色老头精品视频在线观看| 午夜免费成人在线视频| 伊人亚洲综合成人网| 丝袜美足系列| 日韩欧美一区视频在线观看| 黄色片一级片一级黄色片| 美女国产高潮福利片在线看| 久久久国产精品麻豆| 国产成人av教育| 精品久久久精品久久久| 蜜桃在线观看..| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 男女午夜视频在线观看| 欧美人与性动交α欧美精品济南到| 99久久综合免费| 国产av一区二区精品久久| 国产国语露脸激情在线看| av不卡在线播放| 在线观看免费视频网站a站| 午夜福利在线观看吧| 欧美日韩国产mv在线观看视频| 日韩欧美一区二区三区在线观看 | 天天躁日日躁夜夜躁夜夜| 考比视频在线观看| 可以免费在线观看a视频的电影网站| 啦啦啦啦在线视频资源| 老鸭窝网址在线观看| 老司机深夜福利视频在线观看 | 久久这里只有精品19| 欧美精品亚洲一区二区| 免费女性裸体啪啪无遮挡网站| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 两性夫妻黄色片| 色婷婷久久久亚洲欧美| 黄色视频,在线免费观看| 国产区一区二久久| 女人被躁到高潮嗷嗷叫费观| 一级,二级,三级黄色视频| 午夜日韩欧美国产| 在线精品无人区一区二区三| 久久久精品94久久精品| 91字幕亚洲| 汤姆久久久久久久影院中文字幕| 老熟妇乱子伦视频在线观看 | 制服诱惑二区| 精品福利观看| 在线看a的网站| 一级毛片精品| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| av在线播放精品| 另类亚洲欧美激情| 99热网站在线观看| 亚洲成人免费电影在线观看| 国产免费福利视频在线观看| 精品高清国产在线一区| 久久久久精品人妻al黑| 男女国产视频网站| 日韩电影二区| 波多野结衣一区麻豆| 人妻人人澡人人爽人人| 黄色视频不卡| 成人影院久久| 日韩精品免费视频一区二区三区| 成人国产av品久久久| 亚洲自偷自拍图片 自拍| 亚洲成av片中文字幕在线观看| 法律面前人人平等表现在哪些方面 | 久久亚洲精品不卡| 成人三级做爰电影| 97在线人人人人妻| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 久久人妻福利社区极品人妻图片| 久久精品国产综合久久久| 亚洲第一欧美日韩一区二区三区 | √禁漫天堂资源中文www| 极品少妇高潮喷水抽搐| 国产成人一区二区三区免费视频网站| 国产成人欧美| 黄片大片在线免费观看| 色播在线永久视频| 国产一区二区三区在线臀色熟女 | 两个人看的免费小视频| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 欧美成人午夜精品| 交换朋友夫妻互换小说| av不卡在线播放| 人人妻人人澡人人爽人人夜夜| 久久综合国产亚洲精品| 91麻豆精品激情在线观看国产 | 丝袜美足系列| 免费在线观看完整版高清| 老司机福利观看| 秋霞在线观看毛片| 老司机影院毛片| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 啪啪无遮挡十八禁网站| 亚洲中文日韩欧美视频| 免费少妇av软件| 三级毛片av免费| 成年人午夜在线观看视频| 日韩欧美一区二区三区在线观看 | 欧美性长视频在线观看| 久久99一区二区三区| 一本综合久久免费| 亚洲av日韩精品久久久久久密| 久久久久久久久免费视频了| av视频免费观看在线观看| 中文字幕色久视频| 亚洲欧美日韩另类电影网站| 黄网站色视频无遮挡免费观看| 午夜成年电影在线免费观看| 免费人妻精品一区二区三区视频| 18禁裸乳无遮挡动漫免费视频| 夜夜夜夜夜久久久久| 老司机午夜福利在线观看视频 | 亚洲视频免费观看视频| 黄频高清免费视频| 国产精品欧美亚洲77777| 欧美亚洲日本最大视频资源| 国产亚洲欧美在线一区二区| 99热网站在线观看| 成年av动漫网址| 波多野结衣一区麻豆| 一边摸一边做爽爽视频免费| 国产福利在线免费观看视频| 又黄又粗又硬又大视频| 日韩欧美免费精品| 大片免费播放器 马上看| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 欧美在线黄色| 国产伦人伦偷精品视频| 亚洲综合色网址| 91成人精品电影| 国产成人av教育| 三上悠亚av全集在线观看| 久久九九热精品免费| 97精品久久久久久久久久精品| 啪啪无遮挡十八禁网站| 各种免费的搞黄视频| 国产在线一区二区三区精| 麻豆国产av国片精品| 国产极品粉嫩免费观看在线| 老司机影院毛片| 蜜桃国产av成人99| 国产精品久久久av美女十八| 国产在线视频一区二区| 少妇裸体淫交视频免费看高清 | 男人添女人高潮全过程视频| 午夜福利免费观看在线| 亚洲视频免费观看视频| 欧美日韩成人在线一区二区| 久久久久精品国产欧美久久久 | 免费在线观看视频国产中文字幕亚洲 | 精品国内亚洲2022精品成人 | 女人被躁到高潮嗷嗷叫费观| 日韩 欧美 亚洲 中文字幕| 日韩视频一区二区在线观看| 国产av又大| 国产亚洲午夜精品一区二区久久| 9热在线视频观看99| 欧美变态另类bdsm刘玥| 亚洲av欧美aⅴ国产| 国产男女内射视频| www.精华液| 亚洲精品一卡2卡三卡4卡5卡 | 91成年电影在线观看| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 69av精品久久久久久 | 桃红色精品国产亚洲av| 正在播放国产对白刺激| 亚洲欧美激情在线| 捣出白浆h1v1| 日本一区二区免费在线视频| 咕卡用的链子| 美女中出高潮动态图| 亚洲国产精品一区二区三区在线| 男女国产视频网站| 妹子高潮喷水视频| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 男人舔女人的私密视频| 午夜福利在线观看吧| 亚洲中文日韩欧美视频| 国产主播在线观看一区二区| 久久中文字幕一级| 国产高清videossex| 精品少妇一区二区三区视频日本电影| 他把我摸到了高潮在线观看 | 欧美亚洲 丝袜 人妻 在线| 一本久久精品| 亚洲成av片中文字幕在线观看| 大码成人一级视频| 超碰97精品在线观看| 天天添夜夜摸| 午夜免费鲁丝| 大片电影免费在线观看免费| 亚洲国产欧美日韩在线播放| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 日本91视频免费播放| av福利片在线| a 毛片基地| 国产一区二区激情短视频 | 天天影视国产精品| 别揉我奶头~嗯~啊~动态视频 | 99精国产麻豆久久婷婷| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 国产成人影院久久av| 女性被躁到高潮视频| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 亚洲三区欧美一区| 久久精品国产亚洲av高清一级| 国产免费视频播放在线视频| 国产又爽黄色视频| tocl精华| 欧美激情久久久久久爽电影 | 国产精品亚洲av一区麻豆| 免费在线观看影片大全网站| 亚洲欧美一区二区三区黑人| 日日爽夜夜爽网站| av视频免费观看在线观看| 亚洲精品乱久久久久久| 亚洲专区中文字幕在线| 久久免费观看电影| 欧美人与性动交α欧美软件| 美女高潮到喷水免费观看| 国产人伦9x9x在线观看| 日本欧美视频一区| 最黄视频免费看| 久久国产精品影院| 性色av乱码一区二区三区2| 国产成人a∨麻豆精品| www.999成人在线观看| 男女高潮啪啪啪动态图| 无遮挡黄片免费观看| 国产成人一区二区三区免费视频网站| 国产精品久久久久久精品古装| 天天操日日干夜夜撸| 国产亚洲精品一区二区www | 欧美少妇被猛烈插入视频| 欧美在线黄色| 一本—道久久a久久精品蜜桃钙片| 久久久久久人人人人人| 亚洲精品日韩在线中文字幕| 欧美 亚洲 国产 日韩一| 女警被强在线播放| 国产精品久久久久久精品电影小说| 亚洲九九香蕉| 日日摸夜夜添夜夜添小说| www.999成人在线观看| 青青草视频在线视频观看| 一区福利在线观看| 99久久精品国产亚洲精品| 国产在线一区二区三区精| 人人妻人人澡人人看| 悠悠久久av| 亚洲第一av免费看| 久久久久国内视频| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 国产1区2区3区精品| 欧美激情 高清一区二区三区| 男女高潮啪啪啪动态图| 久久精品熟女亚洲av麻豆精品| 欧美另类亚洲清纯唯美| 美女中出高潮动态图| 夜夜夜夜夜久久久久| 老熟女久久久| 欧美日韩成人在线一区二区| 国产精品国产三级国产专区5o| 中国美女看黄片| a级毛片黄视频| 日本a在线网址| 老司机亚洲免费影院| 91av网站免费观看| 一本大道久久a久久精品| 亚洲欧美一区二区三区黑人| 国产成+人综合+亚洲专区| 国产在线免费精品| 久久国产亚洲av麻豆专区| 欧美日本中文国产一区发布| 正在播放国产对白刺激| 久久久欧美国产精品| 免费av中文字幕在线| 午夜免费观看性视频| www.精华液| 国产欧美日韩一区二区三 | 久久这里只有精品19| 999久久久国产精品视频| 久9热在线精品视频| 少妇 在线观看| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区mp4| 母亲3免费完整高清在线观看| 国产老妇伦熟女老妇高清| 亚洲欧美精品自产自拍| www日本在线高清视频| 久久99一区二区三区| www日本在线高清视频| 啪啪无遮挡十八禁网站| 男人爽女人下面视频在线观看| 永久免费av网站大全| 亚洲一区中文字幕在线| 最近最新免费中文字幕在线| 成年人午夜在线观看视频| 色94色欧美一区二区|